New Operational Matrices of Seventh Degree Orthonormal Bernstein Polynomials

Mayada N. Mohammedali
*Department of Applied Science, University of Technology.

Received 22, May, 2014
Accepted 30, December, 2014

Abstract

: Based on analyzing the properties of Bernstein polynomials, the extended orthonormal Bernstein polynomials, defined on the interval $[0,1]$ for $\mathrm{n}=7$ is achieved. Another method for computing operational matrices of derivative and integration D_{b} and R_{n+1}^{B} respectively is presented. Also the result of the proposed method is compared with true answers to show the convergence and advantages of the new method.

Keywords: The Bernstein Basis and Bezier Curves, Gram-Schmidt Orthonormalization Process, Numerical Solution of Optimal Control of Time-varying Singular via Operational Matrices.

Introduction:

We already know that orthogonal polynomials play a central role in the solution of least-squares problems. The main characteristic of this technique is to reduce the problems related to those of solving a system of algebraic equations. The polynomials determined in the Bernstein basis [1],enjoy considerable popularity in many different applications. For example in the solution of integral equations, differential equations and approximation theory, see e.g.],[2],[3]. On the other hand, recently the method of operational matrix of integration was proposed as an effective tool for processing of singular integrals of Abel type using one -step procedure. Example, Legendre Wavelet was used [4], [5].Further, Singh et al. [6] derived the operational matrices of Bernstein
polynomials, which have certain advantages for the considered problem in the case of smooth transformed functions. Due to the increasing interest on Bernstein polynomials, the question arises of how to describe their properties in terms of their coefficients when they are given in the Bernstein basis. Recently Yousefi and Behoozifar derived the operational matrices of Bernstein polynomials [7].In this work we proposed a method to give the operational matrix of derivative D_{b} and integration R_{n+1}^{B} respectively such that:

$$
\begin{aligned}
D_{b}=\frac{d}{d x} b(x) & =D_{b} B(x) \\
\text { and } \int_{0}^{t} B(x) d x & =R_{n+1}^{B} B(t)
\end{aligned}
$$

where $b(x)\left[b_{07}(x), b_{17}(x), b_{27}(x), b_{37}(x), b_{47}(x), b_{57}(x), b_{67}(x), b_{77}(x)\right]$

And $B_{i 7}, i=0,1,2, \ldots 7$ are the basis Bernstein polynomials.
The remainder of this paper is organized as follows. In section2, we describe the formulation of the Bernstein polynomials (BP), fundamental relations andwe give approximate function for BP. In section4, a class of orthonormal polynomials for $n=7$ are given. In section5 wecalculate the operational matrix of derivative. In section6 we briefly describe calculating the operational matrix of integration. Finally, in section7 we demonstrate the accuracy of the proposed numerical scheme by numerical example.

Bernstein polynomials (BP) and Fundamental Relations
From the binomial theorem we have for any n :

$$
\begin{aligned}
& 1=((1-t)+t)^{n} \\
&=\sum_{i=1}^{n}\binom{n}{i}(1-t)^{n-i} t^{i}
\end{aligned}
$$

The Bernstein basis polynomials of degree n are defined on the interval $[0$, 1] as [8]:
$B_{\text {in }}(x)=\binom{n}{i} x^{i}(1-x)^{n-i}, \quad$ For $i=$ 0,1,2 $n .$. (1)
The set of Bernstein basis polynomials $B_{0 n}(x), B_{1 n}(x), \ldots, B_{n n}(x)$ formsas basis of the vector space of polynomials of real coefficients and degree no more than n.
For convenience, we set $B_{\text {in }}(x)=0$ if $i<0$ or $i>n$.
By using the binomial expansion of $(1-x)^{n-i}$, we have
$\binom{n}{i} x^{i}(1-x)^{n-i}=$
$\sum_{k=0}^{n-i}(-1)^{k}\binom{n}{i}\binom{n-i}{k} x^{i+k} \ldots$
A function $f \in L^{2}[0,1]$ may be written as in the following expansion:
$f(x)=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} c_{i n} b_{\text {in }} \ldots$ (3)
Here $c_{\text {in }}=<f, b_{\text {in }}>$ where $<.>$ is the inner product over $L^{2}[0,1]$.

If the series is truncated at $n=m$, then denote:

$$
\begin{equation*}
f(x) \approx \sum_{i=0}^{n} c_{i m} b_{i m}(x)=C^{T} B(x) . \tag{4}
\end{equation*}
$$

Where $C=\left[c_{0 m}, c_{1 m}, \ldots, c_{m m}\right]^{T}$,
$B(x)=\left[b_{0 m}, b_{1 m}, \ldots, b_{m m}\right]^{T} \ldots$ (5)
$H=L^{2}[0,1]$ is a Hilbert space with the inner product that is defined by $(f, g)=\int_{0}^{1} f(x) g(x) d x$ and .Let $S_{n}=\operatorname{span}\left\{B_{0 n}, B_{1 n} \ldots B_{n n}\right\}$ is a finite dimensional and closed subspace, therefore S_{n} is a complete subset of H, so, f has the unique best approximation out of S_{n} such as $s_{0} \in S_{n}$, that \quad is; $\exists s_{0} \in S_{n} \quad$ s.t $\quad \forall s \in$ $S_{n}| | f-s_{0}\|\leq\| f-s \|$, this implies that:
$\forall s \in S_{n}\left(f-s_{0}, s\right)=0$
Therefore, exist the coefficients $c_{0}, c_{1}, \ldots, c_{n}$ such that

$$
\begin{equation*}
s_{0}(x)=C^{T} \emptyset(x) \approx f \tag{7}
\end{equation*}
$$

Where $C^{T}=\left[c_{0}, c_{1}, \ldots, c_{n}\right]$. By eq.s

$$
\begin{gather*}
\left(f-C^{T} \emptyset(x), B_{\text {in }}(x)\right)=0 \quad, i \tag{6}\\
=0,1, \ldots n \ldots(8)
\end{gather*}
$$

For simplicity, we write:

$$
C^{T}(\varnothing(x), \emptyset(x))=(f, \emptyset(x))
$$

Where

$$
(f, \emptyset(x))=\int_{0}^{1} f(x) \emptyset^{T}(x) d x
$$

$$
\begin{equation*}
=\left[\left(f, B_{0 n}\right),\left(f, B_{1 n}\right), \ldots,\left(f, B_{n n}\right)\right] . \tag{9}
\end{equation*}
$$

We define the matrix $D=(\varnothing(x), \emptyset(x))$ is an $(n+1) \times(n+1)$ which is called the dual matrix of $\quad \emptyset_{n}(x)$.
Let $D=(\varnothing(x), \emptyset(x))=$
$A\left[\int_{0}^{1} T_{n}(x) T_{n}^{T}(x) d x\right] A^{T}=$
$A H A^{T} \quad . .(10)$
Where H is a Hilbert matrix and we can obtain the elements of D as:
$D_{i+1, j+1}=\int_{0}^{1} B_{i n}(x) B_{j n}(x) d x=$
$\frac{\binom{n}{i}\binom{n}{j}}{(2 n+1)\binom{2 n}{i+j}}, \quad$ Where $i, j=0,1, \ldots, n$.

Generation of the Orthonormal
Polynomials
Let us first define the inner product in the functional space for two functions $f(x)$ and $g(x)$ defined over the domain $D \in R^{n}$ by:

$$
\begin{align*}
& (f, g) \\
& =\int_{D} w(x) f(x) g(x) d D \tag{11}
\end{align*}
$$

Where $w(x)$ the suitable chosen weight function .The is induced norm of a function using above inner product is, therefore, given as

$$
\begin{equation*}
\|f\|^{2}=\int_{D} w(x) f^{2}(x) d D \tag{12}
\end{equation*}
$$

To generate an orthogonal sequence, we can start with the set:

$$
\begin{gather*}
\left\{f_{i}(x)\right\}=\left\{B_{i 7}(x)\right\} \\
i=0,1, \ldots 7 \tag{13}
\end{gather*}
$$

Where $B_{i 7}(x)$ are the linearly independent Bernstein polynomials over the domain $[0,1]$.
To generate an orthogonal sequence $\emptyset_{i 7}$, we apply the well-known GramSchmidtprocess, on $\left\{B_{i 7}\right\}_{i=0}^{7}$, which is given as:

$$
\begin{array}{r}
\emptyset_{07}=B_{07} \tag{14}\\
\emptyset_{i 7}=B_{i 7}-\sum_{j=1}^{i-1} c_{i j} \emptyset_{j 7}, i=1,2, \ldots 7
\end{array}
$$

Where
$c_{i j}=$
$\left(B_{i 7}, \emptyset_{j 7}\right) /\left(\emptyset_{j 7}, \emptyset_{j 7}\right)$
By dividing each $\emptyset_{i 7}$ by its norm, we obtain a class of orthonormal polynomials from Bernstein polynomials,

Namely $b_{07}, b_{17}, b_{27}, b_{37}, b_{47}, b_{57}, b_{67}$, b_{77}.
And they are given by:

$$
\begin{aligned}
& b_{07}=\sqrt{15}(1-t)^{7} \\
& b_{17}=2 \sqrt{13}\left[7 t(1-t)^{6}-\frac{1}{2}(1-t)^{7}\right] \\
& b_{27}=\frac{26 \sqrt{11}}{7}\left[21 \quad t^{2}(1-t)^{5}-7 t(1-\right. \\
&\left.t)^{6}+\frac{7}{26}(1-t)^{7}\right]
\end{aligned}
$$

$$
\begin{aligned}
& b_{37}=\frac{132}{7}\left[35 t^{3}(1-t)^{4}-\frac{63}{2} t^{2}(1\right. \\
& -t)^{5}+\frac{63}{11} t(1-t)^{6} \\
& \left.-\frac{7}{44}(1-t)^{7}\right] \\
& b_{47}=\frac{66}{\sqrt{7}}\left[35 t^{4}(1-t)^{3}-70 t^{3}(1-t)^{4}\right. \\
& +35 t^{2}(1-t)^{5}-\frac{14}{3} t(1 \\
& \left.-t)^{6}+\frac{7}{66}(1-t)^{7}\right] \\
& b_{57}=12 \sqrt{5}\left[21 t^{5}(1-t)^{2}-\frac{175}{2} t^{4}(1\right. \\
& -t)^{3}+100 t^{3}(1-t)^{4} \\
& -\frac{75}{2} t^{2}(1-t)^{5}+\frac{25}{6} t(1 \\
& -\quad t)^{6}-\frac{1}{12}(1 \\
& \left.-t)^{7}\right] \\
& b_{67}=12 \sqrt{3}\left[7 t^{6}(1-t)-63 t^{5}(1-t)^{2}\right. \\
& +\frac{315}{2} t^{4}(1-t)^{3} \\
& -140 t^{3}(1-t)^{4} \\
& +45 t^{2}(1-\quad t)^{5} \\
& -\frac{9}{2} t(1-t)^{6}+\frac{1}{12}(1 \\
& \left.-t)^{7}\right] \\
& b_{77}=8\left[t^{7}-\frac{49}{2} t^{6}(1-t)+147 t^{5}(1\right. \\
& -t)^{2}-\frac{1225}{4} t^{4}(1-t)^{3} \\
& +245 t^{3}(1-t)^{4} \\
& -\quad \frac{147}{2} t^{2}(1-t)^{5} \\
& +7 t(1-t)^{6}-\frac{1}{8}(1 \\
& \left.-t)^{7}\right]
\end{aligned}
$$

The explicit representation for the orthonormal, in general product of a factorable polynomial and non factorable polynomial. For the factorable, there exists a pattern of the form $\left(\sqrt{2(n-i)+1)}(1-x)^{n-i}\right.$ $, i=0,1, \ldots, n$. and the pattern in the non-factorable part can be determined by analyzing the binomial coefficients present in Pascal's triangle. In this way we have determined this formula
$\emptyset_{i, n}(x)=(\sqrt{2(n-i)+1)}(1-$
$x)^{n-i} \sum_{k=0}^{i}(-1)^{k}\binom{2 n+1-k}{i-k}\binom{i}{k} x^{i-k}$.

The Operational Matrix of Derivative for Orthonormal

 PolynomialsIn this section, orthonormal Bernstein operational matrix of derivative will be derived; before we derive we need the following theorem.
Theorem: [9]
The first derivatives of nth degree generalized Bernstein basis polynomials can be written as a linear combination of the generalized Bernstein basis polynomials of degree n

$$
\begin{align*}
\frac{d}{d x} B_{i n}(x)=(n & -i+1) B_{i-1, n}(x) \\
& +(2 i-1) B_{i, n}(x) \\
& -(i+1) B_{i+1, n}(x) \tag{17}
\end{align*}
$$

From this formula, there is a relation between Bernstein basis polynomials matrix and their derivatives.
The matrix relationwhich obtained is given by:

$$
\begin{align*}
& N \\
& =\left[\begin{array}{rrrrrrrr}
-7 & 7 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & -5 & 6 & 0 & 0 & 0 & 0 & 0 \\
0 & -2 & -3 & 5 & 0 & 0 & 0 & 0 \\
0 & 0 & -3 & -1 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & -4 & 1 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 & -5 & 3 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & -6 & 5 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & -7 & 7
\end{array}\right] \tag{18}\\
& \dot{B}(x)=B(x) N
\end{align*}
$$

Such that

$$
\begin{aligned}
& \mathrm{B}(\mathrm{x})=\left[B_{07}(x), B_{17}(x), B_{27}(x), B_{37}(x), B_{47}(x) B_{57}(x), B_{67}(x) B_{77}(x)\right] \\
& \dot{B}(x)=\left[\dot{B_{07}}(x), \dot{B_{17}}(x), \dot{B_{27}}(x), \dot{B_{37}}(x), \dot{B_{47}}(x), \dot{B_{57}}(x), \dot{B_{67}}(x), \dot{B_{77}}(x)\right]
\end{aligned}
$$

Now, we introduce a new method for deriving operational matrix of derivative for orthonormal Bernstein polynomials of degree seven. The idea of the technique depends on the following derivative property of the basis vector $\varnothing(x)$

$$
\begin{equation*}
\frac{d \Psi(x)}{d x}=D \emptyset(x) \tag{19}
\end{equation*}
$$

Where $\Psi(x)$ are the orthogonal Bernstein polynomials of the degrees even and $\emptyset(x)$ be the
$\left[\begin{array}{cccccccc}-27.110883 & -3.872983 & 0 & 0 & 0 & 0 & 0 & 0 \\ 75.716577 & -32.449961 & -14.422205 & 0 & 0 & 0 & 0 & 0 \\ -109.448618 & 132.191188 & -12.318892 & -36.956676 & 0 & 0 & 0 & 0 \\ 129 & -243.857143 & 148.285714 & 66 & -75.428571 & 0 & 0 & 0 \\ -134.933317 & 329.962985 & -340.923955 & 24.945655 & 224.510897 & -124.728276 & 0 & 0 \\ 127.455875 & -365.117957 & 495.129338 & -201.246118 & -293.244343 & 415.908644 & -160.996894 & 0 \\ -105.655099 & 332.306319 & -522.584472 & 323.646065 & 239.023011 & -613.145986 & 478.046023 & -145.492268 \\ 63 & -207 & 348 & -252 & -126 & 462 & -468 & 252\end{array}\right]$

Orthonormal Bernstein Operational Matrix of Integration

The main objective of this section is derived the orthonormal Bernstein polynomials
$\int_{0}^{t} B(x) d x=\int_{0}^{t}\left[b_{07}(x), b_{17}(x), b_{27}(x), b_{37}(x), b_{47}(x), b_{57}(x), b_{67}(x), b_{77}(x)\right]^{T}$
$=\left[\Gamma_{0}(x), \Gamma_{1}(x), \Gamma_{2}(x), \Gamma_{3}(x), \Gamma_{4}(x), \Gamma_{5}(x), \Gamma_{6}(x), \Gamma_{7}(x)\right]^{T}$
$=R_{7+1}^{B} B(t) \quad \ldots(21)$

Where $\Gamma_{i}(x), i=0,1, \ldots, 7$ are defined as follows:

$$
\begin{aligned}
& \Gamma_{i}(x) \approx \sum_{j=0}^{n} c_{j 7}^{i} B_{j 7}(x) \\
& =\left[c_{07}^{i}, c_{17}^{i}, \ldots, c_{77}^{i}\right] B(x), \\
& 0 \leq t<1 \text {, ... (22) }
\end{aligned}
$$

Solving variational problem

In this section, we solved the problems of finding the minimum of the timevarying functional by using the operational matrix of derivative
Algorithm 1via BP
Consider the first order functional extremal
$J(t)=\int_{0}^{1}\left[\dot{t}^{2}(x)+2 x \dot{t}(x)\right.$

$$
\begin{equation*}
\left.+t^{2}(x)\right] d x \tag{23}
\end{equation*}
$$

With two fixed boundary conditions

$$
\begin{gather*}
t(0)=2, \quad \dot{t}(1) \\
=-1 \tag{24}
\end{gather*}
$$

In this case, the exact solution is
$t(x)=c_{1} e^{x}=c_{2} e^{-t}+1$, Where
$c_{1}=e^{1}-1 / e^{1}+e^{-1}, \quad c_{2}=$
$1+e^{1} / e^{1}+e^{-1} \ldots(25)$
Approximate the variable $t(x)$ using (OBP)

$$
\begin{equation*}
t(x)=c^{T} b(x) \tag{26}
\end{equation*}
$$

Differentiated eq. (26), we get

$$
\begin{aligned}
& \dot{t}(x)=c^{T} \dot{b}(x) \\
& =c^{T} D b b(x) \quad \ldots
\end{aligned}
$$

Where $c=\left[c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}\right.$, $\left.c_{7}\right]^{T}$,

$$
=\left(\begin{array}{cccccccc}
7.6718 & -3.7026 & -2.0252 & -1.0152 & -0.4522 & -0.1699 & -0.0486 & -0.0081 \\
-3.7026 & 4.1837 & 1.0818 & -0.1958 & -0.4977 & -0.3851 & -0.1857 & -0.0486 \\
-2.0252 & 1.0818 & 1.4294 & 0.7343 & -0.0163 & -0.3990 & -0.3851 & -0.1699 \\
-1.0152 & -0.1958 & 0.7343 & 1.0334 & 0.6595 & -0.0163 & -0.4977 & -0.4522 \\
-0.4522 & -0.4977 & -0.0163 & 0.6595 & 1.0334 & 0.7343 & -0.1958 & -1.0152 \\
-0.1699 & -0.3851 & -0.3990 & -0.0163 & 0.7343 & 1.4294 & 1.0818 & -2.0252 \\
-0.0486 & -0.1857 & -0.3851 & -0.4977 & -0.1958 & 1.0818 & 4.1837 & -3.7026 \\
-0.0081 & -0.0486 & -0.1699 & -0.4522 & -1.0152 & -2.0252 & -3.7026 & 7.6718
\end{array}\right)
$$

$b=\left[b_{07}, b_{17}, b_{27}, b_{37}, b_{47}, b_{57}\right.$,
b_{67}, b_{77}]
Substituting eqs. (26) and (27) in eq. (23) , yields

$$
\begin{align*}
& J(t) \\
& =\int_{0}^{1}\left[c^{T} \dot{b}(x) \dot{b}^{T}(x) c+c^{T} x \dot{b}(x)\right. \\
& \left.+c^{T} b(x) b^{T}(x) c\right] d x \tag{28}
\end{align*}
$$

The quadratic programming problem in eq. (28) can be simplified to

$$
J(t)=1 / 2 c^{T} H c+d^{T} C \ldots(29)
$$

Subject to
$F_{1} c-b_{1}=0$,
Where
$F_{1}=\binom{b^{T}(0)}{b^{T}(1)}=$
$\left(\begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -7 & 7\end{array}\right), b_{1}=$ $\binom{2}{-1}$

$$
d^{T}=2 \int_{0}^{1} x \dot{b}^{T}(x) d x
$$

$$
=\left(\begin{array}{lllllll}
\frac{-1}{4} & \frac{-1}{4} & \frac{-1}{4} & \frac{-1}{4} & \frac{-1}{4} & \frac{-1}{4} & \frac{-1}{4}
\end{array} \frac{7}{4}\right)
$$

$$
H=2 \int_{0}^{1}\left[b(x) \dot{b}^{T}(x)\right.
$$

$$
\left.+b(x) b^{T}(x)\right] d x
$$

For $n=7$, the explicit expressions for R_{8}^{B} via eight orthonormal polynomials for eqs. (21)
is given as
$\left.\begin{array}{rrrr}0.160050 & 0.135339 & 0.104805 & 0.060520 \\ 0.149872 & 0.125658 & 0.097724 & 0.056271 \\ 0.131835 & 0.117904 & 0.088817 & 0.052245 \\ 0.144690 & 0.096875 & 0.084880 & 0.045218 \\ 0.054688 & 0.113444 & 0.061839 & 0.045724 \\ -0.021009 & 0.039063 & 0.078670 & 0.026786 \\ 0.009764 & -0.018155 & 0.023438 & 0.037588 \\ -0.004385 & 0.008152 & -0.010525 & 0.007813\end{array}\right]$

The optimal values of unknown parameters c^{*} can be obtained using Lagrange multiplier technique as

$$
c^{*}=\left[\begin{array}{lllll}
2 & 1.798622 & 1.621053 & 1.460581
\end{array}\right.
$$

Table (1) shows comparison between exact and approximate solution by using the operational matrix of derivative of BP of degree 8

\boldsymbol{x}	Exact solution	$\mathbf{B P}$	\mid Exact $-\boldsymbol{B}_{\boldsymbol{i 7}} \mid$
0	2	2	0
0.1	1.863804265845607	1.863804265845607	0.000000000000000
0.2	1.736253775770209	1.736253775770209	0.000000000000000
0.3	1.616071961185921	1.616071961185921	0.000000000000000
0.4	1.502056000789419	1.502056000789419	0.000000000000000
0.5	1.393064785622723	1.393064785622723	0.000000000000000
0.6	1.288007495877680	1.288007495877680	0.000000000000000
0.7	1.185832682072615	1.185832682072615	0.000000000000000
0.8	1.085517743229661	1.085517743229661	0.000000000000000
0.9	0.986058694681254	0.986058694681254	0.000000000000000
1	0.886460118134294	0.886460118134294	0.000000000000000

Algorithm 2via OBP

Consider the first order functional extremal

$$
\begin{array}{r}
J(t)=\int_{0}^{1}\left[\dot{t}^{2}(x)+2 x \dot{t}(x)\right. \\
\left.+t^{2}(x)\right] d x \tag{23}
\end{array}
$$

With two fixed boundary conditions

$$
\begin{equation*}
t(0)=2 \quad, \dot{t}(1)=-1 \tag{24}
\end{equation*}
$$

In this case, the exact solution is $t(x)=c_{1} e^{x}=c_{2} e^{-t}+1$, Where $c_{1}=e^{1}-1 / e^{1}+e^{-1}, \quad c_{2}=$ $1+e^{1} / e^{1}+e^{-1} \ldots(25)$

$$
=\left(\begin{array}{rrcccccc}
115.0769 & -210.5378 & 178.5757 & -162.6653 & 143.4573 & -121.2436 & 93.9149 & -54.2218 \\
-210.5378 & 509.8182 & -530.3447 & 449.7106 & -400.6545 & 338.6148 & -262.2899 & 151.4332 \\
178.5757 & -530.3447 & 744.9231 & -695.8882 & 567.2957 & -489.4691 & 379.1411 & -218.8972 \\
-162.6653 & 449.7106 & -695.8882 & 848.4675 & -730.9833 & 548.7950 & -446.8691 & 258 \\
143.4573 & -400.6545 & 567.2957 & -730.9833 & 856 & -659.2203 & 359.4108 & -269.8666 \\
-121.2436 & 338.6148 & -489.4691 & 548.7950 & -659.2203 & 837.7143 & -503.4878 & -26.8328 \\
93.9149 & -262.2899 & 379.1411 & -446.8961 & 395.4108 & -503.4878 & 1268 & -1447.9945 \\
-54.2218 & 151.4332 & -218.8972 & 258 & -269.6866 & -26.8328 & -1447.9945 & 2900
\end{array}\right)
$$

The optimal values of unknown parameters c^{*} can be obtained using Lagrange multiplier technique as c^{*} $=\left[\begin{array}{llllllll}0.897145 & 0.710459 & 0.566356 & 0.450951 & 0.355758 & 0.274292 & 0.198797 & 0.110808\end{array}\right]$

Table (2) shows comparison between exact and approximate solution by using the operational matrix of derivative of OBP of degree 8

\boldsymbol{x}	Exact solution	OBP	\mid Exact - $\boldsymbol{b}_{\boldsymbol{i} 7} \mid$
0	2	2.000000000000 002	0.000000000000 002
0. 1	1.863804265845 607	1.863804265845 606	0.000000000000 001
0.	1.736253775770 2	1.736253775770 209	0.000000000000 000
0.	1.616071961185 3	1.616071961185 921	0.000000000000 001
0.	1.502056000789 4	1.502056000789 417	0.000000000000 002
0.	1.393064785622 5	1.393064785622 723	0.000000000000 000
0.	1.288007495877 680	1.288007495877 6	0.000000000000 02
0.	1.185832682072 615	1.185832682072 615	0.000000000000 000
0.	1.085517743229 861	1.085517743229 5	0.886460118134 294
0.986058694681	0.986058694681 254	0.000000000000 03	
0.000000000000			
004			

Conclusion:

In this paper the properties of the combination for (OBP) and Bernstein polynomials themselves defined on the interval $[0,1]$ are analyzed. We derived $8 * 8$ Bernstein polynomials operational Matrices for derivative and integration in details directly. The orthonormal Bernstein operational matrix is used to reduce the variational problems to solve a system of linear algebraic equations. The above example supports this claim.

References:

[1] Yves, B.; Frederique, G. and Assia, M. 2011. A formal study of

Bernstein coefficients and polynomials. Institut National DeRecherche EnInformatique EtEn Automatique INRIA, 4:731-761.
[2] Doha, E. H.; Bhrawy, A. H. and Saker, M. A. 2011. Integral of Bernstein Polynomials: An Application for the Solution of High Even-Order Differential Equations. Appl. Math. Lett.24:559-565.
[3] Mandal, B.N. and Bhattacharya, S. 2007. Numerical Solution of Some Classes of Integral Equations Using Bernstein Polynomials. Appl. Math. comput, 190:707-1716.
[4] Yousefi, S. A. 2006. Numerical Solution of Abels Integral Equation by Using Legender Wavelets. Appl. Math. Comput. 175:574-580.
[5] Razzaghi, M and Yousefi, S. 2011. The Legender Wavelets Operational Matrix of Integration. Int. J. Syst. Sci. 32.495-502.
[6] Singh, A. K.; Singh, V. K. and Singh, O.P. 2009. The Bernstein Operational Matrix of Integration. Appl. Math. Sci. 3: 2427-2436.
[7] Yousefi, S. A. and Behroozifar, M. 2010. Operational Matrices of Bernstein Polynomials and their Applications. IJSSYS. 41(6):709-716.
[8] Weikan, Q.; Marc, D. R. and Ivo, R. 2011. Uniform Approximation and Bernstein Polynomials with Coefficients in the Unit Interval. EJC. 32:448-463.
[9] Aysegul, A. D. and Nese, I. 2013. Bernstein Collocation Method For Solving Non Linear Differential Equations. Math \& Com App. 18(3):293-300.

مصفوفات العمليات الجديدة من الارجة السابعة لمتعددات حدود برنشتن المتعامدة

> ميادة نزار محمدعلي
*قس العلوم التطبيقية، الجامعة النكنولوجية.

[^0]
[^0]: الخلاصة:
 استنادا" الى تحليل خصائص متعددات حدود برنشتن ، تم توسيع متعددات حدود برنشتن المتعامدة المعرفة على الفترة [0,1] للارجة السابعة، تم تقديم طريقة حسابية اخرى لمصفو فات العمليات للمشتفة على النو الي .كذلك فارنا نتيجة للطريقة المتترحة مع الاجابات الحققية لأظهار النقارب ومز ايا الطريقة الجيدة

 الكلمات المفتاحية: أسساس بيرنشتاين ومنحنيات بيزيه، عملية عز ام شميت المتعامدة، الحل العددي للسيطرة المثلى الوقت المتغاير المفرد بأستخدام المصفوفات التنفيذية.

