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accuracy. The method was proposed in1998 by He
(10) and was further developed and improved for
solving nonlinear problem in (11) and (12). The
convergence of HPM for Fredholm integral
equations and Volterra integral equations of the
second kind is discussed in (13). It has also been
used to find approximate and exact solution for
Volterra-Fredholm integro differential equations in
(14), and their systems in (15), while in (16) the
method is used for system of Burgers equations.
Presenting a convergence condition for HPM and the
error estimation for the solution is our major purpose
in this work.

Application of HPM on LSMVFIE2™
Recall system (1) and consider the i equation of the
system as

ui(x) = fi(x) +

n X b
ZAU f f ky;(r, t)u;(t)dedr. )
=1 a a

To illustrate HPM, define the operator ¢; as
follows:

@(@ u%@%wﬂﬂam@
Z i f f kl](r t)u (t)dtdr =0, (3)

with the solutlon u, (x) = u,(x). The homotopy
perturbation method defines a convex function

H, (ul*(x),uz*(x), ...,un*(x),p) tRX[0,1] >R

by
H, (ul*(x), ...,un*(x),p) =(1- p)Gi (ul*)
+p?; (ul*(x), ...,un*(x)> =0, 4
where, G, (ui*) =, (x) - f,(x) is a functional
operator, p € [0,1] is the homotopy parameter, and
let u,,(x) be a known initial approximation of

equation (1), sayf,(x) foralli = 1,2,..,n
From equation (4), we have
Gi (ui*) ,and

Hi (ul*(x), o un*(x), O) =
ul*, ...,un*)

H, (ul*(x), ...,un*(x), 1) = ¢, (
The proses of changing the imbedding parameter
p from 0 to 1 is just that of H, (ul*(x), ...,un*(x),p)

from the trivial problem H, (ul*(x), ...,un*(x),O) =

(5)

G, (ui*) = 0, to the original problem

H; (ul*(x), un*(x) 1) =

?, (ul*(x), ...,un*(x)) = 0.
By using {’i(ul*(x),...,un*(x)) and G, (ui*)

defined above, the homotopy operator of the
considered equation will be obtained:

(ul*(x), o (%), p)
= (1-9) (4 () - £,())

+p| ()= £,(x)

n X b
-Sa, f f kyy(r, O, (¢)dedr
j=1 a a

i=12,..,n
Thus, for all i we have

H, (ul*(x), s un*(x),p)
= ui*(x) - fi(x)

n x b
(D', f f ky(r. O, (©)dedr | = 0. (6)
j=1 a a
The method admits the use of a power series:

U*i(x) = iju*ij(x) -

If equation (7) has a radius of convergence that is <
1also, X2 u ;(x) converges absolutely, then the
approximation of equation (1) is found:

u, (x) = lim Zp u U(x)

p—-1

=12,..,n. (7)

[ee)

= z W (x),i=12,.,n (8

j=0
Substituting (7) in equation (6) gives

iju*ij(x) = uio(x)

n x b o'

I *
Z)lijjfkij(r,t)z:pu jl(x) dtdr
Jj=1 a a =0

i=12,..,n
by equating the similar power terms of p gives a
recurrence relations that leads to the approximate
solution:

P (%) = uy(x), ©
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plu ()
Z ’ f f k(r o, (x)dedr . (10)

for [ > 1.

The above relations have been obtained by
assuming that (7) is convergent. In the following
Theorem, the conditions for such convergence will be
discussed.

Convergence Analysis
Theorem3.1. Let the functions kij and f, in system

(1) be continuous in the specified domain that is kl.j €
¢([a, b] x [a,b]) and fi € Cla,b] Vij=12..,n
If the following inequality

np(b—a)’ <1, (11)
B = max {

i=1,2,..n ' (Mij)}' forj=12,..,n

satisfied, and u,, € C[a,b] are chosen as an initial

solution, then for eachp € [0,1], the series (7)
converges uniformly in the interval [a,b] in which

are found by equations (9)

where
A

ij

the functions u*io and u*”
and (10), respectively.

Proof: Since kij and f, are bounded for each i, j =
1,2, ...,n; then EIMU. >0andlL,, such that

k(% t)| < M, and |£,(x)] < L. (12)
for x,t € [a, b]

Letwu, (x) € C[a,b], then there exist positive
numbers L, such that

ul.o(x)| <Ly, vx € [a, b]
Now, let
L= max LiO’

i=1,2,..,n
and 8 = max 1|4, forj=1,2,..

i=1,2,...,n{ L ( )}

The above assumptions imply the estimations below:
= |ul.o(x)| <L,<L.

i0

n X b

u*il(x)| = Z/ll.jffkij(r, t)u*jo(x)dtdr

j=1 a a

n X b
SZ |/1ij|ff|kl.j(r, t)| |u*j0(x)|dtdr

j=1 a a

n x b
SZ|/1U|MUII|u*j0(x)|dtdr

j=1 a a

n x b
Zﬁfijodtdr
Jj=1 a a

<npL(b—a)’.

IA

i2

n
-,

f ki (r,t) u*j1 (x)dtdr

n‘x
fayl

AU Uf“ "1 ()| dear

ﬂf

2

B ((
- a)z) L.

general, we have In

M: IIM:

IA

f nBL(b - a) )dtdr

~.
=

IA
So
N

n x b
|u*il(x)| = z/lijffkij(r, t)u*j'l_l(x)dtdr
j=1 a a

<np ((b - a)z)lL. 1>1

In this way, for series (7), we have, for p € [0, 1],

Z EDOEDN C]
j=0 Jj=0
<L Enjﬁj ((b—a)z)j
j=0

Which is a geometric series, with the common
ratio r = nfB(b — a)2 <1, and it is convergent [by
the assumption in equation (11)]. Consequently,
series (8) converges uniformly in the interval [a, b|
foreachp € [0,1]. =
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If it is impossible or difficult to calculate the
series summation in (8), its partial sum can be
accepted as an approximate solution of equation (1).

In the limit p — 1, terms of first L + 1 in (8) produce

[-th order approximate solution as
l

;il(x) = Zu*ij(x), i=12,..,n

j=0 _

The level of error of the solution u, (x) can be
estimated by the following theorem:

(13)

Theorem3.2. Estimated error of the I[th-order
approximation will be determined as follows:

+1

nl+1ﬂl+1 ((b 3 a)z)
1- nﬂ(b - a)z
sup |ui(x) — uil(x)|, Ml.j, and L,, are

x€[a,b]
determined in theorem (3.1).

<L
il —

;i=12,...,n

Where i

Proof: Using of estimations of functions u*ij(x)
gives

[u (%) =2y ()| = Zu*ij(x)—Zu*ij(x)

= z u ij(x) ,Vx € [a,b]
j=l+1

[ee)

5

j=l+1

w ()|
oo

<o S g ((-a)

j=l+1

+1

=L (nﬁ(b - a)2> {1 +nB(b - a)z
+ @b =)y + |

+1

(86— a)°)

1-nB(b - a)z
Note: The above theorem can be considered as the
rate of convergence of HPM, and its application can
be considered in example 3.

=L

The HPM Algorithm
To find an approximate solution of
(LSMVFIE2™) by HPM, perform the following steps:

Step 1: Choose the integers n and m, and the bounds
of integration a, and b.

Step 2: Let u, (x) = f,(x) be an initial solution.
Step 3: Calculate u*l.l(x) in equations (9-10) for
alli=1,2,...,nandl > 1.

Step 4: Compute the partial sum Zil(x) =
Zl

ol ;;(*); £ =12, ..., n from equation (13).

Step 5: Findu, (xj), X; € [a, b], where xX; =
x, +jhforj=12, .., mwhereh = b;l—“ .
Step 6: Compute the absolute error of each

root ul.(xj) - ;il (xj)|.

Numerical Examples

In this part, several examples will be solved to
show the implementation of the method and its
strength.

Examplel. Consider the linear system of Volterra-
Fredholm integral equations below:

u (%) = £,(x) +

1(* 1 1 (% 1
Efo fo k,uul(t)dtdr+zf0 fo kypu (¢)dedr,

N

u, (%) = £,(x) +

1(* 1 1 (% 1
Efo fo k21u1(t)dtdr+zf0 fo kg (t)dtdr,

For0 < x < 1 where,

2
< (5-
3
(x(e— 1))
f(x) = 120 5

k11 =r—t, k12 =rt, k21 =rt+ 1,and k22 =7.
The exact solutions are

HOESSTS

2
103x

u(x) =€, u(x)=x

First, it will be verified whether the described
method can be used for solving this problem.

Since k € €([0,1] x [0,1]) and f € C([0,1]), then
we check the veracity of inequality (11).
this example In,
1 1 1 1
|’111| = §'|’112| = Z'|’121| = and |’122| =
Also, we have
1013
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M11 = max |k11(r, t)l =1,
rte[0,1]

M, = ?Elﬁ)xl] k12(r' t)l =1,
T, )

M, = ?elﬁ)xﬂ k21(r, t)l =2,
T, )

and Mo = max [l (r D=1,
T, )
4
nﬁ(b—a)2 =E< 1,
where, 8

= max. {|/111| M, |/112 | M, |/121| My, |’122| MZZ}

Now, letu, = fl(x), and u,, = fz(x).
Then, the continuous functions u, , (x), and

u, , (x), are selected in the interval [0,1] as
explained in equation (9)

and uz_o*(x) =U,, = —

While, the values of ”1,1*(") and “z,z*(x) for 1>1

will be determined using equation (10).
Thus

- 2
u, ,(x) = —0.008614448834x

—0.010567844975x + €

- 2
u, ,(x) = 0.975789052859x
+0.012157979683788x

-~ 2
u, ,(x) = —0.001609243850x

+0.001892075733x + €

-~ 2
u,,(x) = 0.999183461546x
—0.001631081086x

-~ 2
u, ,(x) = —0.000025207997x

—0.00007612698x + ¢

-~ 2
u, ,(x) = 0.999886873091x
+0.00008192465x

The absolute errors for the approximate solutions
u, o(x) andu,  (x) at distinct values of x are

1014

presented in Table 1. Also, Fig.1 shows the
convergence of the method for u,,(x)anduw,,(x)
forl=1,...,5.

While Table 2, shows a comparison between the
computed least square errors of HPM and successive
approximation method (SAM) which is discussed by
many authors for different purposes. The results in
the table show that our results are considerable
accurate as it has less error than that of successive
approximation method.

Tablel. The absolute errors of example 1
for u1,1o(x) and uz,w(x)

X; Absolute error ofu1 Absolute error of u,
uy () =y 4 (x].)| |”2 () = Uy (x}.)|
0 0 0
0.1 1.9184653866€e-13 1.8479315304e-13
0.2 3.6215475063e-13 3.6668584835e-13
0.3 5.1025850212e-13 5.4567461660e-13
0.4 6.3660188232e-13 7.2178374388e-13
0.5 7.4096284663e-13 8.9497853573e-13
0.6 8.2356343967e-13 1.0652589921e-12
0.7 8.8373752760e-13 1.2326251131e-12
0.8 9.2281737807e-13 1.3972156765e-12
0.9 9.3880458962¢-13 1.5588641489¢e-12
1 9.3391960831e-13 1.7174039968e-12

= »

24 == 7:% ::5,4_5 */5/ /é B

22 e B

KB
2 *’/@/
_x 8

1.8 */’;/ &

1.6 o ; A

1.4 e ;A/

1.2 43, 3 ;& <

a. Graphof u,(x) = e

— % — Exact solution e

08 [ —&—HPMI=2 ﬁ"’

0.6 |

02f a

02

o 01 02 03 04 05 06 07 08 0.9 1

2
b. Graphof u,(x) =x
Figurel. Graphs of the exact and numerical
solution (I = 1,2, ..., 5) of examplel
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Table2. A comparison between HPM and SAM
(successive approximation method), for example
1, with different values of n.

L.S.E of u; L.S.E of u

n HPM SAM HPM SAM

3 8.00e-  3.66e-03 5.99¢- 2.61e-

w ()= ) ()

and azz(x) = Z u*zj(x)

j=0
The absolute errors for the exact solutions

u,(x), u,(x) and the approximate solutions
u, 10(x), u, 1o(x) are presented in Table 3, while

08 06 04 .
6 3.0le- 393609 8.16e- 1.23e- Flg.A 2 shows Athe convergence of the method
13 17 08 forw, ,(x) and u, (x) for 1 = 1,...5.
9 2.0le- 8.18e-15 1.20e- 1.38e-
20 19 14 _ ~
I 98le- 145020 3.57e-  2.8%e- Table 3: AAbsqute errors for u, , (x) and
2 27 27 20 u, 1o(x) of example 2.
Example 2.Consider the linear system of Volterra- Absolute error Absolute error
Fredholm integral equations 2 ofu, |u1 (xj) _ ofu,
T+4\ 2 0w i
u, (x) = cos(x) — <R>x +oxt %110 (x].)| |u2£xj)
. 0 (1)
éfo foz(rt—l)uz(t)dtdr 0 0

16 16

uz(x) = sinz(x) - i + (E) X+

: fo ) fo g(r—t)uz(t)dtdr )

0.1(m) 7.4273920347e-14  4.0259462430e-14
0.2(m) 1.2456702336e-13  6.4281913126e-14
0.3(m) 1.5143442056e-13  4.1942451996e-14
0.4(m) 1.5415446697e-13  6.3615779311e-14
0.5(m)  1.3306891320e-13  3.8857805862e-14

3

0<x<-
2

with the exact solutions

u, (x) = cos(x)

u, (x) = sin” (x)
Since nB(b — a)? = 0.96895 < 1,
Then, we letu,, = £, (x), and u,, = f,(x).

and

Thus, the continuous functions
u, o (x) andu, ; (x) are selected in the

interval [0, g] as explained in equation (9)
u, o (1) = uy,(x)
2
T +4\ 2 T
= cos(x) - ( 56 )x 35X

and uz,o*(x) = uzo(x)

2
= sin’ (x) - % + (nl—;z)x

then by the above technique the approximate
solution u,,(x) and u,,(x) can be taken as

1015
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a. Graph of ul(x) = cos(x)
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0.4
o2} A
A

ol
) 02 04 06 08 1 12 14 16

o

2
b. Graph of uz(x) = sin (x)
Figure2: Graph of the exact and numerical
solution (I = 1,2, ..., 5) of example 2
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Note: To show the error estimation in case there is
not exact solution, consider the following example:
Example3. Consider the linear system of Volterra-
Fredholm integral equations

ul(x) :f1(x)+ )
%fxflkllul(t)dtdr+§fxflklzuz(t)dtdr,
uz(x) = fz(x) +

1 x r1l 1 x r1
ELfokﬂul(t)dtdr+;fofokzzuz(t).dtdr.

0<x<1

Where

f() 5 +x2—x+257x3
(x) =2x ,
60

270
281x"  x(26x — 75)
x  x(26x—
f, (x) = — -x,
280 300
2
k11 =r x k12 =r—x k21rx -1,

and k,, =7rx .
Where, the exact solution is not given.

First, it will be verified whether the inequality (11)
satisfied or not.
In this example, we have

nB(b—a)’ =2(02)(1)=04<1,
B = max {A .(Mij)},forj =12,..,n

i=1,2,..,n
=0.2
Thus, by theorem 3.1, there exists a unique solution
for the system.

ij

Now to find the error estimation in theorem 3.2, we
have

ey = sup [u,(x) —u,(x)|
XE a,b]
+1

nl+1ﬂl+1 ((b _ a)2>

1-np(b- a)z
Since, f,(x) are bounded for each i = 1,2, then there

<L

, fori=1,2

exists L;, such that
fl.(x)| <L,,Vxe [a, b] ,

L,, = max |f1(x)|
x€[0,1]

= max{0,2.951985} = 2.95185,

L20 = max |f2(x)|
x€[0,1]

= max{0,0.166905} = 0.166905,

Thus,
L= maxLl.0 = 2.95185.
i=1,2
Then for i = 1,2 ; we have the estimated error of
the 10th-order approximation will be

< (2.95185) OO _ 2.063494¢ — 04
fu = A 1-(04 ° ¢
While, for 15M-order, that is where [ = 15, we have
(0.4)16

g, < (2.95185) = 2.113018e — 06

1—(0.4)
Finally, for 20™-order, the error estimation becomes
(0.4)"
g, < (2.95185) =——— = 2.637303¢ — 08
1-(0.4)

In Table 4, for i = 1,2, different orders of
approximation with the corresponding error
estimations are presented for example 3.

Table: 4 Results of different values of I, and the
corresponding values of €,;,i = 1, 2.

l & <
3 0.215944320000
6 0.008060436480
9 5.15867935 e-04
12 3.30155478 e-05
15 2.11299506 e-06
18 1.35231684 e-07
21 8.65482777 e-09
24 5.53908977 e-10
27 3.54501745 e-11
30 2.26881117 e-12
Conclusion

In summary, the sufficient condition of
convergence of the HPM for the LSMVFIE2™ is
formulated and proved; an estimation of error is also
given. HPM is discussed for solving the system and
two examples are presented for illustration. Good
approximations are obtained while better results have
been found by increasing the number of components
of the partial sum (I). Moreover, a comparison
between exact solution and its approximation made to
demonstrate application technique. It is worth
mentioning that the technique can be used as a very
accurate algorithm for solving LSMVFIE2"™. These
claims are supported by the results of the given
numerical examples in Tables (1-4) and Figures (1-2).
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