With Solvent Extraction Method, and via new Organic Reagent 2-(Benzo thiazolyl azo)-4,5- Diphenyl Imidazole for Spectrophotometric Determination of Copper (II) in different Samples

Shawket Kadhim Jawad* Safa Mageed Hameed* Sahar Aqeel Hussein**

> Received 15, April, 2012 Accepted 14, August, 2013

Abstract:

The new organic reagent 2-[Benzo thiazolyl azo]-4,5-diphenyl imidazole was prepared and used as complexing agent for separation and spectrophotometric determination of Cu²⁺ ion in some samples include plants, soil, water and human blood serum. Initially determined all factors effect on extraction method and the results show optimum pH was (pH_{ex}=9), optimum concentration was 40µg/5mLCu²⁺ and optimum shaking time was (15min.), as well stoichiometry study appears the complex structure was 1:1 Cu²⁺: BTADPI. Interferences effect of cations were studied. Synergism effect shows MIBK gave increasing in distribution ratio (D). Organic solvent effect appears there is no any linear relation between dielectric constant for organic solvent used and distribution ration (D). Thermodynamically found the reaction was Endothermic reaction, with ΔH_{ex} = 0.0131 KJ.mole⁻¹, ΔG_{ex} =-54.20 KJ.mole⁻¹, ΔS_{ex} = 167.84 J.mole⁻¹.Beer's law was obeyed over the concentration 1-30µg/5mL, and ε =922.90 Lmol⁻¹.cm⁻¹,with detection limit 1.7×10⁻⁵ and Sandell's sensitivity 6.8× 10⁻⁷ gcm⁻².

Key words: Solvent extraction, Copper, Spectrophotometric determination.

Introduction:

Separation and determination of metal ions have been one of the most important topics of analytical Chemistry. Developing highly functional Chelating agents has been a great concern of many analytical Chemists. Investigations into developing new type of Chelating agents have produced many functional results having high sensitivity. New chelating resin was prepared by coupling Amberlite XAD-4 with 1amino-2-naphthole through an azo spacer. The resulting sorbent has been FT-IR, characterized by element alanalysis and thermo gravimetric analysis and studied for preconcentrating of Cu (II) using FAAS for metal monitoring, and the

optimum pH value for sorption of the Cu^{2+} was 6.5[1]. An extraction and sensitive differential pulse anodic stripping voltammetric method at hanging mercury drop electrode is described for the determination of Zn, Cu, Pb ($\mu g g^{-1}$) and Cd ($ng g^{-1}$) metal ions in water and 0.1MHCl extracts for Kakade, anise, Cumin, Caraway and black pepper [2]. The significant spectral overlap (Di)0.5 = 0.5667which is about 75.3% overlapping of the UV/Vis, absorption spectra of Fe (II) and Cu(II) complexes necessitates chemometric assisted methods for simultaneous analysis of these ions in the pharmaceutical mixture. These metal ions have been analyzed UV/Vis. simultaneously by

*Kufa University – College of education for girls – Department of Chemistry.

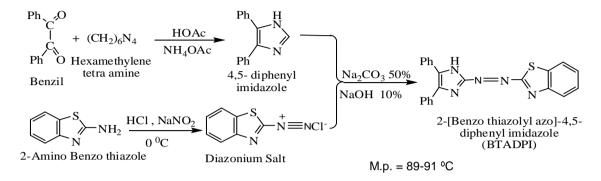
^{**}Biochemical laboratory, University of Kufa

spectrophotometric method where 8hydroxyquinoline was used as a chromogenic reagent. The methods were successfully applied for analyzing synthetic mixtures and commercial pharmaceutical preparation [3]. The synergistic extraction of Cu (II) with N-phenyl benzo hydroximic acid (PBHA) and tri-n-octyl phosphinoxide or tributyl phosphate was investigated in CHCl₃. The effect found in presence of natural ligand is due to formation of the adduct Cu(PBHA)₂S in CHCl₃. The synergic coefficients were determined which have higher value in presence of TOPO than TBP, since TOPO has the higher basicity than TBP [4]. A solid phase extraction method was developed for pre-concentration and spectrophotometric determination of copper in water samples by using lead 4-benzyl piperidine dithiocarbamate complex (Pb(4-BPDC)₂), Cu in large volume liquid phase quantitively replaces lead on colorless (Pb(4-BPDC)₂) complex and naphthalene solid phase mixture forming Cu(4-BPDC)₂ λ_{max} =437nm, linearity is 0.4– $10 \text{gmL}^{-1} \text{of}$ Cu, $\varepsilon = 8.197 \times 10^{3} \text{L.mol}^{-1}$ $^{1}.cm^{-1}[5].$ Spectrophotometric determination of Cu (II) based on the pH4-9 between reaction at the acetophenone-p-chloro synthesized phenyl thiosemicarbazone (A-p-CIPI) and Cu(II) forming a green complex Cu⁺²:A-p-CIPI (1:2)that floats quantitively with oleic acid surfactant, $\lambda_{max} = 600$ nm in both aqueous and surfactant lavers. $\epsilon = 5.5 \times 10^{3}$ and Lmol⁻¹cm⁻¹inaqueous 1.3×10^4 and surfactant layers, Beer's law is obeyed over the range 0.25-6.35mgL⁻¹with DL=0.021mgL⁻ for a standard aqueous solution of Cu (II) with a concentration of 3.82 mgL⁻¹, Sandell's 0.244µg sensitivity was $cm^{2}[6]$. Spectrophotometric method has been developed for the determination of Cu(II) by using 2.3.4trihydroxyacetophenonephenylhydrazo

ne (THAPPH) as an analytical reagent. The metal ion has formed 1:2 (M:L) bluish green coloured complex with THAPPH in HCl-KCl buffer of pH 2.5. Beer's law was obeyed in the range 0.04-0.64 µg/ml of Cu(II) at $\lambda_{max}=385$ $\epsilon = 1.0053 \times 10^{5} L.mol^{-1} cm^{-1} and$ nm. Sandell's sensitivity (0.0006265 µgcm⁻ ²), SD (0.0024),RSD (0.47%),confidence limit (±0.0017), and standard error (0.0008). The interfering effect of various cations and anions has been also studied. The reliability of the method was assured by analyzing the standard alloys, Brass, Bronze, and Phosphor-Bronze. This method was successfully employed for the determination of Cu(II) in food and medicinal leafy samples and inter compared the experimental values using AAS and statistically evaluated using F-test.[7].

Materials and Methods: Apparatus:

All apparatus used was Double beam (UV-Vis) Spectrophotometer Shimadzu (UV-1700) (Japan), Signal beam (UV-Vis) Spectrophotometer Shimadzu (UV.100-02) (Japan). PH-WTW (Germany), meter, Stuart Melting point Apparatus (Japan), As well FT-IR8400S (CE), Shimadzu Corporation. Element analysis Carried out by Micro analytical unit. 1108 C.H.N elemental analysis Atomic Absorption Spectroscopy AA-6300 used also to comparable the results.


Chemicals and reagents:

All Chemicals used in this study were analytical reagents grade (Fluka, Merck & BDH). The stock standard Copper(II) solution 1mg/mL was prepared by dissolving 0.3928gm of CuSO₄.5H₂Oin distilled water contain 1mL of concentration H₂SO₄ and 100mL.1×10⁻²M Stock diluting to dithiazone solution prepared by dissolving (0.0256gm) of dithiazone in

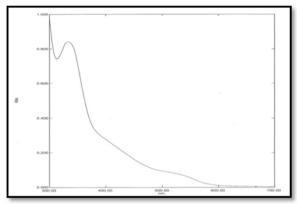
10mL of CCl₄. The stock organic $1 \times 10^{-2} M$ reagent Solution was prepared by dissolving 0.0381gm of BTADPI in 10mL Chloroform other solutions prepared working by appropriate dilution with suitable solvent.

Preparation of organic reagent:

Preparation of 2-(Benzo thiazolyl azo)-4,5-diphenyl imidazole (BTADPI)consisted of processing in three steps from commercially available material. As below:

General procedure:

Extraction experiment was carried out for Cu⁺²ions in aqueous solutions by 5mL of 1×10⁻⁴M organic reagent BTADPI dissolved chloroform shaking the two layers for fixed time separate organic layer from aqueous layer and determine remainder quantity of Cu⁺²in aqueous phase spectrophotometrically by dithiazone method [8]. Also determine Cu⁺² ions transferred to the organic phase to share in complex formation, later calculate at distribution ratio (D). On the other hand, determined λ_{max} for complex in organic solvent for spectrophotometric determination of Cu⁺² ions in different samples, environmental and vital samples digested by dry digestion method [9], 5mL digested solution shaked with 5mL of 1×10^{-4} M organic reagent dissolved in chloroform for (15min) at pHex=9, and add 2mL of


 1×10^{-2} M sodium fluoride, after separated the two layers taken the absorbance of organic phase λ_{max} =494nm against organic reagent as blank.

Results and Discussion: Spectrophotometric Studies:

UV.-Vis spectrum as in Figures (1,2) and Table(1) shows λ_{max} =332nm for organic reagent and λ_{max} =494nm for its complex with Cu²⁺ these results show complex formation between organic reagent and Cu²⁺ ions [10,11]. While IR-spectrum as in Figures (3,4) and Table(1) the spectrum of Cu²⁺ complex with organic reagent show shift for absorbance peaks (-N-H, C-H, C=N, -N=N-, C-S) in the spectrum of organic reagent and appear new peak by effect the coordination with Cu²⁺ and SO₄⁼, H₂O [12,13].

Table(1):Spectrophotometric studies & analysis of element for organic reagent &
its complex withCu ²⁺

Analysis of elements %					UV- Infrared cm ⁻¹								
Compound	С	Н	Ν	Cu	Vis λnm	-N-H	С-Н	C=N	- N=N-	C-S	Cu-	H ₂ O	$\mathbf{SO}_4^=$
C ₂₂ H ₁₅ N ₅ S	70.05	4.01	19.11	- 332 (s)	3200	3065 (s)	1600 1580 (imidazole)	1450, 1500	1230 (s)	-	-	-	
						3300 (w)	3000 (w)	1685 (thiazole)	1500	(3)			
$[Cu^{2+}(C_{22}H_{15}N_5S)]SO_4^{=}$	44.54	2.43	16.23	29.46	494	-	2954, 2850	1465 (imidazole) 1683 (thiazole)	1743	1250	700- 800	3425	1100

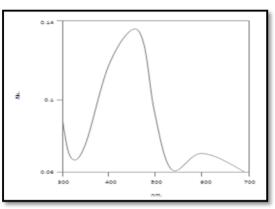


Fig. (1): UV.-Vis. Spectrum of organic reagent BTADPI

Fig. (2): UV.-Vis. Spectrum of Cu²⁺complex with BTADPI

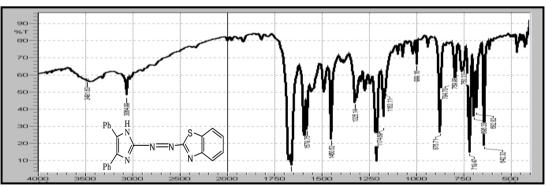
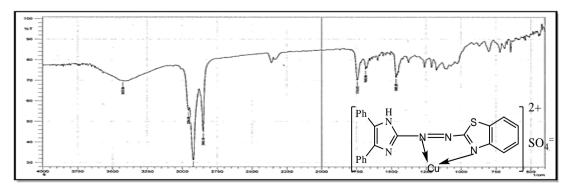
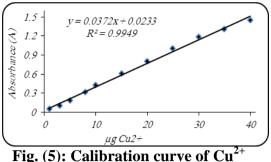
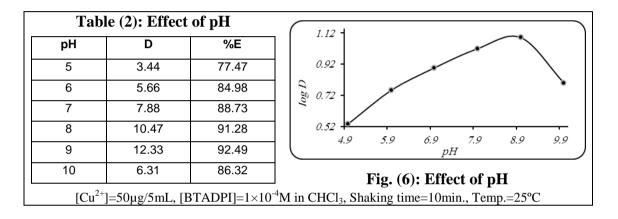


Fig.(3): Infrared Spectrum of organic reagent BTADPI


Fig. (4): Infrared Spectrum of Cu²⁺ complex with organic reagent BTADPI

with dithiazone

Effect of pH

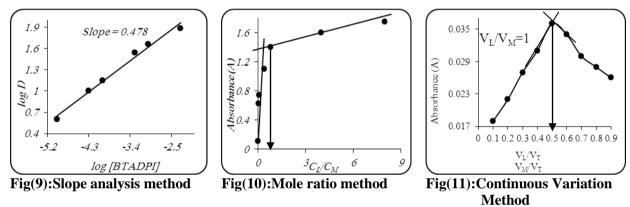
pH of aqueous solution plays major rule for complex formation and extraction methods, extracted Cu^{2+} from aqueous phase at pH range $5\rightarrow 10$, the results show maximum (D) at pH=9 as in Table (2) and Figure (6). The results appear enhancement in (D) with pH increasing to pH=9 after that the decline in (D) value with increasing pH more than (9).

Effect of metal ion concentration

Extraction experiments of different amount of Cu^{2+} in aqueous solutions, the results show (D) increase with Cu^{2+} concentration increase and

```
Cu^{2+}_{aq.} + BTADPI_{org.} + HSO_{4}^{-}_{aq.} \implies [Cu(BTADPI)_n]^{n+}(HSO_{4}^{-})_{n org.} \dots (1)
```

Table (3): I	Effect of Cu ²⁺	concentration	
µg Cu ²⁺	D	%Е	0.9 -
20	1.32	56.89	0.6
30	3.28	76.63	th 0.3
40	12.33	92.49	0 + 19 + 29 + 39 + 49 + 59
50	5.37	84.30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
60	3.28	76.63	Fig. (7): Effect of Cu²⁺ concentration
I	oH=9, [BTADPI]=1×10 ⁻⁴ M in CHCl	₃ , Shaking time=10min., Temp.=25°C


Effect of shaking time:

The results of kinetic side study show that (D) change as a function for shaking time, and the optimum shaking time was 15 min. This is giving higher (D) as in Table (4) and Figure (8).

Table (4)	: Effect of	shaking time							
Time	D	%Е	1.05						
5	4.07	80.27	0.75						
10	12.33	92.49							
15	14.38	93.33	⁵⁰ 0.45						
20	7.10	87.66	4 8 12 16 20 24 Shaking Time (min.)						
25	3.22	76.30	Fig. (8): Effect of shaking time						
	$[Cu^{2+}]=40\mu g/5mL$, pH=9, $[BTADPI]=1\times10^{-4}$ M in CHCl ₃ , temp=25°C								

Stoichiometry of the complex

Three methods(Slope analysis method, Mole ratio method, Continuous Variation Method)have been applied to ascertain the stoichiometric composition of complex and the 1:1 (Cu^{2+} :BTADPI) complex was indicated by these methods as in Figure (9, 10, 11).

 $[Cu^{2+}]{=}\,40\mu g/5mL$, Shaking time =15 min. , Temp.=25°C , pH=9

Effect of foreign ions:

The effect of some foreign ions, which often accompany copper (II), was examined by carry out the determination of $40\mu g/5mL$ of Cu²⁺in presence of a number of other ions. The results in Table (5), indicate the

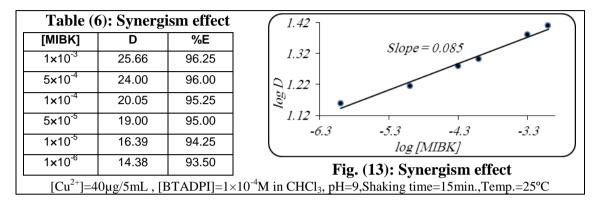

foreign ions giving high interfere with the determination of copper (II).Then must be used masking agents when determination copper ion in foundation of these foreign ions.

Table (5): Effect of fo	oreign ions								
M ⁿ⁺	D	%Е								
Cr ³⁺	3.83	79.32	l bal							
Ni ²⁺	8.56	89.55	Cr(III) Ni (II) Pb (II)							
Pb ²⁺	7.46	88.18	Fig. (12): Effect of foreign ions							
[Cu ²⁺]=40µ§	$[Cu2+]=40\mu g/5mL, [BTADPI]=1\times10^{-4}M \text{ in } CHCl_3, [Mn+]=40\mu g/5mL, pH=9, Shaking time=15min., Temp.=25°C$									

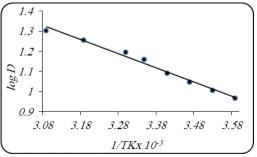
Synergism effect

The extraction of Cu(II) with 1×10^{-4} M BTADPI and $1 \times 10^{-3} \rightarrow 1 \times 10^{-6}$ M MIBK in chloroform was caried out. The logarithm of (D) was plotted against the logarithm of MIBK concentration the plot gave astright line with slope

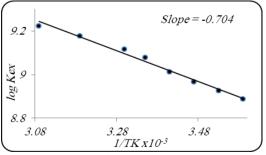
0.085 as in Table (6) and Figure (13) show (D) showing that the extracted species was [Cu (BTADPI) (MIBK)]²⁺ $SO_4^{=}$, higher D (synergistic distribution ratio) value were observed in presence of MIBK as compared with D in the absence of MIBK.

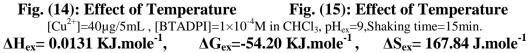
Organic Solvent effect:

Results in Table (7) indicate there is no any linear relation between dielectric constant (ϵ) for organic solvents used and distribution ratio (D), these show the effect of organic solvents structure on extraction method.


Table (7):	Organic Se	olvent Effect

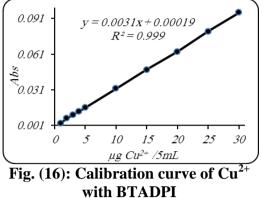
Organic Solvents	٤	D	%Е	ΔGt	K _A ×10⁴ liter/mo I	K _{ex} ×10 ⁴	ΔG _{ex} KJ/mol
Nitro benzene	35.74	8.32	89.27	-0.04	7.40	57.74	-29.98
Dichloro metha e	9.0	4.64	82.30	-0.27	4.48	18.01	-27.35
Chloroform	4.806	14.38	93.50	-0.54	12.21	172.43	-32.45
Carbone tetrachloride	2.38	3.38	77.20	-1.13	3.48	9.55	-25.91


 $[Cu^{2+}]=40\mu g/5mL$, $[BTADPI]=1\times10^{-4}M$ in different organic solvent, pH=9, Shaking time=15min., Temp.=25°C

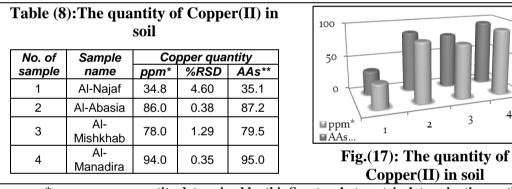

Temperature effect:

Thermodynamically the reaction between Cu^{2+} ions and organic reagent

BTADPI was endothermic; the results presented in Figure (14, 15).



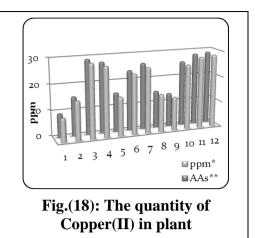
Spectrophotometric determination of Copper (II) by organic reagent BTADPI:


Calibration Curve and Sensitivity:

UV.-Vis. Spectra of Cu²⁺ ions and the organic reagent BTADPI in chloroform was presented in Figure (2) show λ_{max} =494nm.Under the optimum conditions described in the recommended procedure, the calibration curve Figure (16) was constructed with ten standard solutions containing 1-30µg/5mL of copper (II), the formula for the best line of calibration y = 0.0031x + 0.00019, and the correlation coefficient was obtained with the method of least squares $R^2 =$ 0.999, the molar absorptivity of the complex determined from the linear portion of Beer's law plot ϵ =922.90L.mol⁻¹.cm⁻¹, and Sandell's sensitivity 6.8×10^{-7} gcm⁻².

Application: Soil samples

The soil contains copper at the range 10-200ppm and this different return to nature of soil according to WHO measurements[14,15]Spectrophotometr ic determination of Cu^{2+} ions in different soil samples by BTADPI as the results in Table (8) and Figure(17).



*ppm: copper quantity determined by this Spectrophotometric determination method **AAs: copper quantity determined by Atomic absorption method

Plant samples

Spectrophotometric determination of Cu^{2+} ions in different plant samples by BTADPI as the results in Table (9) and Figure(18),The range of copper in plants according to WHO measurements is 5-30ppm[14,15].

Table (9): The quantity of Copper(II) in plant								
No. of	Sample name	Copper quantity						
sample		ppm*	%RSD	AAs**				
1	1 Visit		8.0	9.2				
2	MyriusCommunis	15.0	2.27	15.2				
3	L.Japonica	28.5	1.18	29.0				
4	C.Sativus	27.0	1.25	27.6				
5	5 Aplumgravealens		2.27	15.3				
6	Ledpidiumsativum	23.4	1.15	23.6				
7	Lactuce sativa	25.4	1.06	26.0				
8	ViciaFaba	14.6	0.45	14.6				
9	Phaseolus Sp.	13.0	2.68	13.2				
10	Juglans Sp.	25.3	0.79	25.6				
11	Pistacia Sp.	28.0	1.20	28.3				
12	Prunusamygdalus	28.5	4.90	28.8				

Water samples

Spectrophotometric determination of Cu^{2+} ions in different water samples by BTADPI as the results in Table (10)

and Figure(19). The range of copper in water according to WHO measurements is 2ppm[14,15].

Table (10):The quantity of Copper(II) in water									
Ī	Copper quantity								
	No. of sample	Sample name	ppm*	%RSD	AAs* *				
	1	Al-Najaf (drink water)	0.42	3.27	0.43				
	2	2 Al-Mishkhab (river)		10.52	0.76				
	3 Al-Kufa (river)		0.16	2.12	0.18				

Human blood serum samples

Spectrophotometric determination of Cu^{2+} ions in different human blood serum samples by BTADPI as the

Table (11): The quantity of Copper(II) in human blood serum									
No. of	Sex	۸ao	Сој	oper qua	ntity				
sample	Sex	Age	ppm*	%RSD	AAs**				
1	Male	4	2.7	3.84	2.7				
2	Male	14	2.3	6.15	2.5				
3	Male	34	2	2.04	2.1				
4	Female	28	1.6	1.12	1.8				
5	Female	49	1.2	9.09	1.4				

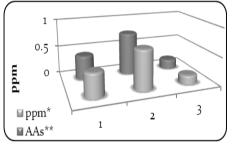
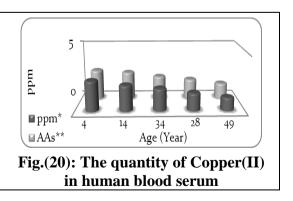



Fig.(19): The quantity of Copper(II) in water

results in Table (11) and Figure(20).The range 1.1-1.5mg/L according to WHO measurements [14,15].

References:

- **1.** Moniri E., Panahi H.A., Nezhati M.N., Mahmoudi F., Karimi M., 2010, "Amberlite XAD-4 Functionalized with 1-amino-2naphthole for Determination and Preconcentration of Copper (II) in Aqueous Solution by Flame Atomic Absorption Spectrometry", World. Aca. Sci., Eng. and Tech. 9(67), pp:674-676.
- **2.** Komy Z.R., 2005, "Determination of zinc, cadmium, lead and copper in kakad, Anise, Cumin, Caraway and black pepper extracted using differential pluse anodic stripping Voltametry with hanging mercury drop electrode", American J. Appl. Sci., 2(5),961-968.
- **3.** Alula M. T., Mohamed A. I. and Bekhit A.A., 2010, "Simultaneous spectrophotometric determination of iron (II) and copper (II) in tablets by chemometric methods", Thai J. Pharm. Sci. 7(34) ,pp:93-106.
- **4.** Dallali N., J.Ghiasi and Y.K. Agrawal, Mar. 2009, "Synergic extraction of Copper with N-phenyl benzohydroxamic acid and tri-noctylphosphin oxide or tri butyl phosphate", Ind. J. Chem. Tech., 16(11), PP.150-154.
- **5.** Cesur H., B.Bati, 2002, "Solid-phase Extraction of Copper with lead 4benzyl piperdinedithioCarbamate on Microcrystalline Naphthalene and its Spectro Photometric Determenation", TurK. J.Chem. 4(26), PP: 599-605.
- **6.** Ghazy S.E., El-Shazly R.M., El-Shahawi M.S., Al-Hazmi G.A.A. and El-Asmy, 2006, "Spectrophotometric determination of copper(II) in nature waters, Vitamins and Certified Steel scrap

samples using Acetophenon-pchlorophenylthiosemicarbazone", J. Iran. Chem. Soci., 3(2), 140-150.

- 7. ChalapathiP.V., Prathima B.,Rao Y. S., ReddyK. J., Ramesh G.N., Reddy D.V. R. andReddy A.V. , 2011, "Selective Kinetic Spectrophotometric Determination of Copper(II)in Food and Medicinal Leafy Samples" J. Chem. Pharm. Res., 3(2),pp:534-549.
- 8. Marczenko Z., 1976, "Separation and Spectrophotometric determination of elements", Ellis -Horwood-Limited John Wiley and Sons, 2nded, PP:178-179,352-353.
- **9.** Hslam E., Yang X., He Z. and Mahmood Q., 2007, "Assessing Potential Diatany Toxicity of Heavy Metals in Selected Vegetables"; J.Zhejiany Univ. Sci., 8(1), PP:1-13.
- **10.** Abood.F.K., 2009, MSc, Thesis, Kufa University-Collage of education for girls.
- **11.** Al-Adely K.J., 2000, Ph.D, Thesis, Baghdad University.
- **12.** Hussein S.A., 2008, MSc, Thesis, Kufa University-Collage of education for girls.
- **13.** Al-Mukhtar and I.A.Mustafa, 1988, "Inorganic Coordination Chemistry", Arabic Vesion.
- 14. "Canadian Soil Quality Guidelines for Copper Environmental and Human Health", March 1997, Canadian Council of Ministers of the Environment.
- **15.** "Copper Development Association: Copper in plant, Animal and Human Nutration", Prepared by V.M.Shorrocks and B.J.Alloway, TN35,2^{ed.}, pp:400-430, 2011, Internet: WWW.Copper info.Co.uk.

بواسطة طريقة الاستخلاص بالمذيب وباستخدام الكاشف العضوي الجديد 2-[بنزوثيازوليل ازو]-5,4-ثنائي فنيل اميدازول للتقدير الطيفي للنحاس (II) في نماذج مختلفة

شوكت كاظم جواد* صفا مجيد حميد* سحر عقيل حسين**

*جامعة الكوفة-كلية التربية للبنات-قسم الكيمياء **جامعة الكوفة-المختبر البايوكيميائي

الخلاصة: