A Semi-Supervised Machine Learning Approach Using K-Means Algorithm to Prevent Burst Header Packet Flooding Attack in Optical Burst Switching Network

Muhammad Kamrul Hossain Patwary* Md. Mokammel Haque

Received 3/1/2019, Accepted 20/5/2019, Published 23/9/2019

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:

Optical burst switching (OBS) network is a new generation optical communication technology. In an OBS network, an edge node first sends a control packet, called burst header packet (BHP) which reserves the necessary resources for the upcoming data burst (DB). Once the reservation is complete, the DB starts travelling to its destination through the reserved path. A notable attack on OBS network is BHP flooding attack where an edge node sends BHPs to reserve resources, but never actually sends the associated DB. As a result the reserved resources are wasted and when this happen in sufficiently large scale, a denial of service (DoS) may take place. In this study, we propose a semi-supervised machine learning approach using k-means algorithm, to detect malicious nodes in an OBS network. The proposed semi-supervised model was trained and validated with small amount data from a selected dataset. Experiments show that the model can classify the nodes into either behaving or not behaving classes with 90% accuracy when trained with just 20% of data. When the nodes are classified into behaving, not behaving and potentially not behaving classes, the model shows 65.15% and 71.84% accuracy if trained with 20% and 30% of data respectively. Comparison with some notable works revealed that the proposed model outperforms them in many respects.

Key words: Burst Header Packet Flooding Attack, K-Means Algorithm, Machine Learning, Optical Burst Switching Network, Semi-supervised Learning.

Introduction:

This Optical network (ON) is an effective data communication network that uses light pulses to send and receive data. Optical burst switching (OBS) is a kind of optical network that employs a tradeoff concerning optical circuit switching and optical packet switching (1). The principle of OBS network is simple yet it yields a powerful communication system. After receiving user datagram packets (UDP), the OBS network assembles them in an edge node (ingress node). This is called data burst (DB). At the same time another packet is generated which is called burst header packet (BHP). A BHP holds information about the DB and the destination of the DB. Once the DBs are assembled, the BHP is transmitted form the edge node to reserve the resources of the core nodes needed for the DB to travel to its destination. After a specified interval of sending BHP, the DB is transmitted and it follows the path reserved by the BHP.

OBS networks are vulnerable to a number of attacks. Physical layer attack in optical networks was discussed in (2,3). In (4) the authors proposed a new approach to prevent such attacks by routing the light paths in a different manner. One famous attack on OBS networks is ‘BHP flooding attack’. Here, an ingress node (source node) sends BHPs to reserve resources for its upcoming DB, but never actually sends the DB. As a result, the reserved resources are wasted. If this happens in sufficiently large scale, then a denial of service (DoS) may occur which seriously degrades the performance of the network. In (5) authors explored the BHP flooding attack and proposed some solution to filter the malicious BHPs. They proposed a countermeasure module for DoS attack that performs the fake BHP filtering at the optical layer using the idea of optical codewords. When a received BHP comes from an illegitimate source node indicated by codewords, it was dropped. In (6) authors designed an architecture of a firewall node to defend OBS networks against physical layer attacks such as BHP flood attack. The firewall filters by comparing the offset time of BHP and the real delay between the BHP and the accompanying
DB. In (7) authors designed and implemented an algorithm to classify the ingress nodes of an OBS network into three classes, i.e. Trusted, Blocked, and Suspicious. Based on the node’s behavior and the amount of unutilized reserved resources, the classification was performed. According to the authors, the model can be integrated in the OBS core switch which can enable it to classify the nodes.

The methods described above make heavy use of expert’s opinion to assign labels to the behavior and collected data, i.e. marking whether a behavior is good or bad. Getting expert’s hand-assigned data is not always feasible. In this respect, machine learning architecture can provide a great support in classification of OBS network traffic. Machine learning (ML) has been used profusely in a variety of application areas, including network traffic filtering and classification. ML tries to construct algorithms and models that can learn to make decisions using hidden correlations discovered from historical data. Automatically detecting a misbehaving node is possible using ML based on data related to the node’s behaviors such as packet drop rate, packet received rate, delay time, amount of bandwidth use etc. Thus, it can offer a promising solution to the BHP flood attacks in OBS network. One major application of ML is classification where a model or classifier is constructed to predict class (categorical) labels. The attribute whose value is to be predicted is called target attribute. A classifier predicts the target attribute’s value after going through a learning process using the recorded set of data. In this study, we shall build a classifier to predict the label of an OBS node based on a learning process using the recorded OBS data.

Existing ML algorithms can be divided into at least three categories: supervised learning (SL), semi-supervised learning (SSML), and unsupervised learning (USL). SL techniques conduct classification tasks using labeled data, while USL techniques focus on classifying the sample sets into different groups, i.e. clusters, using unlabeled data. SSML (8,9) technique makes use of both labeled and unlabeled data when learning. Generally in SSML, labeled instances are used to learn class models and unlabeled instances are used to improve the learning performance. Though SL algorithms generally outperform USL and SSML algorithms, it is not always easy to find properly labeled training data. Labeling data is time consuming, expensive, and sometimes dangerous, e.g. landmine detection. On the other hand, it is much easier to obtain unlabeled data. SSML can make a good use of a big amount of unlabeled data and a relatively small amount of labeled data. With help of SSML algorithm and proper data, a good classifier can be constructed to classify the nodes of OBS network. One of the most popular and effective yet simple unsupervised machine learning algorithm is k-means algorithm (10). K-means was used to provide promising solutions to numerous problems in diverse application areas (11,12). In this study, we shall use k-means algorithm in a semi-supervised approach. At first, a small set of unlabeled data will be used to train the k-means model. Then, a similar sized labeled data will be used to validate the model. After that, a large dataset will be used to evaluate the performance of the model. In this way, a model will be constructed which will be able to classify the nodes of OBS network into malicious and non-malicious classes.

Very few notable works exist that deal with the application of machine learning in classification of OBS network nodes. In (13–15), authors examined the application of ML in classification of internet traffics. Authors in (16), demonstrated the application of SL using Naive Bayes to classify network traffic by application. They categorized traffics into several classes such as services, mail, attack, www, games, multimedia etc. They showed a maximum 95% accuracy in classification. Though these works do not solely focus on the classification of OBS nodes, they showed a good example of the use of machine learning in network traffic categorization. In (17,18), authors studied the application of ML in OBS networks. In (17), authors classified the nature of data burst loss in OBS network into two categories, i.e. loss due to contention and loss due to congestion. After computing observed losses, called the number of bursts between failures (NBBF), they used both SL and USL techniques on the observed losses. They showed that the results had 95% confidence level. The authors in (18) proposed a proactive approach for contention resolution in OBS network. They introduced a new routing system called ‘Graphical Probabilistic Routing Model’ that selects less frequently used links with the help of a Bayesian network. Using simulation software, they showed that the approach outperformed other static approaches in terms of burst loss ratio. In (7), authors proposed a model to classify the ingress nodes of an OBS network into three classes, i.e. Trusted, Blocked, and Suspicious. Based on the node’s behavior and the amount of unutilized reserved resources, the classification was performed. Their implementation showed 95% success rate, i.e. maximum 5% packet drop rate. According to the authors, the model can be integrated in the OBS core switch which can enable it to classify the nodes. In (19), authors proposed a decision tree-based supervised classification model.
Decision tree algorithm was used to extract If-Then rules which were used to classify the ingress nodes of OBS network into either Behaving or Misbehaving nodes. The authors further classified the Misbehaving ingress nodes into four sub-classes, i.e. Misbehaving-No Block, Misbehaving-Wait, Misbehaving-Block and Behaving-No Block. First, they built a dataset of 1075 records using network simulation software and expert’s hand-assigned target class labels. Then, the dataset was used to perform the training and testing of decision tree model. Their model showed 93% accuracy in case of two class classification, and 87% accuracy in case of four class classification.

This paper proposes a semi-supervised machine learning approach using k-means algorithm. We believe that this study, to our best knowledge, is among the earliest to propose and implement a semi-supervised ML technique using k-means algorithm to prevent BHP flooding attacks by predicting malicious node in an OBS network.

Methodology:

Semi-supervised learning (SSML) deals with small labeled data and relatively big amount of unlabeled data. The small amount of labeled data is used to train a machine learning model which predicts labels for the remaining unlabeled data. In this paper, we used a SSML architecture depicted in Fig. 1. Firstly, we selected a suitable dataset of OBS network node’s data. After preprocessing this raw dataset we split the dataset into three portions, i.e. train, validate and test data. The train data was used for training an unsupervised learning (USL) model. After the training, we validated the clusters obtained from the model. Validation gives labels to the clusters. Using this validated model, the test data was classified and assigned labels. To measure the accuracy of our model’s classification, we compared the actual labels with the predicted labels of test dataset.

Figure 1. The proposed semi-supervised learning architecture to prevent BHP flood attack

Semi-Supervised Model Building through Validation

In order to transform a USL model into a SSML model, a relatively limited amount of labeled data was fed into the model. The labeled data was used to set the labels of the clusters discovered by the USL model. This is called validation. During the splitting of the preprocessed dataset, we take a portion as validate set. This validate set contains a small amount of labeled data. After training a USL model with train data, it predicts the cluster number for each validation set data record. After the prediction, it compares the predicted labels with the actual labels of validate set data. The result of the comparison is used to set the label for each cluster.

By counting the ‘majority vote’ for each predicted label against the true labels in the validation data, the label of each cluster is chosen. To illustrate, suppose a USL model predicts 5 records to be label 1, and out of those 5 records, 2 has actual label B, three has actual label NB. Since the majority of the predicted records has true label NB, that’s why the label 1 (cluster 1) will be treated as label NB from now on. Below, the learning, validation and prediction process is summarized in an algorithm.
Algorithm: SSML model building
Method—USL Algorithm

Begin
Retrieve Preprocessed Dataset
Split Dataset into Train, Test, Validate Set
ML Model Training with Train Set(method)
ML Model Validation with Validate Set(method)
Predict cluster number for each validate set record
Compute the majority vote for each type of predicted cluster number
Set the label of each cluster based on majority vote
ML Model Testing with Test Set(method)
Assess Performance
Save Model
End

K-Means Clustering Algorithm:

In this study, we choose k-means algorithm as a USL model. Clustering with k-means algorithm is an unsupervised learning (20). The k-means algorithm clusters the data points into k groups where k is pre-calculated. Initially, k points are chosen at random as cluster centers. Then each data points are assigned to their nearest cluster center based on the Euclidean distance function. After that the centroid or mean of all data points in each cluster is calculated. The process is repeated until the cluster membership of data points stabilizes. The output of the algorithm is the centroids of the k clusters. These centroids can be used to label new data. The goal of k-means algorithm is to minimize the total intra-cluster variance, which is to minimize the sum of the squared error for all the k clusters.

The objective function to minimize is as follows (21):

\[J(P) = \sum_{k=1}^{K} \sum_{z_i \in \mu_k} \|z_i - \mu_k\|^2 \]

Where, \(Z = \{z_i\}, i = 1,..,n\) is set of n d-dimensional points to be clustered
\(P = \{p_k\}, k = 1,..,K\) is set of k clusters
\(\mu_k =\) mean of cluster \(p_k\)
\(J(P) =\) sum of the squared error over all k clusters

The main steps of k-means algorithm are as follows:
Select an initial partition with k clusters; repeat step (ii) and step (iii) until cluster membership become stable.
Compute a new partition by assigning each data point to its nearest cluster center.
Generate new cluster centers.

Dataset Selection:
The scarcity of reliable data has made the use of machine learning very challenging in detecting malicious attacks in OBS networks. The a trustworthy dataset was collected from popular dataset repository, UCI Machine Learning Repository (22). The dataset has 1075 records with 22 attributes. First 10 rows of the dataset are shown in Table 1. The attributes from A to Z represent all the 22 attributes of the dataset. A brief introduction to the attributes is given below.

<table>
<thead>
<tr>
<th>Table 1. Dataset(part 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 1. Dataset(part 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>90324</td>
</tr>
<tr>
<td>9048</td>
</tr>
<tr>
<td>81276</td>
</tr>
<tr>
<td>9048</td>
</tr>
<tr>
<td>72228</td>
</tr>
</tbody>
</table>

The letters after the names of the attributes represent the A to Z label of table 1.
Node(A): this is the label of edge node. These nodes send and receive packet.
Utilized bandwidth rate(B): the amount which can be reserved from the allocated bandwidth, i.e. from full bandwidth column.
Packet drop rate(C): packet drop rate for individual node, in percentage
Full bandwidth(D): this is user allocated initial reserved bandwidth for individual node. it is also called reserved bandwidth.
Average delay time per sec(E): average of delay per second for individual node.
Percentage of lost packet rate(F): packets drop rate, in percentage for individual node.
Percentage of lost byte rate(G): lost byte rate, in percentage for individual node.
Packet received rate(H): total packets received per second for individual node on the basis of reserved bandwidth.
Amount of used bandwidth(I): the amount each individual node could reserve from allocated bandwidth, i.e. from D column.
Lost bandwidth(J): the lost amount of assigned bandwidth.
Packet size byte(K): packets size allocated in byte for individual node to send.
Packet transmitted(L): the amount of total packets transmitted per second for individual node on the basis of allocated bandwidth.
Packet received(M): the amount of total packets received per second for individual node on the basis of reserved bandwidth.
Packet lost(N): the amount of total packets lost per second for individual node on the basis of lost bandwidth.
Transmitted byte(O): total bytes transmitted per second for individual node.
Received byte(P): this is total byte received per second for individual node on the basis of reserved bandwidth.
10-run-avg-drop-rate(Q): this is average of packet drop rate(C) for ten successive iterations in simulation.
10-run-avg-bandwidth-use(R): this is the average of bandwidth utilized(B) for ten successive iterations in simulation.
10-run-delay(S): the average of delay time for ten successive iterations in simulation.
Node Status(T): it is the classification of nodes into one of three classes, behaving, potentially not behaving and not behaving.
Flood status(U): the amount of flood per node, in percentage on the basis of packet drop rate.
Class(V): it is the classification of the nodes into one of four classes; NB-No-Block, block, no-block and NB-wait.

The dataset was built from rigorous simulation runs using an OBS network simulator software (23). With the assistance of a domain expert, the authors labeled the dataset’s two categorical attributes, i.e. (B and NB) for the ‘Node Status’ attribute, and (No-Block, NB-No-Block, NB-Wait, and Block) for the ‘Class’ attribute. The category wise label assignments were done based on the intentional false resource utilization rate and the real packet drop rate. Three attributes: 10-run-avg-bandwith-use, 10-run-avg-drop-rate, 10-run-delay, each one symbolizes an average value calculated from ten consecutive iterations in the simulator. This was done to retain the statistical significance and minimize the bias within the node performance results (19). The attributes ‘Node Status(T)’ and ‘Class(V)’ are our target attributes. Discussion about these two attributes is given in later section of this paper.

Implementation Tools:
To perform experimental analysis on our dataset, we used H2O (version 3.18.0.2) (24) which is an open-source data modeling software. Python programming language (25) was chosen for coding, data preprocessing, model building, and performance analysis.

Dataset Preprocessing:
Dataset preprocessing is a vital step in the application of machine learning. It involves transformation of real-world data into an appropriate form so that an ML algorithm can make a good use of it. Real-world data collection process is often loosely controlled which results in incomplete, inconsistent, out of range and missing values. Knowledge discovery with such data is difficult. To resolve such issues data preprocessing is necessary. Data preprocessing includes several step-by-step processes like data cleaning, data transformation, feature selection etc. The preprocessing applied to our OBS network dataset is described below.

Data Cleaning: If an attribute had missing values then those missing fields were filled with the mean of all values of that attribute. The attributes with constant values were removed from dataset because they did not provide any insight in knowledge discovery.

Feature Selection: Feature selection means choosing a subset of relevant features (attributes) from a dataset to be used in ML training. Often time datasets contain one or more redundant or irrelevant features. Such features can be removed without incurring any significant loss of information. Feature selection is critical in ML because with increasing number of features, training time grows exponentially and models fall under the risk of overfitting (26). We used Pearson correlation coefficient(PCC) (27) to measure the inter-similarity of the attributes in our dataset. The value of PCC lies between +1 and -1. A PCC of 1 indicates total positive linear correlation and a PCC of 0 indicates no linear correlation. If two attributes are found to have a total positive linear correlation, then one of them can be removed without incurring any significant loss of information. Three attributes, Packet size byte(K), Node Status(T), and Class(V) were excluded before computing PCC of our dataset because K has all the same values, T and V are our
target attribute. After calculating the PCC for every pair of remaining attributes from our OBS network dataset, we found many pairs of positively correlated attributes. Using this PCC values, we generated a correlation matrix in python programming language with the help of ‘pandas’ library. With the help of ‘matplotlib’ library we generated a heatmap to visualize the obtained PCC, as depicted in Fig. 2(left). The bar on the right side of figure shows the relation between color and the value of PCC.

Figure 2. Correlation heatmap of the dataset before (left) and after (right) feature selection

With the help of PCC, 11 attributes were identified as redundant and hence can be removed from the dataset. These 11 attributes are A, B, C, D, F, G, H, J, M, O and U as shown in Table 1. As a result, apart from two target attribute ‘Node Status(T)’ and ‘Class(V)’, 8 attributes are available to be used in training the desired ML model. Those are:
- Average delay time per sec (E)
- Amount of used bandwidth (I)
- Packet transmitted (L)
- Packet lost (N)
- Received byte (P)
- 10-run AVG drop rate (Q)
- 10-run delay (S)
- 10-run AVG bandwidth use (R)

Dataset Splitting
We started by taking 20% of the total data as training data, 10% as validation data and the remaining 70% as test data. After applying our SSML model, we measured the performance. When desired performance was not obtained, we increased the size of training data. For instance, we took 30% data as train and 10% as validate data while remaining 60% data as test data; and so on. In this way, we analyzed the performance of our classifier. We split the dataset using H2O split function which does not give an exact split. The developers of H2O explained that it was designed as such for big data analysis and using a probabilistic method for splitting rather than making an exact split results in a better outcome (28).

Test Setting
The dataset has an attribute named ‘Node Status’ which holds one of three values for each row: B, NB and PNB. It also has an attribute named ‘Class’ which holds one of four values for each row: block, no-block, NB-wait, and NB-No-Block

We divided our test cases into three categories.
First Case: we trained our model to classify the nodes(rows) in the dataset into two distinct classes: behaving(B) and not behaving(NB) based on the target attribute ‘Node Status’.
Second Case: we trained our model to classify the nodes into three distinct classes: behaving(B), not behaving(NB) and potentially not behaving(PNB) based on the target attribute ‘Node Status’.
Third Case: we trained our model to classify the nodes into four distinct classes based on the target attribute ‘Class’ which has four distinct class values: block, no-block, NB-wait, and NB-No-Block.

Selecting the Value of K for K-means Algorithm
While building the model, we assigned the value of k equals to 2 for the first case, 3 for the second case and 4 for the third case. This is natural since the original dataset was classified as such. Also we found from the Akaike information
criterion (AIC) and Bayesian information criterion (BIC) (29) that the k-means performs best when k was assigned the aforementioned values.

Results and Discussion:
Two Class Classifications with 20% Data:
In this experiment, we trained our model with very few data from the dataset to classify a node into either of the two classes: B and NB. Here, B means behaving and NB means not behaving. A behaving node is a good node that is behaving rightly and not causing intentionl congestion in the network. On the contrary, a not behaving node is a node that is declared to be harmful based on several features indicated in the dataset. We began the test by seperating 20% data from the preprocessed dataset for training and 10% data for validation using H2O split function. Rest of the data was used for testing performance. Table 2 describes the selection in detail.

After splitting the dataset into train, test and validate set, we applied k-means algorithm on them following the procedure mentioned in the methodology in previous section. Examining the performance of the model on test data, we found that the model predicted the test data with an accuracy of 90.2%. The match-mismatches statistics and the confusion matrix are given in Table 3. The confusion matrix or error matrix (30) is used to find error rate or the classification accuracy in most of the machine learning model. It showed that the k-means algorithm with just 20% training data(152 records) from the preprocessed dataset gives 90.2 percent accurate prediction for two category classification. This result is very significant as it tells that the distribution of the data points in case of two category classification has a uniform separation. This also indicates that k-means is ideal for such dataset classification.

In Fig. 4, a portion of the classification result is plotted for the test dataset. Three attributes are plotted against other four. It shows that the two clusters are very clearly separated by our model.
Three Class Classifications with 20% Data

Following the similar steps like two class classification of previous section, we applied the model on three class dataset where the data will be classified into either of B, NB, and PNB label. B and NB classes were discussed in the previous section. The PNB stands for potentially not behaving. We call a node PNB when it has a mixture of both the behavior of B and NB such that some attribute’s values are similar to B class and some are similar to NB class. Table 4 describes the data splitting in detail.

<table>
<thead>
<tr>
<th>Data</th>
<th>Percentage</th>
<th>Number of Records</th>
<th>Amount of B, NB, PNB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>100%</td>
<td>1075 records</td>
<td>475, 285, 315</td>
</tr>
<tr>
<td>Train</td>
<td>20%</td>
<td>215 records</td>
<td>80, 55, 80</td>
</tr>
<tr>
<td>Validate</td>
<td>10%</td>
<td>108 records</td>
<td>33, 40, 35</td>
</tr>
<tr>
<td>Test</td>
<td>70%</td>
<td>752 records</td>
<td>223, 265, 264</td>
</tr>
</tbody>
</table>

After applying the model, we found that the model predicted the test data with 65.15% accuracy. The match-mismatches statistics and the confusion matrix are given below in Table 5.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Mislabeled</th>
<th>Accuracy</th>
<th>Confusion matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test set</td>
<td>263</td>
<td>65.15%</td>
<td>Predicted class</td>
</tr>
<tr>
<td>(total records= 752, Class B=223, Class NB =265, Class PNB=264)</td>
<td>out of 752</td>
<td></td>
<td>Actual class</td>
</tr>
<tr>
<td></td>
<td>0 1 2</td>
<td></td>
<td>0 163 0</td>
</tr>
<tr>
<td></td>
<td>1 11 166 87</td>
<td></td>
<td>1 11 166 87</td>
</tr>
<tr>
<td></td>
<td>2 0 63 160</td>
<td></td>
<td>2 0 63 160</td>
</tr>
<tr>
<td></td>
<td>0 = NB, 1 = PNB, 2 = B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Four Class Classifications with 20% Data:

The original dataset has an attribute called ‘Class’ which has four probable sub-classes, i.e. Block, No-Block, NB-Wait, and NB-No-Block. The meaning of these four labels is: Behaving node and will not be blocked (No-Block).
Misbehaving node but will not be blocked (NB-No-Block).
Misbehaving node but will not be blocked, will be in waiting state (NB-Wait).
Misbehaving node and will be blocked (Block).

In this section, we classified the edge nodes into either of the four above mentioned labels. For this we replaced the values of ‘Node Status’ attribute in our dataset with the new values from the ‘Class’ attribute of the original dataset. We followed the similar steps as described in previous sections. Table 6 describes the data splitting for this experiment.

Table 6. Dataset split for four class classification taking 20% training data

<table>
<thead>
<tr>
<th>Data</th>
<th>Percentage</th>
<th>Number of Records</th>
<th>Block, No-Block, NB-No-Block, NB-Wait</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>100%</td>
<td>1075 records</td>
<td>120, 155, 500, 300</td>
</tr>
<tr>
<td>Train</td>
<td>20%</td>
<td>215 records</td>
<td>52, 40, 61, 62</td>
</tr>
<tr>
<td>Validate</td>
<td>10%</td>
<td>108 records</td>
<td>23, 40, 19, 26</td>
</tr>
<tr>
<td>Test</td>
<td>70%</td>
<td>752 records</td>
<td>213, 155, 299, 85</td>
</tr>
</tbody>
</table>

We found that the model predicted the test data with an accuracy of 41.61%. The mismatch statistics and the confusion matrix are given below in Table 7.

![Confusion Matrix](image)

Table 7. Classification result and confusion matrix for 20% data

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Mislabeled</th>
<th>Accuracy</th>
<th>Confusion matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test set</td>
<td>440</td>
<td>41.61%</td>
<td></td>
</tr>
<tr>
<td>(Total records= 752,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block= 213,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No-Block= 155,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB-No-Block= 299,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB-Wait= 85)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Predicted class

<table>
<thead>
<tr>
<th>Actual class</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>137</td>
<td>27</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>29</td>
<td>20</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>52</td>
<td>80</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>54</td>
<td>66</td>
<td></td>
</tr>
</tbody>
</table>

Through several runs of the algorithm, we found that the k-means gives the mentioned accuracy when trained with 20% training data (215 records) from the dataset.

Summary of the Test Result:

We tested the performance of the constructed model using various sized data, ranging from 20% to 60% for two, three and four classes classification. A summary of the test result is given in Table 8. Below, in Fig. 5, 6 the results are plotted.

![Accuracy Graph](image)

Figure 5. Maximum(left) and minimum(right) accuracy of the model

Table 8. Summary of the model accuracy

<table>
<thead>
<tr>
<th>No of Class</th>
<th>Accuracy</th>
<th>20% data</th>
<th>30% data</th>
<th>40% data</th>
<th>50% data</th>
<th>60% data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>Min</td>
<td>Avg</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>2 Class</td>
<td>90.2</td>
<td>33.69</td>
<td>78.72</td>
<td>95.6</td>
<td>76.79</td>
<td>90.70</td>
</tr>
<tr>
<td>3 Class</td>
<td>65.15</td>
<td>33.46</td>
<td>54.10</td>
<td>71.84</td>
<td>53.13</td>
<td>64.85</td>
</tr>
<tr>
<td>4 Class</td>
<td>41.61</td>
<td>33.45</td>
<td>38.02</td>
<td>53.72</td>
<td>35.32</td>
<td>42.03</td>
</tr>
</tbody>
</table>
Comparison of Experimental Results with Related Works:

To the best of our knowledge, there are very few works available on the classification of the nodes in an OBS network using ML techniques. We selected two significant works (7,19) from the available literatures for a comparison with our work. We discussed about those studies in earlier section. In Table 9, we have given a summary and comparison of these two works with our proposed work.

Table 9. Comparison of the proposed work with related works

<table>
<thead>
<tr>
<th>Works</th>
<th>Type of Work</th>
<th>Classification Policy</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rajab et.al. (19)</td>
<td>Machine learning: Supervised learning with 1075 records</td>
<td>If-then rules generated from Decision tree based model</td>
<td>93</td>
</tr>
<tr>
<td>Rajab et.al. (7)</td>
<td>Behavior analysis: Computing packet arrival rate and packet drop rate</td>
<td>Adaptive sliding range window based classifier. Finds the amount of lost burst from each ingress node during a specific time window</td>
<td>NA 95 percent success rate (with maximum 5% packet drop rate)</td>
</tr>
<tr>
<td>Proposed work</td>
<td>Semi-supervised machine learning</td>
<td>Clustering with K-means algorithm</td>
<td>20% 30% 20% 30% 20% 30% data data data data data data</td>
</tr>
</tbody>
</table>

From Table 9, we see that our model outperforms others in case of two class classification. It is worth repeating that our model predicts with 90.2% accuracy when trained with only 20%(152 records) train data and 10%(76 records) validate data. The model also gives a moderate performance in case of three label classification. But in case of four class classification, it fails to give a satisfactory performance. The reson behind this lower accuracy is that, the K-means algorithm is one of the distance based clustering algorithms that works best with circular/spherical clusters. The dataset we are working with has very irregular shape when four class lebel's are considered. That is why such result was not unexpected. This problem can be tackled well by using a clustering algorithm that can deal with arbitrary shaped clusters.

Conclusion:

In this study, a semi-supervised machine learning approach using k-means algorithm is proposed. Using an OBS network dataset, a model was trained and validated. Experiments showed that, in spite of exploiting a very limited data, the model can predict labels of OBS nodes with remarkable accuracy. The model classified the dataset’s nodes into either behaving or not-behaving classes with 90.2% accuracy when trained with only 20% data. When the nodes are classified into three classes, the model shows 65.15% and 71.84% accuracy if trained with 20% and 30% of data respectively. Likewise, the model was trained to classify a not-behaving edge node into four sub-classes. Comparison with some related works showed that the proposed model outperforms them in many respects. In near future, we aspire to do more research to improve the classification accuracy of the model. Also, we intend to study
several ML algorithms and evaluate their performance in detecting malicious nodes. Furthermore, we shall study other types of ML algorithms, i.e. supervised and unsupervised, to be implemented in the context of OBS network security.

Conflicts of Interest: None.

Reference:
22. UCI. BHP flooding attack on OBS Network Data Set [Internet]. Available from: https://archive.ics.uci.edu/ml/datasets/Burst+Header+Packet+%28BHP%29+flooding+attack+on+Optical+ Burst+Switching+%28BOS%29+Network#
24. H2O.ai [Internet]. Available from: http://www.h2o.ai/
25. Python programming language [Internet]. Available from: https://www.python.org/
منهج تعليمي شبه آلي للإشراف باستخدام خوارزمية K-Means

لمنع هجوم دفق حزمة حزم رأس الاندفاع في شبكة تبديل الانفجارات البصرية

محمد قمر حسين باتوري
محمد كامل الحق
قسم علوم وهندسة الكمبيوتر، جامعة شيتاجونج للهندسة والتكنولوجيا، شيتاجونج-4349، بنغلاديش

الخلاصة:
شبكة تبديل الانفجارات البصرية (OBS) هي تقنية الاتصال البصري من الجيل الجديد في شبكة OBS ترسل عقدة الحافة أول حزمة تحكم، تسمى حزمة رأس الاندفاع (BHP) التي تحتفظ بالموارد اللازمة لدفع البيانات القادمة (DB). حيث ترسل عقدة BHP التي تحدث هجوم بارز على شبكة OBS لحجز الموارد، ولكن في الواقع لم ترسل عقدة الالاتور. نتيجة لذلك، يتم إهدار الموارد المحجوزة، وعندما يحدث ذلك على نطاق واسع بما فيه الكفاية، قد يحدث فشل الخدمة (DoS).
في هذه البحث، نقترح طريقة شبه آلية للتعلم باستخدام خوارزمية K-Means للكشف عن العقد الخبيثة في شبكة OBS. تم تدريب النموذج على مجموعات بيانات مختلفة. تشير التجارب إلى أنه يمكن أن يُصنف العقد إلى فصول تصرف أو لا تصرف، إذا يستخدم 20% من البيانات، يتم تصنيف العقد إلى فصول تصرف، إذا استخدم 30% من البيانات، يتم تصنيف العقد إلى فصول تصرف أو لا تصرف

الكلمات المفتاحية: هجوم فيضان حزم رؤوس الأعمدة، خوارزمية K-Means، التعلم الآلي، شبكة تبديل الانفجارات البصرية، التعلم شبه الخاضع للإشراف.