A Study on the Accuracy of Prediction in Recommendation System Based on Similarity Measures

Nadia Fadhil AL-Bakri\(^1\)* Soukaena Hassan Hashim\(^2\)

Received 24/4/2018, Accepted 16/10/2018, Published 17/3/2019

Abstract:
Recommender Systems are tools to understand the huge amount of data available in the internet world. Collaborative filtering (CF) is one of the most knowledge discovery methods used positively in recommendation system. Memory collaborative filtering emphasizes on using facts about present users to predict new things for the target user. Similarity measures are the core operations in collaborative filtering and the prediction accuracy is mostly dependent on similarity calculations. In this study, a combination of weighted parameters and traditional similarity measures are conducted to calculate relationship among users over Movie Lens data set rating matrix. The advantages and disadvantages of each measure are spotted. From the study, a new measure is proposed from the combination of measures to cope with the global meaning of data set ratings. After conducting the experimental results, it is shown that the proposed measure achieves major objectives that maximize the accuracy Predictions.

Key words: Collaborative Filtering, Inverse User Frequency, Prediction, Recommender System, Similarity Measure.

Introduction:
Recommender systems are tools that utilize the beliefs of a group of users to assist entities in that group to effectively explore new things of interest from a possibly tremendous set of choices. Collaborative Filtering (CF) is being developed for generating recommendations. CF can be categorized into two main algorithms: memory-based and model-based. Memory-based algorithms use the whole user-item database to generate predictions. Similarity measures are employed to find user's neighborhood. Memory collaborative filtering can be classified mainly into user to user based and item to item based filtering. User-based exploits the relationship between the target user and all other users. Item-based makes use of the similarity between two items. Similarity measure computation depends mostly on user's explicit ratings (users scan items and rate them on a rating scale values). Although explicit rating captures user favorites to items perfectly, its main drawback is sparsity problem due to the vast amount of information in the world (1).

In this paper, a study is presented to analyze the results of prediction values with the use of different similarity measures.

In section 2, challenges of collaborative filtering techniques are presented. In section 3, the Related Works on this field are subjected. In section 4, most similarity measures used in CF are presented in a table form. In section 5, the Experimental Results are conducted. The last section is the conclusion of this study.

Challenges of Collaborative Filtering Techniques
A brief introduction to the challenges that are considered important for the development of the research on recommender systems is introduced:

1- Cold-start problem: This refers to a situation where a recommender does not have adequate information about a user or an item in order to make relevant predictions. This is one of the major problems that reduce the performance of recommendation system.(2)

2- Data sparsity problem: This problem occurs as a result of lack of enough information, that is, when only a few of the total number of items available in a database are rated by users. This always leads to a sparse user item matrix, inability to locate

\(^1\) Department of Computer Science, AL Nahrain University, Baghdad, Iraq.
\(^2\) Department of Computer Science, University of Technology, Baghdad, Iraq.
* Corresponding author: nfi@sc.nahrainuniv.edu.iq
successful recommendations. (2)

3- Scalability: This is a problem associated with recommendation algorithms because computation normally grows linearly with the number of users and items. It is crucial to apply recommendation techniques which are capable of scaling up in a successful manner as the number of dataset in a database increases. (2)

4- Synonymy: Synonymy is the tendency of very similar items to have different names or entries. Most recommender systems find it difficult to make distinction between closely related items. (2)

5- Gray Sheep: This refers to the users whose opinions do not consistently agree or disagree with any group of people and thus do not benefit from collaborative filtering. (3)

6- Shilling Attacks: It is the case where anyone can provide recommendations; people may give tons of positive recommendations for their own materials and negative recommendations for their competitors. (3)

7- The Long Tail problem: It is composed of a small number of popular items, the well-known hits, and the rest are located in the heavy tail, those do not sell that well. The Long Tail offers the possibility to explore and discover—using automatic tools; such as (recommenders or personalized filters) vast amounts of data. (4)

8- Diversity: In the recommendation process, the user should be presented with a range of options and not with a homogeneous set of alternatives. (4)

Related Work
In what follows, some of the previous research literatures related to the techniques used in user-based collaborative filtering is presented with employing different data sets. The related works are shown in Table (1).

Table 1. Different Collaborative Filtering Approaches Used in Previous Works with their References

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Authors & Publication Year</th>
<th>Approach Used</th>
<th>Methods And Tools Used</th>
<th>Dataset Used</th>
<th>Problem To Solve</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Abdelwahab, A KG, S., & Sadasivam,G.S. 2009</td>
<td>User-Based And Item-Based Collaborative Filtering</td>
<td>User-Based And Item-Based Collaborative Filtering +Spectral Clustering</td>
<td>MovieLens 100K</td>
<td>Sparsity</td>
</tr>
<tr>
<td>(5)</td>
<td>Huang, B. H., & Dai B. R., 2015</td>
<td>Memory Based Collaborative Filtering</td>
<td>Modified Similarity Model Jaccard Measure +PSS (Proximity-Significance-Singularity)+Bhattacharya</td>
<td>MovieLens 100K</td>
<td>Sparsity</td>
</tr>
<tr>
<td>(6)</td>
<td>Wu, Z., 2014</td>
<td>Collaborative Filtering</td>
<td>Weighted Distance Model(WD)& Jaccard Measure</td>
<td>MovieLens 100K</td>
<td>Prediction Accuracy</td>
</tr>
<tr>
<td>(7)</td>
<td>Katukuri, J., 2014</td>
<td>Collaborative Filtering</td>
<td>Modified Similarity and Fuzzy Clustering</td>
<td>MovieLens 100K</td>
<td>Sparsity</td>
</tr>
<tr>
<td>(8)</td>
<td>Mao, J., 2013</td>
<td>Similarity Measure</td>
<td>Clustering Using Hadoop Map Reduce</td>
<td>Ebay.Com Site</td>
<td>Scalability</td>
</tr>
<tr>
<td>(9)</td>
<td>Anad D. & Bharadwaj K. 2011</td>
<td>Memory Based Collaborative Filtering</td>
<td>Modified Pearson Correlation Measure By Similarity Impact Factor.</td>
<td>MovieLens 100K</td>
<td>Sparsity</td>
</tr>
<tr>
<td>(11)</td>
<td>Lee, S. ET AL. 2004</td>
<td>Collaborative Filtering</td>
<td>Discovery Hidden Similarity(DHS)</td>
<td>MovieLens 100K</td>
<td>Sparsity</td>
</tr>
</tbody>
</table>

Collaborative Filtering Algorithm
The recommender system can be abstracted as a black box to generate suggestions for users. It is constructed from the following steps: (13)

1- Representation of raw data
Specific data about users can be collected in explicit or implicit ways. The data in this paper is taken explicitly from the MovieLens data set. Then this
data set is represented in the form of the User-Movie rating matrix to be further processed.

2- Similarity Computation

It is the most essential stage in the recommendation system because the accuracy of the prediction process is dependent on this stage. It determines the K-nearest users to the active user. The K users form the neighborhood for the target user. Different similarity measures are depicted in Tables (2, 3).

Table 2. different similarity measures with their specification and disadvantages (5) (14) (15)

<table>
<thead>
<tr>
<th>Eq.no</th>
<th>Similarity Measure</th>
<th>Similarity Measure Formula</th>
<th>Specification</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cosine (COS)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{SIM}(u, v)\]^{\text{cos}} = \frac{\text{cos}(R_u, R_v)}{||R_u|| \times ||R_v||} = \frac{\sum_{i=1}^{N} \frac{R_{ui} \times R_{vi}}{\sqrt{\sum_{i=1}^{N} (R_{ui})^2 \times \sum_{i=1}^{N} (R_{vi})^2}}}{\sqrt{\sum_{i=1}^{N} (R_{ui})^2 \times \sum_{i=1}^{N} (R_{vi})^2}} \]

Measures the angle between u and v vectors. If angle equals 0 then cosine similarity = 1 and they are similar. If equals 90 then cosine similarity = 0 and they are not similar.

Cosine similarity does not account for the preference of the user’s rating.

| 2 | Pearson correlation coefficient (PCC) |

\[\text{SIM}(u, v)\]^{\text{pcc}} = \frac{\sum_{i \in I} (R_{ui} - \bar{R}_u)(R_{vi} - \bar{R}_v)}{\sqrt{\sum_{i \in I} (R_{ui} - \bar{R}_u)^2} \times \sqrt{\sum_{i \in I} (R_{vi} - \bar{R}_v)^2}} \]

The Pearson correlation coefficient takes values from +1 (strong positive correlation) to −1 (strong negative correlation). The Pearson algorithm makes use of negative correlations as well as positive correlations to make predictions.

The Pearson correlation coefficient does not consider the fact of finding similar users for common items have less influence in recommendation process than finding similar users on uncommon items.

| 3 | Constrained Pearson correlation coefficient (CPCC) |

\[\text{SIM}(u, v)\]^{\text{pcc}} = \frac{\sum_{i \in I} (R_{ui} - \bar{R}_{\text{Med}})(R_{vi} - \bar{R}_{\text{Med}})}{\sqrt{\sum_{i \in I} (R_{ui} - \bar{R}_{\text{Med}})^2} \times \sqrt{\sum_{i \in I} (R_{vi} - \bar{R}_{\text{Med}})^2}} \]

Does not make use of negative “correlations” as the Pearson algorithm does. It uses median value instead of average rating.

Does not take into account the number of common rating.

| 4 | Jaccard Distance |

\[\text{SIM}(u, v)\]^{\text{Jaccard}} = \frac{|I_u \cap I_v|}{|I_u \cup I_v|} \]

The concept behind this measure is that users are more similar if they have more common ratings.

Jaccard coefficient does not consider the absolute ratings.

| 5 | Inverse User Frequency (IUF) |

\[IUF_i = f_i = \log \frac{N}{n_i} \]

Formula decreases the weight on common items, because these items are less beneficial in recommendation process to target users.

Does not take into account the number of common rating.

In Table (3), additional similarity measures are defined as a combination of the previous similarity measures mentioned.
Table 3. Additional Similarity Measures from Previously Mentioned Measures [source: "own elaboration"]

<table>
<thead>
<tr>
<th>Eq.no</th>
<th>Similarity Measure</th>
<th>Similarity Measure Formula</th>
<th>Specification</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Constrained Pearson correlation with IUF</td>
<td>$SIM(u, v)^{PCCorrIUF} = \frac{\sum_{i=1}^{N} f_i^2 (R_{u,i} - R_{Med}) (R_{v,i} - R_{Med})}{\sqrt{\sum_{i=1}^{N} f_i^2 (R_{u,i} - R_{Med})^2 \sum_{i=1}^{N} f_i^2 (R_{v,i} - R_{Med})^2}}$</td>
<td>Take the effect of positive and negative similarity values and give weight to less known items.</td>
<td>Does not make use of negative correlations and number of common rating is not counted.</td>
</tr>
<tr>
<td>7</td>
<td>Constrained Pearson correlation with jaccard</td>
<td>$SIM = SIM^{CPCC} * SIM^{JACCARD}$</td>
<td>Take the effect of positive and negative similarity values and consider the number of common rating.</td>
<td>Does not give weight to less known item.</td>
</tr>
<tr>
<td>8</td>
<td>Constrained Pearson correlation with IUF & Jaccard</td>
<td>$SIM_{proposed} = SIM^{CPCC}&IUF# SIM^{JACCARD}$</td>
<td>1- Take the effect of positive and negative similarity values. 2- Consider the number of common rating. 3- Give weight to less known items (long tail problem).</td>
<td>Does not cope with Synonymy and grey sheep problems.</td>
</tr>
</tbody>
</table>

3- Prediction Computation

After a similarity computation, a group of size K of nearest neighbors for the target user is chosen. Then a prediction for the target user (a) on a target item (i) is generated by aggregating weighted ratings of neighbor users (u’s) plus the mean of target users' rating (R_a). The prediction formula for user-based collaborative filtering is shown below (15):

$$predict(user\ a, item\ i) = \bar{R}_a + \sum_{u} \frac{SIM(a,u)(R_{u,i} - \bar{R}_a)}{\sum_{u} |SIM(a,u)|}$$..., EQ. 9

Where $u \in U$ are target user's neighbors (K highest similarities).
SIM (a,u) similarity between target user (a) and neighbor users (u’s).
$R_{u,i}$ rating of user u to item i.

Results and Discussion:

In this section, the impact of the similarity measures on the prediction formula for user-based collaborative filtering is tested. The task is to assess different similarity measures mentioned in Table (2) and Table (3) by applying them on Movielens data set which contains 943 users,1682 movies and 100,000 ratings (provided by GroupLens Research) (16). The rating scale of this data set is [1 to 5].

Using MATLAB as a programming language, MovieLens data set is loaded and represented as User-Movie matrix where the rows represent the number of users and the columns are the number of movies. In this study, a sample of the experiments is taken to clear the idea more simply and also do not take a lot of area in the page. Table (4) shows an adjacency matrix, containing number of co-rated (common) movies between five users.

These values are needed in the prediction formula, which specify the number of movies shared among users Tables from (5 to 12) below their sources are "own elaboration".

Table 4. The number of co-rated movies between users.

<table>
<thead>
<tr>
<th></th>
<th>User1</th>
<th>User2</th>
<th>User3</th>
<th>User4</th>
<th>User5</th>
</tr>
</thead>
<tbody>
<tr>
<td>User1</td>
<td>52</td>
<td>15</td>
<td>7</td>
<td>4</td>
<td>73</td>
</tr>
<tr>
<td>User2</td>
<td>15</td>
<td>52</td>
<td>8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>User3</td>
<td>7</td>
<td>8</td>
<td>44</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>User4</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>User5</td>
<td>73</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>165</td>
</tr>
</tbody>
</table>

Similarity measures formulas mentioned in Table (2) and Table (3) are applied on User-Movie matrix, the obtained adjacency similarity matrices are shown in Tables (5 to 11) for five users.

Table 5. Pearson Similarity Measure

<table>
<thead>
<tr>
<th></th>
<th>User1</th>
<th>User2</th>
<th>User3</th>
<th>User4</th>
<th>User5</th>
</tr>
</thead>
<tbody>
<tr>
<td>User1</td>
<td>1.0000</td>
<td>0.9545</td>
<td>0.8555</td>
<td>0.9318</td>
<td>0.9285</td>
</tr>
<tr>
<td>User2</td>
<td>0.9545</td>
<td>1.0000</td>
<td>0.9522</td>
<td>0.9918</td>
<td>0.9829</td>
</tr>
<tr>
<td>User3</td>
<td>0.8555</td>
<td>0.9522</td>
<td>1.0000</td>
<td>0.9484</td>
<td>1.0000</td>
</tr>
<tr>
<td>User4</td>
<td>0.9318</td>
<td>0.9918</td>
<td>0.9484</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>User5</td>
<td>0.9285</td>
<td>0.9829</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Table 6. Cosine Similarity Measure

<table>
<thead>
<tr>
<th></th>
<th>User1</th>
<th>User2</th>
<th>User3</th>
<th>User4</th>
<th>User5</th>
</tr>
</thead>
<tbody>
<tr>
<td>User1</td>
<td>0.0000</td>
<td>0.1468</td>
<td>0.0507</td>
<td>0.0513</td>
<td>0.3648</td>
</tr>
<tr>
<td>User2</td>
<td>0.1468</td>
<td>0.0000</td>
<td>0.1258</td>
<td>0.1177</td>
<td>0.0494</td>
</tr>
<tr>
<td>User3</td>
<td>0.0507</td>
<td>0.1258</td>
<td>0.0000</td>
<td>0.2367</td>
<td>0.0234</td>
</tr>
<tr>
<td>User4</td>
<td>0.0513</td>
<td>0.1177</td>
<td>0.2367</td>
<td>0.0000</td>
<td>0.0131</td>
</tr>
<tr>
<td>User5</td>
<td>0.3648</td>
<td>0.0494</td>
<td>0.0234</td>
<td>0.0131</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

266
The discussion of the prediction computation results from Table (12) is presented below:

User 1 rated (3) to movie2 because all the prediction values according to different similarity measures approach (3) which is the same as the real rating (3) in Movielens data set.

User 1 rated (4) to movie3 conducting 5 similarity measures which is the same as the real rating (4) in Movielens data set.
MovieLens data set and rated (3) using cosine and Jaccard measure.

User 1 rated (3) to movie4 using 5 similarity measures which is the same as the real rating (3) and rated (4) using Pearson correlation and cosine measures.

User 1 rated (3) to movie5 using all similarity measures which is the same values as in the real rating (3).

User 2 rated (4) for movie1 which is the same as in real rating (4)

User 2 rated (2) for movie10 using the proposed similarity measure Constrained Correlation with IUF and Jaccard only which is the same real rating (2) in movielens data set.

User 4 rated (4) for movie11 which is not rated by the user in the real Movielens data set.

User 5 rated 5 for movie42 when using the proposed similarity measure Constrained Correlation with IUF and Jaccard only which is rated 5 in real rating.

User 5 rated (2) for movie63 which is not rated by the user 5 in the real Movielens data set.

Conclusion:

This study shows the explicit rating significance rather than just calculating distances among users using similarity measures. The aim is to focus on the global meanings of rating values in real data set rather than local means. Moreover less known movies are focused on by using the parameter (IUF) and treated effectively and as a result, the diversity is achieved and long tail problem can be partially solved. Many similarity measures are conducted, it is concluded that it is not possible to relate between users effectively, since it provides a relatively equivalent similarity values. But in the proposed similarity measure (Constrained Correlation with IUF and Jaccard); a relatively accurate prediction results are obtained because each user in the data set became distinguished as a dependable user since it provides different similarity values for each pair of users. It is concluded from this study that the explicit rating of users can be dependable in the prediction process for target users. Better results are obtained from a combination of similarity measures because the weakness of each of measure is strengthened by another measure.

Conflicts of Interest: None.

Reference:

دراسة حول دقة التنبؤ في نظام التوصية على أساس مقاييس التشابه

سكيته حسن هاشم

أقسام علوم الحاسوب، جامعة النهرين، بغداد، العراق

الخلاصة

نظم التوصية هي أدوات لفهم الكم الهائل من البيانات المتاحة في عالم الإنترنت. التصفية التعاونية هي واحدة من أكثر تقنيات اكتشاف المعرفة المستخدمة بشكل إيجابي في نظام التوصيات. تركز التصفية التعاونية القائمة على الذاكرة على استخدام الحقائق حول المستخدمين القائمين والمتوفرين، للفتي قياس التشابه بين المستخدمين الذين يشاركون في النظام. من ناحية أخرى، يركز مبدأ التصفية التعاونية القائمة على القاعدة على حسابات التشابه. في هذه الدراسة، تم استخدام مجموعة من مقاييس التشابه التقليدية مع المعالجات المرجحة للحساب على حسابات التشابه. تم استخدام مجموعة من مقاييس التشابه التقليدية مع المعالجات المرجحة لحساب العلاقة بين المستخدمين عبر مجموعة بيانات(MovieLens) . تم اقتراح مقياس جديد مكون من مجموعة من المقاييس للتعامل مع المعالجات الشاملة لتخليص مجموعة البيانات. بعد إجراء النتائج التجريبية، تبين أن المقياس المقترح حقق العديد من الأهداف التي تزيد من دقة التنبؤات.

الكلمات المفتاحية: التصفية التعاونية، مقياس التشابه، نظام التوصية، دقة التنبؤ.