
Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(1) Supplement (March):391-400 E-ISSN: 2411-7986

391

DOI: https://dx.doi.org/10.21123/bsj.2020.17.1(Suppl.).0391

Software Defined Network of Video Surveillance System Based on Enhanced

Routing Algorithms

Sukaina R. Shaker Mustafa I. Salman

*

Received 16/1/2019, Accepted 10/4/2019, Published 18/3/2020

 This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:
Software Defined Network (SDN) is a new technology that separate the ‎control plane from the data

plane. SDN provides a choice in automation and ‎programmability faster than traditional network. It supports

the ‎Quality of Service (QoS) for video surveillance application. One of most ‎significant issues in video

surveillance is how to find the best path for routing the packets ‎between the source (IP cameras) and

destination (monitoring center). The ‎video surveillance system requires fast transmission and reliable

delivery ‎and high QoS. To improve the QoS and to achieve the optimal path, the ‎SDN architecture is used in

this paper. In addition, different routing algorithms are ‎used with different steps. First, we evaluate the video

transmission over the SDN with ‎Bellman Ford algorithm. Then, because the limitation of Bellman

ford ‎algorithm, the Dijkstra algorithm is used to change the path when a congestion occurs. Furthermore, the

Dijkstra algorithm is used with two ‎controllers to reduce the time consumed by the SDN controller. ‎ POX

and Pyretic SDN controllers are used such that POX controller is ‎responsible for the network monitoring,

while Pyretic controller is responsible for the ‎routing algorithm and path selection. Finally, a modified

Dijkstra algorithm is further proposed and evaluated with two ‎controllers to enhance the performance. The

results show that the modified Dijkstra algorithm outperformed the other approaches in the aspect of QoS

parameters.

Key words: Bellman-Ford algorithm, Dijkstra algorithm, Software defined network (SDN).

Introduction:
Video surveillance is critical for different

aspects of life. The main ‎objective of surveillance

system to keep people’s care, or minimize ‎human

dangers associated with illegal or criminal activity.

The video surveillance frameworks are very

significant in our daily lives owing ‎to the number of

applications they make possible. The causes

for ‎ vitil‎ ieu‎ et ue‎ iv eutggnisu‎ benefit in such

frameworks are differing, ranging from protection

requests ‎and military packages to scientific

purposes ‎(1). A video surveillance that uses the

SDN comprises number of IP cameras, ‎OpenFlow

switches, a monitoring center and a controller. The

objective ‎of creating such a framework is to watch

and monitor a predefined ‎place.

IP cameras capture the video ‎and send the

video file through the network to the monitoring

center. ‎The policy of the controller over the network

is responsible about finding the best path between

the IP cameras and monitoring center.

Computer Engineering, University of Baghdad, Baghdad,

Iraq.

 *
Corresponding author:

mustafa.i.s@coeng.uobaghdad.edu.iq

*
ORCID ID: 0000-0003-4454-9743

 After that, the controller should ‎send all

Open Flow tables and the information about the

path to Open Flow switches for chosen the best path

(2).

The Open Networking Foundation(3)

(ONF) defines the SDN as follows: “ In the SDN

architecture, the control and data planes are

decoupled, network intelligence and state are

logically centralized, and the underlying network

infrastructure is abstracted from the

applications.”(4). The SDN architecture consist

three layers. First layer (Infrastructure layer)

consists of both physical and virtual network

devices. Second layer (Control layer) involves of a

centralized control plane. It provides centralized

global view to entire network. Third layer

(Application layer) contains of network services,

application that used to interact with control

layer(5). The SDN uses the OpenFlow protocol to

interface with OpenFlow switches. It allows both

the controller and all the switches to understand

each ‎other(6).

In Computer Networks, routing is

performed by defining some flow rules ‎in a routing

https://dx.doi.org/
https://creativecommons.org/licenses/by/4.0/

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(1) Supplement (March):391-400 E-ISSN: 2411-7986

392

table , these rules contain the source and destination

IP-‎addresses and MAC-address. When a packet

arrives at a device, the ‎device checks the flow table

if it is available or not, and take the action

(forwards, reject, send to the controller) as ‎per the

rules set by the routing protocol (6). The routing

time of SDN networks is lesser compared

to ‎traditional Networks. At increase N node the

conventional networks is consume more time for

change the ‎path while SDN require less time(7).

eeu uee ue‎ ieu‎mht‎ iu eu‎ ieu‎ evitil‎ ngle tieS‎.

The Bellman ford algorithm uses relaxation to

select single source ‎shortest paths on the graphs, it

applied by (8). The time complexity for Bellman

Ford is N
3
. As a result, it consume more time for

finding all the paths(9). Because the surveillance

system should be fast and reliable, the routing

algorithm requires less time to ‎chose the path.

Consequently, the Dijkstra algorithm is more

suitable than bellman ford for video surveillance

system‎. The time complexity of Dijkstra algorithm

is N
2

 (9) which is less than the Bellman Ford

algorithm.

Related Works

Different theories exist in the literature

regarding the evolution of ‎video ‎surveillance

systems and their relation to routing

techniques. ‎A ‎considerable amount of literature has

been published on how the ‎‎captured video can be

transmitted over the traditional networks, ‎There ‎are

relatively few published studies in the area of

video ‎transmission ‎over the SDN. ‎

Panwaree, et al. (10) proposed that the

video send over two types of OpenFlow

enabled ‎network testbeds (Mininet emulated and

Open-v-Switch PC cluster). The authors use a POX

controller in both methods and the VLC ‎media

player in both server and client sides‎ .‎ The shortest

path algorithm was used as routing algorithm.

Harold and Arjan (11) have achieved ‎three

contributions, to begin with, it shows the video ‎over

software defined network (V-SDN), a

network ‎construction that select the best path using

a nwtwork wide-view. Then, it portrays the V-SDN

protocols, which utilized by the ‎designer to get

information about QoS from the network. At last, it

displays the ‎results of applying a system model and

calculate the behavior ‎of system utilizing message

complexity. The author did not show the type of

controller that used in the ‎system. A routing

protocol was used to find the best path ‎among the IP

cameras and the checking center. ‎

Martijn ‎‎ (12)‎proposed ‎ use of a Software-

Defined Networking that can be use in

a ‎dynamically configurable multi-camera

environment for the ‎playground. The controller in

the network teach the ‎cameras nodes and their

location on the surveillance system. Using an API,

an ‎application was developed such that it gives the

location of a ball ‎on the field to the controller. This

controller active a flow between ‎the cameras that

are cooperating on the specific work. This thesis a

trade-off is made between RYU and Floodlight. The

default routing algorithm was used for these

controllers.

Reza et al.‎ (2)‎ proposed a traffic

engineering technique to calculate the best ‎routes

between the cameras (source) and checking center

(destination) in a video-surveillance system. This

approach is based totally on ‎Constraint Shortest

path (CSP) issues and calculates the ‎least cost path.

Because of ‎negative path completeness of the CSP

issues, Lagrange-Relaxation-based-Aggregate-Cost

(LARAC) algorithm is used to ‎solve it. The primary

proposed traffic engineering technique that is ‎based

totally on kind (2) fuzzy-set for sending video

packets ‎over SDN-network. The main-contribution

of the this method is works to implement type (2)

and type (1) fuzzy logic for ‎computing the link-cost

for all network links according to QoE and ‎QoS.

The author uses a POX controller and MiniNet

emulator with VLC ‎media. ‎
Jan (13) proposed new method for a video

transmission quality monitoring. It ‎consists of a

client to server construction, in which the client

is ‎record the video and passes the one's information

to the ‎server. The server updates Net-Flow

information with those ‎statistics. The project

consists of video encoding, packet ‎encapsulation

and internet protocols associated with this

topic. ‎The structure is written in a c language.

Corrado et al. (14) proposed a smart video-

surveillance applications to exploit ‎the workplaces

displayed by complete SDN_NFV networks. The

author of this paper uses IP cameras that connected

to the ‎Video Surveillance System by using Mininet

and Opendaylight ‎‎(ODL) controller. The default

routing algorithm (shortest path algorithm) was

used in ODL ‎controller that depends on the number

of hops. ‎
Chih-Heng et al. (8) proposed An energetic

routing technique, called GA-SDN, is advanced

based on software-defined-network (SDN)

approach. ‎the framework integrates the H.264 based

on SVEF with the Mininet ‎emulator. The author of

this paper used a POX controller with Mininet

emulator. ‎The genetic algorithm had been used to

select the route from sender to ‎receiver. ‎
All of the previous works mentioned above , other

than (8), haven’t considered video transmission / or

they haven’t considered H.264/SVC for video

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(1) Supplement (March):391-400 E-ISSN: 2411-7986

393

compression. This makes the QoS parameters used

by (8) more appropriate to follow and compare

with, because it clarifies the video performance

parameters such as PSNR.

In this paper, we use POX and Pyretic

controllers that run two routing algorithms ‎Bellman-

Ford and Dijkstra. First, implement the Bellman

Ford ‎algorithm with POX controller. Second,

implement the Dijkstra ‎algorithm with pyretic

controller. Third, apply the Dijkstra ‎algorithm with

two controllers. Finaly, modify the

Dijkstra ‎algorithm The SVEF encoding should be

used before sending the ‎video to the monitoring

system.‎
System Model

The proposed system is emulated by using ‎
Mininet emulator, which is a software emulator for

prototyping ‎and running the network ‎topology. In

particular, two SDN controllers are used; the POX

and Pyretic controllers that can work with

OpenFlow switches.‎ ‎The compression method and

encoding method are applied to video ‎before it has

being transmitted. Fig.1 represents the block

diagram of the proposed video-surveillance system.

Figure 1. Block diagram of the proposed video

surveillance system

SDN Configuration

The SDN controller describes the set of

flows that happen in the SDN data-plane. Each flow

in flow table must first get permission from

the ‎mht- controller, that confirms the

communication is permissible by the ‎network

rules(5). The SDN consist three main modules the

topology discovery module, statistics gathering

module and route computation module(15). The

SDN-controller asks OF-switches for get

information around configuration (topology

discovery module). ‎The information consist of

operational ports and their MAC-addresses ‎using

Ofpt-Features-Request-message. This message

contain ‎‎(Oftp-Packet-Out and Oftp-Packet-In). The

controller (SDN) ‎sends link layer discovery

protocol (LLDP-packets) for all ports in the OF-

switch using ‎Oftp-Packet-Out. This message send

with the (LLDP-packet), ‎which holds information to

direct the packet to the connected port.

The ‎switches sends LLDP-packet with

Oftp_packet_in message to ‎mht- controller. This

packet contains the switch-ID and entering port-ID

(16). ‎The controller has complete information about

the topology ‎consequently the controller uses the

routing algorithm to discovery the shortest-path for

one switch to other switches. After that, the

controller builds the ‎flow tables for all switches and

send it with OpenFlow protocol.

The OpenFlow switches contain three

layers; the open flow protocol API, abstraction layer

and the software layer. The OpenFlow is

responsible for the communication between Op-

switches and the SDN-controller. The abstraction

layer contains the flow-table one or multiple tables.

The ‎last layer packet-processing function is the

packet that treating in virtual ‎switch(5).‎

The flow-tables are the essential data

constructions in an Op-switches. ‎These flow-tables

allow the Op-switches to calculate received packets

and ‎apply the suitable decision (17). The Flow

tables contain of a number of listed flow entries.

Each entry ‎consist three components rule, actions,

and status.‎‎ The rule component consists of many

fields that use to compare with ‎incoming packet

(source IP, MAC and destination IP, MAC, etc.).

These ‎fields include the link-layer devices,

network-layer devices and transport-layer. The

action contain many decision:‎

‎1.‎ Forwarding the received packet to a specific

port.‎

‎2.‎ Forwarding received packet to the controller.‎

‎3.‎ Dropping the received packet.‎

‎4.‎ Flooding the received packet for all available

ports.‎

‎‎5.‎ Send to normal processing pipeline.‎

The Network Topology and Video File

‎The network of proposed video surveillance

system will be created. The ‎switches should connect

the hosts (prefer camera) to each other with ‎active

SDN controller. The switches that should be use

called Open-‎v-Switch (OVS). The OVS is a

manufacture quality that designed to enable huge

network automation ‎by way of programmatic

extension, whilst still supporting standard ‎interfaces

and protocols. The proposed system will follow the

same steps and the same method that used by (8)

to ‎evaluate the performance metrics. Figure-2

shown the network topology for video surveillance

system. The author uses Host6 to sent video file to

Host8 and uses Host7 to sent ‎background traffic to

Host9 to make the network congestions‎ The video

file sent frame size is (352 X 288) and encoded at

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(1) Supplement (March):391-400 E-ISSN: 2411-7986

394

30-fps using an h.264/svc ‎codec with 6 clips each

clip 10 seconds (total 60-second video length ‎‎1800

frame and 5364 packets). ‎The network setting

information

can borrow from the paper to get the ‎same result, so

the Table-1 below explains ‎emulation parameters

such as the‎ bandwidth, ‎delay and the details of

video format‎.‎

Figure 2. Network topology of video

surveillance system

Table 1. Experimental parameters (8)‎

Validation of The Video Surveillance Over The

SDN With Bellman-Ford Algorithm
To validate the results of the Bellman-

Ford ‎algorithm for comparison with (8), the same

specifications (the type of controller and

the ‎topology) are used.‎ ‎‎‎m eS‎mtl.3,‎ H6 divides a

large video frame into ‎many fragments, so the total

packets are 5364 video packet. The ‎controller

executes the Bellman-Ford algorithm to find the

shortest-path ‎for each transmitted. The Bellman‐
Ford algorithm finds the shortest-path ‎with careless

of the link utilization status for both the

background-traffic and the video-flow. Therefore,

the path ‎for video-flow is H6, switch-1, switch-2,

switch-3, H8 and for background traffic is H7,

switch-2 ‎, switch-3 and H9. Consequently, the ‎path

between switch 2 and switch 3should become more

congested.

Figure 3. Bellman Ford over SDN controller

This congestion may cause to slow the

network Because of this ‎congestion, the end-to-end

delay and Packet Loss Ratio (PLR) should be

increased ‎and decreases the peak signal to noise

ratio (PSNR). All these factors ‎may affect the

efficiency and the effectiveness of a video

surveillance ‎system. A possible solution is to find

another algorithm that enhances ‎sending and

receiving videos for video surveillance system.

Fig.4 represent the Pseudocode for this algorithm.

Figure 4. Pseudocode of Bellman algorithm(18)

The Dijkstra Algorithm Over One SDN

Controller (Pyretic Controller)

‎The first scenario that uses the Dijkstra

algorithm instead of the ‎Bellman-Ford algorithm

with one controller in same network and hosts ‎and

link settings (Fig.5). The important step in the

algorithm based on data structure storage is to

utilize an appropriate data structure to store

the ‎network information(19). This factor can lead to

change the path for transmission, so if the path

is ‎congested it can switch to another path for fast

transmission. ‎ When the links are under huge-load,

Parameter value

The bandwidth of each link 10 Mbps

The propagation delay of each 1 ms

Output queue length of each link

20 packets

bandwidth of UDP background traffic

in first experiment

9000 kbps

bandwidth of UDP‐based background

traffic second experiment

9500 kbps

Number of the frame of foreman video

file

1800 frames

 The average rate of foreman video file

574 kbps

The peak rate of foreman video file

942 kbps

Sending rate of foreman video file

30 frames/s

Video length of foreman video file

60 s

Software of controller POX

Software of switch

OpenvSwitch

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(1) Supplement (March):391-400 E-ISSN: 2411-7986

395

their associated-weights will be ‎increased, so the

links should have a lower probability to be selected

for ‎data transmission. The logs of the SDN-

controller, which runs the Dijkstra ‎algorithm and

display the original path of the video-flows is H6,

switch-1,‎‎ switch-2, switch-3‎ , H8 before the

insertion of background traffic. After that ‎when, the

background-traffic should be inserted into the

network the link ‎between switch-2, switch-3

become congestion. Because this congestion

the ‎Dijkstra algorithm will change the path

transmission to H6, switch-2, ‎switch-4, switch-5,

switch-3, H8 as new path transmission to solve

the ‎congestion.

Figure 5. Dijkstra algorithm with one controller

Although fewer video packets are still lost

during the path change processes ̪ ‎ ‎the acquired

results are ‎still recorded better than the Bellman‐
Ford algorithm. Fig.6 shown the pseudocode of

Dijkstra algorithm

Figure 6. Pseudocode of Dijkstra algorithm(18).

The Dijkstra Algorithm With Two SDN

Controllers (Pox And Pyretic)

This section, discuss the Dijkstra algorithm

with two controllers (POX, ‎Pyretic). One reason

why two controllers have been used. The main

cause ‎is to divide the jobs between POX controller

and Pyretic controller. The ‎Pyretic controller

responsible for routing (Dijkstra algorithm) and

POX ‎controller responsible for the monitoring jobs.

The network ‎performance improved when

using two controllers to speed up the path ‎selection

process. Fig.7‎ show the topology when using two

SDN controllers.

Figure 7. Dijkstra algorithm with two controller

To achieve some level of performance and

scalability it will use a multi-‎controller architecture

that contains the set of controllers working ‎together.

The multi-controller can be designed in two

architectures a flat ‎or a hierarchical design. In a flat

or horizontal architecture, the SDN-‎controllers are

located horizontally on one-level. In addition, the

control ‎plane consists of one layer, and each

controller has the same ‎responsibilities at the same

time and has a partial view of its network. In ‎a

hierarchical or vertical architecture, the SDN-

controllers are located ‎vertically‎(20) .‎ The proposed

system used flat or horizontal architecture because

the flat ‎architecture has several advantages such as

reduced control latency and ‎improved resiliency

(21). First, when H6 starts to a transmit video file to

H8, the pyretic controller ‎use the Dijkstra algorithm

to find the shortest-path from source to ‎destination.

The algorithm finds S1-S2-S3 is the shortest path.

The when ‎starts H7 to transmit background traffic

to H9 the algorithm chooses S2-‎S3 as the shortest

path from H7 to H9. The link between S2 and S3

has ‎become congested. At the same time, the POX

controller is checking the ‎link status by checking

the link bandwidth. If the POX controller found the

bandwidth is less than 1Mbps consequently ‎POX

send command for the ‎pyretic controller to find a

new path.

The Modified Dijkstra Algorithm with Two SDN

Controllers

In this section, a new approach to modify

the Dijkstra algorithm is ‎discussed. This approach is

implemented using ‎same topology ‎proposed. The

proposed system will follow the same steps and the

same ‎method to evaluate the performance metrics. ‎

The pyretic controller uses the Dijkstra algorithm to

find the shortest-path from source to destination.

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(1) Supplement (March):391-400 E-ISSN: 2411-7986

396

The algorithm finds S1-S2-S3 is the ‎shortest path.

Then when H7 starts to transmit background traffic

to H9 ‎the algorithm chooses S2-S3 as the shortest

path from H7 to H9. The ‎link between S2 and S3

becomes congested. At the same time, the

POX ‎controller detects that the available bandwidth

of the link in the video ‎path is less than 1Mbps.

Then the link weight is increased

consequently, ‎POX controller re-helps the video by

removing the link that causes ‎congestion and use

the Dijkstra algorithm to help H7-H9 find a

new ‎path. If finds a new path, it move the traffic

flow of H7-H9 to the new ‎path. In addition to, the

original video is still the original Transmission ‎path

(from H6- H8) so the congestion problem is solved. ‎

Fig.8 shows execution for this modification. The

green rectangle ‎represents the original path for H6-

H8 (S1- S2- S3) and background ‎traffic H7- H9

(S2- S3). The red rectangle represents a new path

for ‎background traffic is the path (S2- S4- S5- S3)‎.

Figure 8. Execution of modifying the Dijkstra

algorithm

Performance Metrics

In this section, the results for all previous

scenarios are discussed. The performance metrics

that will be used for comparison between

these ‎scenarios are:‎

‎1.‎ End-to-End delay.

‎2.‎ Packet Loss Rate.

‎3.‎ Peak Signal to Noise Ratio.

¶ End-to-End Delay

The End-to-End packets delay can be calculated by:

Delay [Packet Number] = Receiving Time –

Sending Time

The Receiving Time can be found in the file

received by destination host. For example, when

sending from H6 to H8 the received file found in

H8 contain receiving time column. In addition, the

Sending Time can be found in the sent file in H6.

The proposed system uses file written in C language

for subtracting the ‎sending time from receiving

time‎.

¶ ecaRPa‎oLtt‎kcaP
The packet Loss Rate is the second metrics, which

is used to compare the results with (8). It is

calculated by: PLR = ((Total Packets-Received

Packet)/Total packets)*100%

The total packet from comparison paper is

5364 packets. The packets number column found in

receiving a file in the destination. Therefore, it can

calculate the number of packets that arrive from the

network and subtract it from total packets to get the

missing packet that was the loss in the network.

Then divide it by the total packets.

¶ Peak Signal to Noise Ratio

The Peak Signal to Noise Ratio is the third

metric that will be used for ‎performance evaluation

and comparison. The definition of PSNR “is

the ‎ratio between the maximum possible signal in

the video frame and the ‎noise, which corrupts the

signal accuracy” (13). PSNR is calculated as

follows:‎‎

𝑃𝑆𝑁𝑅 = 20 · log10 (𝑀𝐴𝑋𝐼) - 10 · log10 (𝑀𝑆𝐸)

Use prepare-received trace1 to convert the

received-file to the format ‎necessary for SVEF-

files. The result from prepare-received trace is

frame ‎level-received trace. Then the frame-level

received-trace and the original ‎NALU-trace and

traffic trace are processed by prepare-received

trace2 to ‎received NALU-trace (Fig.9).‎

The received NALU trace file was fed into

nalufilter filter file that will ‎remove the late-frames

and the frames, which cannot be decoded depend

on ‎frame dependencies. The JSVM version (9.19.8)

cannot ‎decode video packets-affected by out of

order, corrupted, or missing ‎NALUs (22).

Therefore, SVEF uses filtered packet trace-file to

extract the ‎corresponding packets in the original

H.264 video-file by means of ‎Bit Stream Extractor

Static. The result from Bit Stream Extractor Static

is ‎used by H264decoder to create file has YUV

extension.

Figure 9. Steps for calculate the PSNR

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(1) Supplement (March):391-400 E-ISSN: 2411-7986

397

The PSNR ‎calculation of original-YUV and

receiving-YUV file need the same ‎number of video

frames. Therefore, this method will hide the

missing ‎frames by copying the previous frame. The

copied frame was done by a ‎file written in C

language called frame filter‎‎ .Finally, the original

YUV and receiving YUV file (output from

frame ‎filter) are used to calculate PSNR‎.

Results
In this section, the results of four scenarios

are discussed. First, applied Bellman Ford in SDN.

Second, applied the Dijkstra algorithm with one

SDN controller. Third, run the Dijkstra algorithm

with two SDN controllers. Finally, modify the

Dijkstra algorithm with two controllers.

¶ First performance metrics is end to end delay:

The delay that shown in Fig.10, part A

represent the delay with Bellman Ford algorithm.

When the video start to transmit the delay is reach

to 0.06 sec. after that when the background-traffic is

starts transmission the network became congestion.

Therefor the delay is rising up to 0.1 sec and

continues in this value to the end transmission.

The delay in the part B reveals that the delay of

Dijkstra algorithm is less than the delay ‎obtained by

Bellman-Ford algorithm. This enhancement in the

delay is ‎achieved because of using Dijkstra

algorithm that choose another path ‎for transmission

when the path congestion occurred. The delay

is ‎starting with 0.04 sec when the video file is

transmitting over the ‎network. In packet 1200 the

background traffic starts transmission.

The ‎congestion has caused the rising in the end to

end delay up to 0.08 sec in ‎many packets. After that

the end to end delay decreases down to 0.03 ‎sec in

packet 4000 due to the reroute capability of the

Dijkstra ‎algorithm‎‎.

eeu‎ sn i‎ ‎ ieef‎ ieu‎ ugnh‎ ee‎ ieu‎htraii n‎

ngle tieS‎ ftie‎ ife‎ seii eggu i.‎ eeu‎ end to end

delay was improving when using two controllers

because ‎the flat architecture for multiple controllers

reduces the controller ‎latency. The delay is almost

steady at 0.025 sec when sending only video files.

Then at ‎packet 2500, the background traffic starts

transmission. Therefore, the link ‎‎[2-3] becomes

congested. The end to end delay is rising to 0.06

sec. After that, ‎the delay reduces when the

controller reroutes the path for video file to

another ‎path. The highest point in this figure is 0.06

sec is less than the Dijkstra ‎algorithm with one

controller. As a result, two controllers.

Figure 10. Mininet Emulation results of four scenarios over the SDN

The part D represent the delay of modify

Dijkstra algorithm that ‎begins with 0.015 sec. When

the network is congested the delay increase ‎to 0.03

sec. then the controller removes the path that causes

congestion ‎from the routing table for background

traffic and adds a new path from ‎switch 2 to switch

4 to solve the congestion problem and reduce

the ‎delay to 0.02 sec. The highest value in the figure

is 0.03 sec represents ‎the least peak value for all

previous method. enbgu-2‎gnti‎ieu‎ ugnh‎seSsn tiei‎

ee ‎ngg‎s uetevi‎isuin tei.

Table 2. Delay comparison

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(1) Supplement (March):391-400 E-ISSN: 2411-7986

398

Methods
Starting

time

Congestion

time

After

reroute

High

point

Bellman-Ford 0.07 0.1

Do not

has to

reroute

0.1

Dijkstra-with

one controller
0.04 0.075 0.03 0.075

Dijkstra-with

two controller
0.02 0.055 0.03 0.06

Modify Dijkstra

with two

controller

0.015 0.03 0.022 0.031

¶ The second performance metrics is PLR:

The PLR comparison is discussd in the Table-3 for

all scenarios. The Bellman-Ford algorithm has

made a high loss rate of 21%, which is bad

approach to select the path for video surveillance

system. At first, the PLR obtained by [8] is

validated. According to Eq. (3), the PLR is

calculated by subtracting the number of packets

arrived to the destination through the network and

subtract it from total sent packets to get the missing

packets that was the loss in the network. This

approach is applied for all scenarios such that PLR

values is shown in Table -3. The Modify Dijkstra

algorithm with two controllers is good approach to

select the path for video surveillance system. It has

loss rate 3% with loss 168 packets.

Table 3. Packet loss rate

Methods
Sending

packets

Received

Packets

Loss

packets

Loss

rate

Bellman-Ford 5364 4227 1137 21%

Dijkstra-with

one controller
5364 4666 698 13%

Dijkstra-with

two controller
5364 4999 365 6%

Modify Dijkstra

with two

controller

5364 5196 168 3%

¶ The third performance metrics is PSNR
The PSNR of Bellman‐Ford is equal to 35 dB in

the starting of ‎transmission and reduces to 10 dB after

the frame-154 when the congestion occur, as shown in‎

(figure-11 A). The PSNR performance when

Dijkstra algorithm is used with the

pyretic ‎controller is show in (figure-11 B) it is

obvious that the PSNR is improved ‎compared to

Bellman-Ford algorithm. The figure shows that the

frames ‎of PSNR is equal to 35 dB in the starting

and reduces to 10 dB ‎after happening the

congestion. The Dijkstra algorithm has improved

the ‎PSNR to15 dB and has average PSNR equal to

15 dB.‎‎ The PSNR for the Dijkstra algorithm with

two controllers is show in (figure-11 C).

It can be observed ‎that‎ the PSNR value is

35 dB when video file ‎starts to transmit over the

network. After that, the background traffic ‎is starts

to transmit over the network and causes the network

congestion. ‎Therefore, PSNR is reduced to 15 dB.

After that, the controller reroutes ‎the path for

background traffic to another path and improve the

PSNR ‎to 25 dB‎‎ .The PSNR for modifying the

Dijkstra algorithm is show in (figure-11 D).

The PSNR start with 35 dB and reduce to 15

dB ‎‎when the network congestion. ‎Then PSNR

reaches to 35 dB again as result the controller

reroutes the ‎background traffic to a new path to

solve the congestion. Therefore, this method is

more ‎suitable for video surveillance. The PSNR

comparison is explain in Table-4.‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎

Table 4. PSNR comparison

Methods
Starting

PSNR

Congesti

on region

After

reroute

Average

PSNR

Bellman-Ford 35 dB 10 dB
Do not has

reroute
10 dB

Dijkstra-with

one controller
35 dB 10 dB 20 dB 15 dB

Dijkstra-with

two controller
0.02 15 dB 30 dB 27 dB

Modify

Dijkstra with

two controller

0.015 15 dB 35 dB 33 dB

‎‎‎

‎‎‎‎‎‎‎‎‎

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(1) Supplement (March):391-400 E-ISSN: 2411-7986

399

Figure 11. PSNR of four scenario

Conclusion:
The proposed system improves the

transmission for video in many ‎steps. The following

conclusions can be drawn from the current study: ‎

With traditional networking,

networking ‎functionality is generally ‎carried out via

hardware devices consisting of a router, ‎‎switches,

firewalls. each of which ought to be ‎manually-

configured through ‎an IT-administrator who

is ‎chargeable for making sure every tool is ‎up to

date ‎with the trendy configuration settings.

consequently, ‎ ‎ieu‎ software defined networking is

more quickly to find the solution for ‎those issues. in

addition, ‎the SDN has no problem in overcoming

the ‎‎ ‎limitations of traditional networking. The

SDN ‎separating the hardware from the software i.e.

separating the control ‎plane from the forwarding

plane.

The main disadvantage of the Bellman-Ford

algorithm that it does ‎not consider weightings and

slower update for the paths. ‎Therefore, the Dijkstra

algorithm is used to enhance the video ‎transmission.

The reason for using the Dijkstra algorithms is

the ‎link status that considers by the algorithm. The

controller detects ‎the congestion then the link

weight is increased. Consequently, the ‎controller re-

helps the video by changing the path for video

while ‎Bellman-Ford still the video transmission in

the same path.

The proposed system uses one controller

with the Dijkstra ‎algorithm. This scenario for

applicate the Dijkstra with SDN ‎controller. From

the result, the Dijkstra algorithm enhances the ‎video

transmission than Bellman-Ford. After the

congestion occurs ‎the Dijkstra algorithm attempt to

found a new path to solve this ‎problem. Therefore,

the delay, PRL, and PSNR improved.‎

The video surveillance system uses two

controllers with Dijkstra ‎algorithm to improve the

video performance by reducing the ‎latency and

make the network management more flexible.

The ‎controllers are designed in flat architecture to

achieve the scalability. The ‎reason for this setup is

that the two controllers are cooperating with

each ‎other (the POX controller responsible for

monitoring the network and the ‎pyretic responsible

for selecting the path according to the used

algorithm). ‎

The main contribution of this study is to

enhance the performance by modifying the

Dijkstra ‎algorithm. It solves the congestion problem

from the flow tables ‎that locate inside the devices

(switches, routers). The modification ‎is done by

removing one of the paths that sent on the

same ‎delivery path then established a path new and

adds it in the flow ‎tables‎.

Conflicts of Interest: None.

References:
1. Licandro F, Schembra G. Wireless mesh networks to

support video surveillance: architecture, protocol,

and implementation issues. EURASIP.

2007;2007(1):031976.

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(1) Supplement (March):391-400 E-ISSN: 2411-7986

400

2. Mohammadi R, Javidan R. An adaptive type-2 fuzzy

traffic engineering method for video surveillance

systems over software defined networks. Multimed

Tools Appl. 2017;76(22):23627-42.

3. Open Networking Foundation. Available from:

https://www.opennetworking.org/, last online :

2019/3/4.‎

4. Cui L, Yu FR, Yan Q. When big data meets

software-defined networking: SDN for big data and

big data for SDN. IEEE network. 2016;30(1):58-65.

5. Azodolmolky S. Software defined networking with

OpenFlow: Packt Pub, Birmingham, UK‎.‎ 2013.

6. Sumanth B. Designing an Openflow Controller for

data delivery with end-to-end QoS over Software

Defined Networks: Computer Science and

Engineering; Conference in Hollywood, CA, USA‎

2016.

7. Gopi D, Cheng S, Huck R, editors. Comparative

analysis of SDN and conventional networks using

routing protocols. Computer, Information and

Telecommunication Systems (CITS), 2017

International Conference on; 2017: IEEE.

8. Yu YS, Ke CH. Genetic algorithm‐based routing

method for enhanced video delivery over software

defined networks. International Journal of

Communication Systems. 2018;31(1):e3391.

9. Magzhan K, Jani HM. A review and evaluations of

shortest path algorithms. International journal of

scientific & technology research. 2013;2(6):99-104.

10. Panwaree P, Kim J, Aswakul C, editors. Packet

delay and loss performance of streaming video over

emulated and real OpenFlow networks. Proceedings

of 29th International Technical Conference on

Circuit/Systems Computers and Communications

(ITC-CSCC); 2014.

11. Owens II H, Durresi A. Video over software-defined

networking (vsdn). Computer Networks.

2015;92:341-56.

12. Rymen M. Software-Defined Networking for Multi-

Camera Systems 2015. Thesis of master degree,

National Chiao Tung University, ‎Taiwan.‎

13. HAVLÍK J. video quality monitoring using netflow

[BACHELOR’S THESIS]. Brno University Of

Technology, 2017, Bachelor’s thesis, Brno

University of Technology, Faculty of ‎Information

Technology, ‎Prague.

14. Rametta C, Baldoni G, Lombardo A, Micalizzi S,

Vassallo A. S6: a Smart, Social and SDN-based

Surveillance System for Smart-cities. Procedia

Computer Science. 2017;110:361-8.

15. Hosseini Seno SA. Dynamic Routing Method over

Hybrid SDN for Flying Ad Hoc Networks. Baghdad

Science Journal, vol. 15, no. 3, pp 361-368‎

16. Pakzad F, Portmann M, Tan WL, Indulska J, editors.

Efficient topology discovery in software defined

networks. Signal Processing and Communication

Systems (ICSPCS), 2014 8th International

Conference on; 2014: IEEE.

17. Goransson P, Black C, Culver T. Software defined

networks: a comprehensive approach: Morgan

Kaufmann; 2016.

18. Sanan S, Jain L, Kappor B. Shortest path algorithm.

IJAIEM. 2013;2(7):316-20.

19. Rochan Mehrotra SB. A Comparative Study between

Bellman-Ford Algorithm and Dijkstras- Algorithms

IJIRST. 2014;1(5).

20. Blial O, Ben Mamoun M, Benaini R. An overview

on SDN architectures with multiple controllers.

IJCNC, 2016, ‎1(5)‎.

21. Bannour F, Souihi S, Mellouk A. Distributed SDN

control: Survey, taxonomy, and challenges. IEEE

Commun. Surv. Tutor. 2017;20(1):333-54.

22.Tantisarkhornkhet, Piyawit, and Warodom ‎Werapun.

"Qlb: Qos routing algorithm for ‎software-defined

networking." 2016 International ‎Symposium on

Intelligent Signal Processing and ‎Communication

Systems (ISPACS). IEEE, 2016.‎

 شبكة معرفة برمجيا لمنظومة مراقبة فديوية اعتمادا على تحسين خوارزمات التوجيه

مصطفى اسماعيل سلمان سكينة رضا شاكر

ϣуЯЪ ϣЛвϝϮ ̪ϣЂϹзлЮϜ .ФϜϽЛЮϜ ̪ϸϜϹПϠ ̪ϸϜϹПϠ

 الخلاصة :

ϽϡϧЛϦ ϝуϯвϽϠ ϣТϽЛв ϣЫϡІ (SDN) ϽТнϦ .ϤϝжϝуϡЮϜ онϧЃв еК бЫϳϧЮϜ онϧЃв ЭЋУϦ сϧЮϜ ϢϹтϹϮ ϣузЧϦ SDN ЭуПЇϧЮϜ сТ Ϝ̯ϼϝу϶

 ϢϸнϮ бКϹт нкм .ϣтϹуЯЧϧЮϜ ϣЫϡЇЮϜ ев ИϽЂϒ ϣϯвϽϡЮϜм сϚϝЧЯϧЮϜϣвϹϷЮϜ (QoS) ϣϡЦϜϽгЮϜ сТ ϝтϝЏЧЮϜ бкϒ ев ϢϹϲϜм .нтϹуУЮϝϠ ϣϡЦϜϽгЮϜ ХуϡГϧЮ

ϤϜϽувϝЪ) ϼϹЋгЮϜ еуϠ аϿϳЮϜ йуϮнϧЮ ϼϝЃв ЭЏТϒ пЯК ϼнϫЛЮϜ ϣуУуЪ ск ϣтнтϹуУЮϝϠ IP(ϣϡЦϜϽгЮϜ аϝЗж ϟЯГϧт .(ϣϡЦϜϽгЮϜ ϿЪϽв) буЯЃϧЮϜ ϣлϮм

ϣвϹ϶ ϢϸнϮм йϠ ϝ̯ЦнϪнв ϝ̯гуЯЃϦм ϝ̯ЛтϽЂ ̯ъϝЂϼϖ ϣтнтϹуУЮϝϠ ϣвϹϷЮϜ ϢϸнϮ еуЃϳϧЮ .ϣуЮϝК (QoS) ϣузϠ аϜϹϷϧЂϜ бϧт ̪ ЭϫвцϜ ϼϝЃгЮϜ ХуЧϳϧЮм

SDN ϽϡК нтϹуУЮϜ ЭЧж бууЧϧϠ анЧж ̪̯ъмϒ .ϣУЯϧϷв ϤϜнГ϶ Йв ϣУЯϧϷгЮϜ йуϮнϧЮϜ ϤϝувϾϼϜн϶ аϜϹϷϧЂϜ бϧт ̪ЩЮϺ пЮϖ ϣТϝЎшϝϠ .ϣЦϼнЮϜ иϻк сТ

SDN ϣувϾϼϜн϶ аϜϹϷϧЂϝϠ .Bellman Ford гЮ Ϝ̯ϽЗж ̪ ЩЮϺ ϹЛϠϣувϾϼϜн϶ ϘмϝЃ Bellman ford ϣувϾϼϜн϶ аϜϹϷϧЂϜ бϧт ̪ Dijkstra

ϣувϾϼϜн϶ аϜϹϷϧЂϜ бϧт ̪ЩЮϺ пЯК ϢмыК .аϝϲϸϾϜ ϨмϹϲ ϹзК ϼϝЃгЮϜ ϽууПϧЮ Dijkstra ϢϹϲм сТ ФϽПϧЃгЮϜ ϥЦнЮϜ ЭуЯЧϧЮ бЫϳϦ сϦϹϲм Йв

бЫϳϧЮϜ. SDN бЫϳϧЮϜ ϤϜϹϲм аϜϹϷϧЂϜ бϧт POX м Pyretic SDN бЫϳϦ ϢϹϲм днЫϦ ϩуϳϠ POX днЫϦ ϝгзуϠ ̪ ϣЫϡЇЮϜ ϣϡЦϜϽв еК ϣЮмϕЃв

бЫϳϧЮϜ ϢϹϲм Pyretic ϣувϾϼϜн϶ бууЧϦм ϰϜϽϧЦϜ ϝ̯Џтϒ бϧт ̪ Ϝ̯Ͻу϶ϒм .ϼϝЃгЮϜ ϼϝуϧ϶Ϝм йуϮнϧЮϜ ϣувϾϼϜн϶ еК ϣЮмϕЃв Dijkstra ϣЮϹЛв

ϣувϾϼϜн϶ дϒ ϭϚϝϧзЮϜ ϤϽлДϒм .̭ϜϸцϜ еуЃϳϧЮ бЫϳϦ сϦϹϲм аϜϹϷϧЂϝϠ Dijkstra Ϝ ФϽГЮϜ пЯК ϥЦнУϦ ϣЮϹЛгЮϜ ϢϸнϮ ϤϝгЯЛв ϟжϝϮ сТ оϽ϶ц

ϣвϹϷЮϜ.(QoS)

 .ϣувϾϼϜн϶ Bellman ford мϣувϾϼϜн϶ Dijkstra м ϝуϯвϽϠ ϣТϽЛв ϣЫϡІ (SDN) :المفتاحيةالكلمات

http://www.opennetworking.org/

