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accuracy. The method was proposed in1998 by He 

(10) and was further developed and improved for  

solving nonlinear problem in (11) and (12). The 
convergence of HPM for Fredholm integral 

equations and Volterra integral equations of the 

second kind is discussed in (13). It has also been 
used to find approximate and exact solution for 

Volterra-Fredholm integro differential equations in 

(14), and their systems in (15), while in (16) the 

method is used for system of Burgers equations.   
Presenting a convergence condition for HPM and the 

error estimation for the solution is our major purpose 

in this work. 
  

Application of HPM on LSMVFIE2
nd

 

Recall system (1) and consider the ith equation of the 
system as   

 𝑢
𝑖
(𝑥) = 𝑓

𝑖
(𝑥) +                                       

∑𝜆
𝑖𝑗
∫∫𝑘

𝑖𝑗
(𝑟, 𝑡)𝑢

𝑗
(𝑡)𝑑𝑡𝑑𝑟.  

𝑏

𝑎

                     (2)

𝑥

𝑎

𝑛

𝑗=1

 

         To illustrate HPM, define the operator ℓ𝑖 as 

follows:   

ℓ
𝑖
(𝑢

1

∗
(𝑥), … , 𝑢

𝑛

∗
(𝑥)) = 𝑢

𝑖

∗
(𝑥) − 𝑓

𝑖
(𝑥)             

−∑𝜆
𝑖𝑗
∫∫𝑘

𝑖𝑗
(𝑟, 𝑡)𝑢

𝑗

∗
(𝑡)𝑑𝑡𝑑𝑟

𝑏

𝑎

  

𝑥

𝑎

𝑛

𝑗=1

= 0 ,       (3) 

with the solution 𝑢
𝑖

∗
(𝑥) = 𝑢

𝑖
(𝑥). The homotopy 

perturbation method defines a convex function  

𝐻
𝑖
(𝑢

1

∗
(𝑥), 𝑢

2

∗
(𝑥),… , 𝑢

𝑛

∗
(𝑥), 𝑝) : ℛ × [0, 1] → ℛ 

by   

𝐻
𝑖
(𝑢

1

∗
(𝑥), … , 𝑢

𝑛

∗
(𝑥), 𝑝) = (1 − 𝑝)𝐺

𝑖
(𝑢

𝑖

∗
) 

+𝑝ℓ
𝑖
(𝑢

1

∗
(𝑥), … , 𝑢

𝑛

∗
(𝑥)) = 0,                     (4) 

where, 𝐺
𝑖
(𝑢

𝑖

∗
) = 𝑢

𝑖

∗
(𝑥) − 𝑓

𝑖
(𝑥) is a functional 

operator, 𝑝 ∈ [0, 1] is the homotopy parameter, and 

let 𝑢
𝑖0
(𝑥) be a known initial approximation of 

equation (1), say𝑓
𝑖
(𝑥) for all 𝑖 = 1, 2, … , 𝑛.  

From equation (4), we have      

 𝐻
𝑖
(𝑢

1

∗
(𝑥),… , 𝑢

𝑛

∗
(𝑥), 0) = 𝐺

𝑖
(𝑢

𝑖

∗
) , and      

𝐻
𝑖
(𝑢

1

∗
(𝑥), … , 𝑢

𝑛

∗
(𝑥), 1) = ℓ𝑖 (𝑢1

∗
, … , 𝑢

𝑛

∗
)
}.     (5) 

      The proses of changing the imbedding parameter 

p from 0 to 1 is just that of 𝐻
𝑖
(𝑢

1

∗
(𝑥),… , 𝑢

𝑛

∗
(𝑥), 𝑝) 

from the trivial problem 𝐻
𝑖
(𝑢

1

∗
(𝑥), … , 𝑢

𝑛

∗
(𝑥), 0) =

𝐺
𝑖
(𝑢

𝑖

∗
) = 0, to the original problem 

 𝐻
𝑖
(𝑢

1

∗
(𝑥), … , 𝑢

𝑛

∗
(𝑥), 1) = 

ℓ𝑖 (𝑢1
∗
(𝑥),… , 𝑢

𝑛

∗
(𝑥)) = 0. 

By using ℓ𝑖 (𝑢1
∗
(𝑥),… , 𝑢

𝑛

∗
(𝑥)) and  𝐺

𝑖
(𝑢

𝑖

∗
) 

defined above, the homotopy operator of the 
considered equation will be obtained:    

(𝑢
1

∗
(𝑥),… , 𝑢

𝑛

∗
(𝑥), 𝑝)

= (1 − 𝑝) (𝑢
𝑖

∗
(𝑥) − 𝑓

𝑖
(𝑥))

+ 𝑝(𝑢
𝑖

∗
(𝑥) − 𝑓

𝑖
(𝑥)

−∑𝜆
𝑖𝑗
∫∫𝑘

𝑖𝑗
(𝑟, 𝑡)𝑢

𝑗

∗
(𝑡)𝑑𝑡𝑑𝑟

𝑏

𝑎

  

𝑥

𝑎

𝑛

𝑗=1

). 

 𝑖 = 1,2, … , 𝑛 
Thus, for all i we have  

     𝐻
𝑖
(𝑢

1

∗
(𝑥),… , 𝑢

𝑛

∗
(𝑥), 𝑝)

= 𝑢
𝑖

∗
(𝑥) − 𝑓

𝑖
(𝑥)                         

−𝑝(∑𝜆
𝑖𝑗
∫∫𝑘

𝑖𝑗
(𝑟, 𝑡)𝑢

𝑗

∗
(𝑡)𝑑𝑡𝑑𝑟

𝑏

𝑎

𝑥

𝑎

𝑛

𝑗=1

) = 0.  (6) 

The method admits the use of a power series: 

  𝑢
∗

𝑖
(𝑥) =∑𝑝

𝑗
𝑢
∗

𝑖𝑗
(𝑥)

∞

𝑗=0

.    𝑖 = 1,2, … , 𝑛 .   (7) 

If equation (7) has a radius of convergence that is ≮

1 also, ∑ 𝑢
∗

𝑖𝑗
(𝑥)∞

𝑗=0
 converges absolutely, then the 

approximation of equation (1) is found: 

   𝑢
𝑖
(𝑥) = lim

𝑝→1
−
∑𝑝

𝑗
𝑢
∗

𝑖𝑗
(𝑥)

∞

𝑗=0

                          

                    = ∑𝑢
∗

𝑖𝑗
(𝑥),

∞

𝑗=0

𝑖 = 1,2, … , 𝑛.          (8) 

Substituting (7) in equation (6) gives  

 ∑𝑝
𝑗
𝑢
∗

𝑖𝑗
(𝑥)

∞

𝑗=0

= 𝑢
𝑖0
(𝑥)                        

+𝑝(∑𝜆
𝑖𝑗
∫∫𝑘

𝑖𝑗
(𝑟, 𝑡)∑𝑝

𝑙
𝑢
∗

𝑗𝑙
(𝑥)

∞

𝑙=0

𝑑𝑡𝑑𝑟

𝑏

𝑎

  

𝑥

𝑎

𝑛

𝑗=1

).  

    𝑖 = 1,2, … , 𝑛. 
by equating the similar power terms of p gives a 

recurrence relations that leads to the approximate 
solution: 

            𝑝
𝑖

0
:  𝑢

∗

𝑖0
(𝑥) = 𝑢

𝑖0
(𝑥) ,                          (9) 
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  𝑝
𝑖

𝑙
:  𝑢

∗

𝑖𝑙
(𝑥)

=∑𝜆
𝑖𝑗
∫∫𝑘

𝑖𝑗
(𝑟, 𝑡)𝑢

∗

𝑗,𝑙−1
(𝑥)𝑑𝑡𝑑𝑟

𝑏

𝑎

 .    (10) 

𝑥

𝑎

𝑛

𝑗=1

 

 for  𝑙 ≥ 1.                                                                          
             The above relations have been obtained by 
assuming that (7) is convergent. In the following 

Theorem, the conditions for such convergence will be 

discussed. 

 

Convergence Analysis 

Theorem3.1. Let the functions 𝑘
𝑖𝑗
 𝑎𝑛𝑑 𝑓

𝑖
 in system 

(1) be continuous in the specified domain that is 𝑘
𝑖𝑗
∈

𝐶([𝑎, 𝑏] × [𝑎, 𝑏]) and 𝑓
𝑖
∈ 𝐶[𝑎, 𝑏] ∀𝑖, 𝑗 = 1,2, … , 𝑛. 

If the following inequality 

                 𝑛𝛽(𝑏 − 𝑎)
2
< 1 ,                             (11) 

where  

 𝛽 = 𝑚𝑎𝑥
𝑖=1,2,…,𝑛

{|𝜆
𝑖𝑗
| . (𝑀

𝑖𝑗
)} , for 𝑗 = 1,2, … , 𝑛          

satisfied, and 𝑢
𝑖0
∈ 𝐶[𝑎, 𝑏] are chosen as an initial 

solution, then for each 𝑝 ∈ [0, 1], the series (7) 

converges uniformly in the interval [𝑎, 𝑏] in which 

the functions 𝑢
∗

𝑖0
 and 𝑢

∗

𝑖𝑙
 are found by equations (9) 

and (10), respectively.      

 

 

Proof: Since 𝑘
𝑖𝑗
 and 𝑓

𝑖
 are bounded for each 𝑖, 𝑗 =

1,2, … , 𝑛; then ∃𝑀
𝑖𝑗
> 0 and 𝐿

𝑖0
 such that  

|𝑘
𝑖𝑗
(𝑥, 𝑡)| ≤ 𝑀

𝑖𝑗
, and |𝑓

𝑖
(𝑥)| ≤ 𝐿

𝑖0
.               (12)  

   for 𝑥, 𝑡 ∈ [𝑎, 𝑏]                                                

Let 𝑢
𝑖0
(𝑥) ∈ 𝐶[𝑎, 𝑏], then there exist positive 

numbers 𝐿
𝑖0

 such that  

|𝑢
𝑖0
(𝑥)| ≤ 𝐿

𝑖0
 ,                             ∀𝑥 ∈ [𝑎, 𝑏] 

Now, let 

 𝐿 = 𝑚𝑎𝑥
𝑖=1,2,…,𝑛

𝐿
𝑖0

,  

and 𝛽 = 𝑚𝑎𝑥
𝑖=1,2,…,𝑛

{|𝜆
𝑖𝑗
| . (𝑀

𝑖𝑗
)}, for 𝑗 = 1,2, … , 𝑛. 

The above assumptions imply the estimations below: 

 |𝑢
∗

𝑖0
(𝑥)| = |𝑢

𝑖0
(𝑥)| ≤ 𝐿

𝑖0
≤ 𝐿  .                                 

  |𝑢
∗

𝑖1
(𝑥)|    = |∑𝜆

𝑖𝑗
∫∫𝑘

𝑖𝑗
(𝑟, 𝑡)𝑢

∗

𝑗0
(𝑥)𝑑𝑡𝑑𝑟

𝑏

𝑎

  

𝑥

𝑎

𝑛

𝑗=1

|

≤∑|𝜆
𝑖𝑗
|∫∫ |𝑘

𝑖𝑗
(𝑟, 𝑡)| |𝑢

∗

𝑗0
(𝑥)| 𝑑𝑡𝑑𝑟

𝑏

𝑎

 

𝑥

𝑎

𝑛

𝑗=1

 

≤∑|𝜆
𝑖𝑗
|𝑀

𝑖𝑗
∫∫ |𝑢

∗

𝑗0
(𝑥)| 𝑑𝑡𝑑𝑟

𝑏

𝑎

 

𝑥

𝑎

𝑛

𝑗=1

≤∑𝛽∫∫𝐿
𝑗0
𝑑𝑡𝑑𝑟

𝑏

𝑎

 

𝑥

𝑎

𝑛

𝑗=1

≤ 𝑛𝛽𝐿(𝑏 − 𝑎)
2
. 

            

  |𝑢
∗

𝑖2
(𝑥)| = |∑𝜆

𝑖𝑗
∫∫𝑘

𝑖𝑗
(𝑟, 𝑡)𝑢

∗

𝑗1
(𝑥)𝑑𝑡𝑑𝑟

𝑏

𝑎

  

𝑥

𝑎

𝑛

𝑗=1

|   

≤ ∑|𝜆
𝑖𝑗
|𝑀

𝑖𝑗
∫∫ |𝑢

∗

𝑗1
(𝑥)| 𝑑𝑡𝑑𝑟

𝑏

𝑎

 

𝑥

𝑎

𝑛

𝑗=1

≤∑𝛽∫∫(𝑛𝛽𝐿(𝑏 − 𝑎)
2
)𝑑𝑡𝑑𝑟

𝑏

𝑎

 

𝑥

𝑎

𝑛

𝑗=1

 

≤ 𝑛
2
𝛽
2
((𝑏

− 𝑎)
2
)
2

𝐿.                             

 

general, we have In 
 

 | 𝑢
∗

𝑖𝑙
(𝑥)| = |∑𝜆

𝑖𝑗
∫∫𝑘

𝑖𝑗
(𝑟, 𝑡)𝑢

∗

𝑗,𝑙−1
(𝑥)𝑑𝑡𝑑𝑟

𝑏

𝑎

  

𝑥

𝑎

𝑛

𝑗=1

|

≤ 𝑛
𝑙
𝛽
𝑙
((𝑏 − 𝑎)

2
)
𝑙

𝐿.        𝑙 ≥ 1  

In this way, for series (7), we have, for 𝑝 ∈ [0, 1],  

    ∑𝑝
𝑗
𝑢
∗

𝑖𝑗
(𝑥)

∞

𝑗=0

≤∑|𝑢
∗

𝑖𝑗
(𝑥)|

∞

𝑗=0

≤𝐿(∑𝑛
𝑗
𝛽
𝑗
((𝑏 − 𝑎)

2
)
𝑗

∞

𝑗=0

).               

Which is a geometric series, with the common 

ratio 𝑟 = 𝑛𝛽(𝑏 − 𝑎)
2
< 1, and it is convergent [by 

the assumption in equation (11)]. Consequently, 

series (8) converges uniformly in the interval [𝑎, 𝑏] 

for each 𝑝 ∈ [0, 1].    ∎ 
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           If it is impossible or difficult to calculate the 

series summation in (8), its partial sum can be 

accepted as an approximate solution of equation (1). 

In the limit 𝑝 → 1, terms of first 𝑙 + 1 in (8) produce 

𝑙-th order approximate solution as  

   �̂�
𝑖𝑙
(𝑥) =∑𝑢

∗

𝑖𝑗
(𝑥),   𝑖 = 1,2, … , 𝑛         (13) 

𝑙

𝑗=0

 

The level of error of the solution �̂�
𝑖𝑛
(𝑥) can be 

estimated by the following theorem: 

 

Theorem3.2. Estimated error of the 𝑙th-order 

approximation will be determined as follows: 

𝜀
𝑖𝑙
≤ 𝐿

𝑛
𝑙+1
𝛽
𝑙+1

((𝑏 − 𝑎)
2
)
𝑙+1

1 − 𝑛𝛽(𝑏 − 𝑎)
2

;  𝑖 = 1,2, … , 𝑛  

Where 𝜀
𝑖𝑙
= sup

𝑥∈[𝑎,𝑏]

|𝑢
𝑖
(𝑥) − �̂�

𝑖𝑙
(𝑥)|, 𝑀

𝑖𝑗
, and 𝐿

𝑖0
 are 

determined in theorem (3.1). 

 

Proof: Using of estimations of functions 𝑢
∗

𝑖𝑗
(𝑥) 

gives 

|𝑢 (𝑥) − �̂�
𝑖𝑙
(𝑥)| = |∑𝑢

∗

𝑖𝑗
(𝑥)

∞

𝑗=0

−∑𝑢
∗

𝑖𝑗
(𝑥)

𝑙

𝑗=0

|

= | ∑ 𝑢
∗

𝑖𝑗
(𝑥)

∞

𝑗=𝑙+1

| , ∀𝑥 ∈ [𝑎, 𝑏]   

                             ≤ ∑ |𝑢
∗

𝑖𝑗
(𝑥)|

∞

𝑗=𝑙+1

 

≤ 𝐿( ∑ 𝑛
𝑗
𝛽
𝑗
((𝑏 − 𝑎)

2
)
𝑗

∞

𝑗=𝑙+1

)  

 

= 𝐿 (𝑛𝛽(𝑏 − 𝑎)
2
)
𝑙+1

{1 + 𝑛𝛽(𝑏 − 𝑎)
2

+ (𝑛𝛽(𝑏 − 𝑎)
2
)2 +⋯}  

= 𝐿
(𝑛𝛽(𝑏 − 𝑎)

2
)
𝑙+1

1 − 𝑛𝛽(𝑏 − 𝑎)
2
.                                            ∎ 

Note: The above theorem can be considered as the 
rate of convergence of HPM, and its application can 

be considered in example 3. 
 

The HPM Algorithm 

To find an approximate solution of 
(LSMVFIE2nd) by HPM, perform the following steps:  

 

Step 1: Choose the integers n and m, and the bounds 

of integration a, and b. 

Step 2: Let 𝑢
𝑖0
(𝑥) = 𝑓

𝑖
(𝑥) be an initial solution. 

Step 3: Calculate  𝑢
∗

𝑖𝑙
(𝑥) in equations (9-10) for 

all 𝑖 = 1, 2, … , 𝑛 and 𝑙 ≥ 1. 

Step 4: Compute the partial sum �̂�
𝑖𝑙
(𝑥) =

∑ 𝑢
∗

𝑖𝑗
(𝑥)

𝑙

𝑗=0
;  𝑖 = 1,2, … , 𝑛 from equation (13). 

 

 

Step 5: Find �̂�
𝑖𝑙
(𝑥

𝑗
) ,  𝑥

𝑗
∈ [𝑎, 𝑏], where  𝑥

𝑗
=

 𝑥
0
+ 𝑗ℎ, for 𝑗 = 1,2, … ,𝑚 where ℎ = 𝑏−𝑎

𝑚
 .     

 Step 6: Compute the absolute error of each 

root |𝑢
𝑖
(𝑥
𝑗
) − �̂�

𝑖𝑙
(𝑥

𝑗
)|. 

 

Numerical Examples 
          In this part, several examples will be solved to 

show the implementation of the method and its 

strength. 

 
Example1  . Consider the linear system of Volterra-

Fredholm integral equations below:   

𝑢
1
(𝑥) = 𝑓

1
(𝑥) +

1

3
∫ ∫ 𝑘11𝑢1

(𝑡)𝑑𝑡𝑑𝑟+
1

4
∫ ∫ 𝑘12𝑢2

(𝑡)𝑑𝑡𝑑𝑟,
1

0

𝑥

0
     

1

0

𝑥

0

𝑢
2
(𝑥) = 𝑓

2
(𝑥) +

1

5
∫ ∫ 𝑘21𝑢1

(𝑡)𝑑𝑡𝑑𝑟+
1

4
∫ ∫ 𝑘22𝑢2

(𝑡)𝑑𝑡𝑑𝑟,
1

0

𝑥

0
     

1

0

𝑥

0

}
 
 
 
 

 
 
 
 

 

 For  0 ≤ 𝑥 ≤ 1 w  ,here  

 𝑓
1
(𝑥) =

𝑥

3
+ 𝑒

𝑥
−

(𝑥
2
(𝑒
2
− 1

2
))

3
−
𝑥
2

32
 ,                       

𝑓
2
(𝑥) =

103𝑥
2

120
−
(𝑥(𝑒 − 1))

5
 ,                                      

𝑘
11
= 𝑟 − 𝑡,   𝑘

12
= 𝑟𝑡,  𝑘

21
= 𝑟𝑡 + 1, and  𝑘

22
= 𝑟. 

The exact solutions are  

𝑢
1
(𝑥) = 𝑒

𝑥
,   𝑢

2
(𝑥) = 𝑥

2
 

 

First, it will be verified whether the described 

method can be used for solving this problem. 

Since 𝑘 ∈ 𝐶([0,1] × [0,1]) and 𝑓 ∈ 𝐶([0,1]), then 

we check the veracity of inequality (11). 
 

 this example In, 

 |𝜆
11
| =

1

3
, |𝜆

12
| =

1

4
, |𝜆

21
| =

1

5
 and |𝜆

22
| =

1

4
 

Also, we have 
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     𝑀
11
= max

𝑟,𝑡∈[0,1]

|𝑘
11
(𝑟, 𝑡)| = 1 ,            

𝑀
12
= max

𝑟,𝑡∈[0,1]

|𝑘
12
(𝑟, 𝑡)| = 1 ,      

𝑀
21
= max

𝑟,𝑡∈[0,1]

|𝑘
21
(𝑟, 𝑡)| = 2  ,     

      and     𝑀
22
= max

𝑟,𝑡∈[0,1]

|𝑘
22
(𝑟, 𝑡)| = 1,         

𝑛𝛽(𝑏 − 𝑎)
2
=
4

5
< 1 ,  

where, 𝛽

= 𝑚𝑎𝑥. {|𝜆
11
|𝑀

11
, |𝜆

12
|𝑀

12
, |𝜆

21
| 𝑀

21
, |𝜆

22
|𝑀

22
}

=
2

5
  

 

Now, let 𝑢
10
= 𝑓

1
(𝑥), and 𝑢

20
= 𝑓

2
(𝑥). 

Then, the continuous functions 𝑢
1,0

∗
(𝑥), and 

 𝑢
2,0

∗
(𝑥), are selected in the interval [0,1] as 

explained in equation (9)              

𝑢
1,0

∗
(𝑥) = 𝑢

10
=
𝑥

3
+ 𝑒

𝑥
−

(𝑥
2
(𝑒
2
− 1
2
))

3
−
𝑥
2

32
 , 

 

 and      𝑢
2,0

∗
(𝑥) = 𝑢

20
=
103𝑥

2

120
−
(𝑥(𝑒 − 1))

5
. 

 

While, the values of   𝑢
1,𝑙

∗
(𝑥) and 𝑢

2,𝑙

∗
(𝑥) for 𝑙 ≥ 1 

will be determined using equation (10). 
Thus 

 �̂�
1,1
(𝑥) = −0.008614448834𝑥

2
 

                          − 0. 𝑥010567844975  + 𝑒
𝑥
 

         �̂�
2,1
(𝑥) =  0.975789052859𝑥

2

+ 0.012157979683788𝑥        

         �̂�
1,2
(𝑥) = −0.001609243850𝑥

2

+ 0.001892075733𝑥 + 𝑒
𝑥
 

        �̂�
2,2
(𝑥) =  0.999183461546𝑥

2

− 0.001631081086𝑥           

                �̂�
1,3
(𝑥) = −0.000025207997𝑥

2
 

                          −0.00007612698𝑥 + 𝑒
𝑥
 

           �̂�
2,3
(𝑥) =  0.999886873091𝑥

2

+ 0. 𝑥00008192465                   
                   ⋮  
The absolute errors for the approximate solutions 

�̂�
1,10

(𝑥) and �̂�
2,10

(𝑥) at distinct values of x are 

presented in Table 1. Also, Fig.1 shows the 

convergence of the method for �̂�
1,𝑙
(𝑥) and �̂�

2,𝑙
(𝑥) 

for 𝑙 = 1,… ,5.  
 

While Table 2, shows a comparison between the 

computed least square errors of HPM and successive 

approximation method (SAM) which is discussed by 
many authors for different purposes. The results in 

the table show that our results are considerable 

accurate as it has less error than that of successive 
approximation method. 

   

Table1. The absolute errors of example 1 

for  �̂�
𝟏,𝟏𝟎

(𝒙) 𝐚𝐧𝐝 �̂�
𝟐,𝟏𝟎

(𝒙) 

 

𝑥
𝑗
 

 

Absolute error of 𝑢
1
 

|𝑢
1
(𝑥
𝑗
) − 𝑢

1,10
(𝑥

𝑗
)|  

 

Absolute error of  u
2
 

|𝑢
2
(𝑥
𝑗
) − 𝑢

2,10
(𝑥

𝑗
)|  

 

0 

0.1 
0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

 

0 

1.9184653866e-13 
3.6215475063e-13 

5.1025850212e-13 

6.3660188232e-13 

7.4096284663e-13 

8.2356343967e-13 

8.8373752760e-13 

9.2281737807e-13 

9.3880458962e-13 

9.3391960831e-13 

 

0 

1.8479315304e-13 
3.6668584835e-13 

5.4567461660e-13 

7.2178374388e-13 

8.9497853573e-13 

1.0652589921e-12 

1.2326251131e-12 

1.3972156765e-12 

1.5588641489e-12 

1.7174039968e-12 

 

 

a. Graph of  𝒖
𝟏
(𝒙) = 𝒆

𝒙
 

       

b.   Graph of  𝒖
𝟐
(𝒙) = 𝒙

𝟐
 

Figure1. Graphs of the exact and numerical 

solution (𝒍 = 𝟏,𝟐,… , 𝟓) of example1  
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Table2. A comparison between HPM and SAM 

(successive approximation method), for example 

1, with different values of n. 
 

 

 

 
n 

L.S.E of u1                   L.S.E  of  u2 

 

HPM           SAM           HPM          SAM 

  

3 

 

8.00e-

08 

 

3.66e-03 

 

5.99 e-

06 

 

2.61 e-

04 
6 3.01e-

13 

3.93 e-09 8.16e-

17 

1.23 e-

08 

9 2.01e-
20 

8.18e-15 1.20e-
19 

1.38e-
14 

1

2 

9.81e-

27 

1.45e-20 3.57 e-

27 

2.88e-

20 

  
Example 2.Consider the linear system of Volterra-

Fredholm integral equations 

 𝑢
1
(𝑥) = 𝑐𝑜𝑠(𝑥) − (

𝜋
2
+4

256
)𝑥

2
+

𝜋

32
𝑥 +

1

8
∫ ∫ (𝑟𝑡−1)𝑢2(𝑡)𝑑𝑡𝑑𝑟

𝜋

2

0

𝑥

0
 

𝑢
2
(𝑥) = 𝑠𝑖𝑛

2
(𝑥) −

𝑥
2

16
+ (

𝜋−2

16
) 𝑥 +

1

8
∫ ∫ (𝑟−𝑡)𝑢2(𝑡)𝑑𝑡𝑑𝑟

𝜋

2

0

𝑥

0
      

}
 
 
 
 

 
 
 
 

 

0 ≤ 𝑥 ≤
𝜋

2
 

      with the exact solutions  

     𝑢
1
(𝑥) = 𝑐𝑜𝑠(𝑥) 

and 

         𝑢
2
(𝑥) = 𝑠𝑖𝑛

2
(𝑥) 

       Since 𝑛𝛽(𝑏 − 𝑎)2 = 0.96895 < 1,  

Then, we let 𝑢
10
= 𝑓

1
(𝑥), and 𝑢

20
= 𝑓

2
(𝑥). 

 
Thus, the continuous functions 

 𝑢
1,0

∗
(𝑥) and 𝑢

2,0

∗
(𝑥) are selected in the 

interval [0,
𝜋

2
] as explained in equation (9)              

             𝑢
1,0

∗
(𝑥) = 𝑢

10
(𝑥)

= 𝑐𝑜𝑠(𝑥) − (
𝜋
2
+4

256
)𝑥

2
+

𝜋

32
𝑥       

 and    𝑢
2,0

∗
(𝑥) = 𝑢

20
(𝑥)

= 𝑠𝑖𝑛
2
(𝑥) −

𝑥
2

16
+ (

𝜋−2

16
)𝑥          

 

then by the above technique the approximate 

solution  �̂�
1𝑙
(𝑥)  and  �̂�

2𝑙
(𝑥) can be taken as 

             �̂�
1𝑙
(𝑥) =∑𝑢

∗

1𝑗
(𝑥)                  

𝑙

𝑗=0

 

and         �̂�
2𝑙
(𝑥) =∑𝑢

∗

2𝑗
(𝑥)                     

𝑙

𝑗=0

 

            The absolute errors for the exact solutions 

𝑢
1
(𝑥),   𝑢

2
(𝑥) and the approximate solutions  

�̂�
1,10

(𝑥), �̂�
2,10

(𝑥)  are presented in Table 3, while 

Fig. 2 shows the convergence of the method 

for �̂�
1,𝑙
(𝑥) and �̂�

2,𝑙
(𝑥) for 𝑙 = 1,… ,5. 

        

Table 3: Absolute errors for  �̂�
𝟏,𝟏𝟎

(𝒙) 𝐚𝐧𝐝 

�̂�
𝟐,𝟏𝟎

(𝒙)  of example 2 . 

 

 
a. Graph of  𝒖

𝟏
(𝒙) = 𝐜𝐨𝐬 (𝒙) 

 

b. Graph of  𝒖
𝟐
(𝒙) = 𝒔𝒊𝒏

𝟐
(𝒙) 

Figure2: Graph of the exact and numerical 

solution (𝒍 = 𝟏,𝟐,… , 𝟓) of example 2 

𝑥
𝑗
 

 

Absolute error 

of 𝑢
1
 |𝑢

1
(𝑥

𝑗
) −

𝑢
1,10

(𝑥
𝑗
)| 

Absolute error 

of 𝑢
2
 

|𝑢
2
(𝑥
𝑗
)

− 𝑢
2,10

(𝑥
𝑗
)| 

 

0 

.0 1 (π)  

.0 2 (π)  

.0 3 (π)  

.0 4 (π)  

.0 5 (π)  

 

 

0 

7.4273920347e-14 

1.2456702336e-13 

1.5143442056e-13 

1.5415446697e-13 

1.3306891320e-13 

 

0 

4.0259462430e-14 

6.4281913126e-14 

4.1942451996e-14 

6.3615779311e-14 

3.8857805862e-14 
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Note: To show the error estimation in case there is 

not exact solution, consider the following example:  

Example3. Consider the linear system of Volterra-
Fredholm integral equations  

𝑢
1
(𝑥) = 𝑓

1
(𝑥) +

1

6
∫ ∫ 𝑘11𝑢1

(𝑡)𝑑𝑡𝑑𝑟+ 
1

5
∫ ∫ 𝑘12𝑢2

(𝑡)𝑑𝑡𝑑𝑟,
1

0

𝑥

0
     

1

0

𝑥

0

𝑢
2
(𝑥) = 𝑓

2
(𝑥) +

1

5
∫ ∫ 𝑘21𝑢1

(𝑡)𝑑𝑡𝑑𝑟+
1

7
∫ ∫ 𝑘22𝑢2

(𝑡).𝑑𝑡𝑑𝑟 .
1

0

𝑥

0
     

1

0

𝑥

0 }
 
 
 

 
 
 

 

0 ≤ 𝑥 ≤ 1 
Where 

         𝑓
1
(𝑥) = 𝑥2 +

𝑥
2
− 𝑥

60
+
257𝑥

3

270
 ,                      

         𝑓
2
(𝑥) =

281𝑥
2

280
−
𝑥(26𝑥 − 75)

300
− 𝑥 ,             

  𝑘
11
= 𝑟

2
𝑥,   𝑘

12
= 𝑟 − 𝑥, 𝑘

21
𝑟𝑥 − 1, 

and   𝑘
22
= 𝑟𝑥

2
.                                                                

Where, the exact solution is not given. 

       
First, it will be verified whether the inequality (11) 

satisfied or not. 

In this example, we have    

 𝑛𝛽(𝑏 − 𝑎)
2
= 2(0.2)(1) = 0.4 < 1 ,   

 𝛽 = 𝑚𝑎𝑥
𝑖=1,2,…,𝑛

{|𝜆
𝑖𝑗
| . (𝑀

𝑖𝑗
)} , for 𝑗 = 1,2, … , 𝑛   

= 0.2                                                                 
Thus, by theorem 3.1, there exists a unique solution 

for the system. 

 
Now to find the error estimation in theorem 3.2, we 

have 

 𝜀
𝑖𝑙
= sup

𝑥∈[𝑎,𝑏]

|𝑢
𝑖
(𝑥) − �̂�

𝑖𝑙
(𝑥)|                              

        ≤ 𝐿
𝑛
𝑙+1
𝛽
𝑙+1

((𝑏 − 𝑎)
2
)
𝑙+1

1 − 𝑛𝛽(𝑏 − 𝑎)
2

,   for 𝑖 = 1,2  

Since, 𝑓
𝑖
(𝑥) are bounded for each 𝑖 = 1,2, then there 

exists  𝐿
𝑖0
 such that  

|𝑓
𝑖
(𝑥)| ≤ 𝐿

𝑖0
, ∀𝑥 ∈ [𝑎, 𝑏] , 

          𝐿
10
= 𝑚𝑎𝑥

𝑥∈[0,1]

|𝑓
1
(𝑥)|                                       

               = 𝑚𝑎𝑥{0, 2.951985}  = 2.95185,  

𝐿
20
= 𝑚𝑎𝑥

𝑥∈[0,1]

|𝑓
2
(𝑥)|                           

                   = 𝑚𝑎𝑥{0, 0.166905} = 0.166905,  

Thus, 

               𝐿 = 𝑚𝑎𝑥
𝑖=1,2

𝐿
𝑖0
= 2.95185. 

Then for 𝑖 = 1,2 ; we have the estimated error of 

the 10th-order approximation will be 

𝜀
𝑖𝑙
≤ (2.95185)

(0.4)11

1 − (0.4)
= 2.063494𝑒 − 04   

While, for 15th-order, that is where 𝑙 = 15, we have 

𝜀
𝑖𝑙
≤ (2.95185)

(0.4)16

1 − (0.4)
= 2.113018𝑒 − 06   

Finally, for 20th-order, the error estimation becomes 

𝜀
𝑖𝑙
≤ (2.95185)

(0.4)
21

1 − (0.4)
= 2.637303𝑒 − 08  

In Table 4, for  𝑖 = 1,2, different orders of 
approximation with the corresponding error 

estimations are presented for example 3. 

 

Table: 4 Results of different values of 𝒍, and the 

corresponding values of 𝜺
𝒊𝒍
, 𝒊 = 𝟏, 𝟐. 

 
 

Conclusion 
In summary, the sufficient condition of 

convergence of the HPM for the LSMVFIE2nd is 

formulated and proved; an estimation of error is also 

given. HPM is discussed for solving the system and 
two examples are presented for illustration. Good 

approximations are obtained while better results have 

been found by increasing the number of components 

of the partial sum (𝑙).  Moreover, a comparison 

between exact solution and its approximation made to 

demonstrate application technique. It is worth 
mentioning that the technique can be used as a very 

accurate algorithm for solving LSMVFIE2nd. These 

claims are supported by the results of the given 
numerical examples in Tables (1-4) and Figures (1-2). 
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3 
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9 

12 

15 

18 

21 

24 

27 

30 
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