Principally Quasi-Injective Semimodules

Khitam S. H. Aljebory * Assad M. A. Alhossaini

Received 2/1/2018, Accepted 4/4/2019, Published 1/12/2019

Abstract:
In this work, the notion of principally quasi-injective semimodule is introduced, discussing the conditions needed to get properties and characterizations similar or related to the case in modules.

Let \(\mathcal{B} \) be an \(\mathcal{R} \)-semimodule with endomorphism semiring \(\mathcal{S} \). The semimodule \(\mathcal{B} \) is called principally quasi-injective, if every \(\mathcal{R} \)-homomorphism from any cyclic subsemimodule of \(\mathcal{B} \) to \(\mathcal{B} \) can be extended to an endomorphism of \(\mathcal{B} \).

Key words: Principally quasi-injective semimodules, (injective, quasi-injective) semimodules, semimodules

Introduction:
The study of semimodules over semirings has a long history where the construction of semirings is useful generalizations of rings. Semirings are moved from rings but simultaneously there are important differences of them. A semiring is a nonempty set \(\mathcal{R} \) together with two operations, addition and multiplication such that
(i) addition and multiplication are associative,
(ii) addition is commutative,
(iii) the distribution law holds, that is, if \(r, s, t \in \mathcal{R} \) then \(r(s + t) = rs + rt \) and \((r + s)t = rt + st \).
(iv) there is an additive identity element (denoted \(0 \)) and a multiplicative identity element (denoted \(1 \)).

Some remarks that needed in this work were added. Nicholson, Park and Yousif (1) were studied principally quasi-injective modules, where \(\mathcal{B} \) is called principally quasi-injective module if each \(\mathcal{R} \)-homomorphism from a principal submodule of \(\mathcal{B} \) to \(\mathcal{B} \) can be extended to an endomorphism of \(\mathcal{B} \), an analogous, that concept for semimodules was introduced, studied the relationship between it and endomorphisms semiring. Further we examined their relations with other concepts like, principally- injective, self-generators, regular, \(\mathcal{Z} \)-regular semimodules. Before that we added some remarks which we need in our work. Also we gave some characterizations of principally quasi-injective semimodules.

This paper is organized as follows
- In section 2: we discuss some definitions, properties and remarks that lead to the main results.
- In section 3: we study principally quasi-injective semimodules and other related concepts with some properties about those concepts.

Preliminaries
In this section some definitions were demonstrated, properties and remarks that derive the main results.

Definition 1 (2). A nonempty subset \(I \) of a semiring \(\mathcal{R} \) is a right (resp. left) ideal of \(\mathcal{R} \) if for \(s, s' \in I \) and \(t \in \mathcal{R} \) then \(s + s' \in I \) and \(s \cdot t \) (resp. \(t \cdot s \)) \(\in I \). \(I \) is (two-sided) ideal of \(\mathcal{R} \) if it is both a left and a right ideal of \(\mathcal{R} \).

The concept principal ideal in commutative semiring with an identity element can be defined on the similar as in commutative ring with an identity element. (3)

Definition 2. Let \(\mathcal{R} \) be a semiring, then for any \(a \in \mathcal{R} \),
Ra = {x: x = ta, for some t ∈ R} is left ideal of R called the principal left ideal generated by a.

Definition 3 (2). Let R be a semiring. A **left R-semimodule** is a commutative monoid (B, +) which has a zero element, together with a mapping R × B → B (sending (s, b) to sb) such that the following conditions hold ∀ s, t of R and ∀ b, b′ of B:

(i) (s t) b = s (t b)
(ii) s (b + b′) = s b + s b′
(iii) (s + t) b = s b + t b
(iv) s 0 = 0 = 0 b

If the condition 1 b = b, for all b in B holds then the semimodule B is called **unitary**.

Definition 4 (2). A nonempty subset U of a left R-semimodule B is called **subsemimodule** of B if U is closed under addition and scalar multiplication, and denoted by U ⊆ B.

Examples 5.
(i) Every semiring over itself is a semimodule.

(ii) Let R = (Z′, +, ·) where Z′ is a positive integers and a′ i a′ = max{a′, a′}, a′.a′ = min{a′, a′}, ∀ a′, a′ ∈ Z′, let B be a left R-semimodule over itself, the proper subsemimodules of B are of the form (K +, +, ·) = {1, 2, …, n} ⊆ Z′, for each n.

(iii) Let B ≈ Z be an R-semimodule, where R is the semiring Z, the proper subsemimodules of B are {0}, {0, 4}, {0, 2, 4, 6} also Z as Z′-semimodule have proper subsemimodules {0}, {0, 3}, {0, 2, 4}.

Definition 6 (2). A subsemimodule U of B is called a **subsemimodule**, if for each b, b′ ∈ B, then b + b′, b ∈ U leads to b′ ∈ U. It is clear that {0} and B are **subsemimodule**s of B. A semimodule B is called **subsemimodule** if it has only subsemimodule.

In Example (5(ii)) K is subsemimodule of B, since for any element x ∈ K, and z ∈ Z′ such that x + z = max{x, z} ∈ K, it implies that z ∈ K.

Definition 7 (4). A semimodule B is called a **semimodule**, if for any b, b′ ∈ B there is always some h ∈ B satisfying b + h = b′ or some k ∈ B satisfying b + k = b.

Definition 8 (2). An element a′ of a left R-semimodule B is cancellative if a′ + n = a′ + k implies that n = k. The R-semimodule B is cancellative if and only if every element of B is cancellative.

Definition 9 (5). An R-semimodule B is said to be a direct sum of subsemimodules U1, U2, …, Uk of B, if each b ∈ B can be uniquely written as b = u1 + u2 + … + uk where ui ∈ Ui, 1 ≤ i ≤ k. It is denoted by B = U1 ⊕ U2 ⊕ … ⊕ Uk. And Ui is called a direct summand of B.

It is known that if a module B is a direct sum of submodules U and U1, then B = U ⊕ U1 if and only if B = U + U1 and U ∩ U1 = {0}. This is not true, in general for semimodule. We will prove this property under certain conditions on a semimodule.

The following remark proves the same property.

Remark 10. Let B be a cancellative semisubtractive R-semimodule and each subsemimodule of it is subtractive, then B = U ⊕ U1 if and only if B = U + U1 and U ∩ U1 = {0}.

Proof: Assume that B = U ⊕ U1 and B = U + U1 = {0}. If B = U ⊕ U1, this means, for each b ∈ B ⇒ b = u + u′, u ∈ U, u′ ∈ U1 ⇒ B = U + U1 + U1 = {0}. If b ∈ U ∩ U1 ⇒ (b = b + 0) ∈ U and (b = b + 0) ∈ U1 ⇒ b = 0 and 0 = b (by uniqueness).

Similarly, we show that u = v. Therefor the representation is unique. ///

Definition 11 (4). Let B be a left R-semimodule and b ∈ B, the left **annihilator** of b in B is defined by annR(b) = {t ∈ R | tb = 0}, it is clear that annR(b) is a left ideal of B. Also if U is subsemimodule of B, then annR(U) = {t ∈ R | tu = 0, ∀ u ∈ U}.

Definition 12 (5). If R is a semiring and B, N are left R-semimodules, then a map ψ: B → N is called a **homomorphism** of R-semimodules, if:

(i) ψ(b + b′) = ψ(b) + ψ(b′)
(ii) ψ(tb) = t ψ(b), for all b, b′ ∈ B and t ∈ R.

The set of R-homomorphisms of B into N is denoted by Hom (B, N). A homomorphism ψ is called an epimorphism if its onto, it is called a monomorphism if ψ is one-one and it is isomorphism if ψ is one-one and onto.

Remarks 13 (4). For a homomorphism of R-semimodules ψ: B → N we define

(i) ker(ψ) = {b ∈ B | ψ(b) = 0}
(ii) ψ(B) = {ψ(b) | b ∈ B}
(iii) Im(ψ) = {n ∈ N | n + ψ(b) = ψ(b′) for some b, b′ ∈ B}
It is obvious that \(\text{ker}(\psi) \) is a subtractive subsemimodule of \(\mathcal{B} \), \(\text{Im}(\psi) \) is a subtractive subsemimodule of \(N \) and \(\psi(\mathcal{B}) \) is a subsemimodule of \(N \). In module theory \(\psi(\mathcal{B}) = \text{Im}(\psi) \), in semimodule theory is not true always. It is clear that \(\psi(\mathcal{B}) \subseteq \text{Im}(\psi) \), the equality is satisfied if \(\psi(\mathcal{B}) \) is a subsemimodule of \(N \).

It is known that in module theory, a homomorphism \(\psi: \mathcal{B} \rightarrow N \) of \(\mathcal{R} \)-modules is monomorphism (one-one) if and only if \(\text{ker}(\psi) = 0 \). But in semimodule theory that is not true always. For instance, see (6, p. 176).

The following remark explains the relationship between monomorphism and kernel of \(\mathcal{R} \)-semimodules.

Remark 14. Let \(\psi: \mathcal{B} \rightarrow N \) be a homomorphism of \(\mathcal{R} \)-semimodules, then:

(i) If \(\psi \) is a monomorphism, then \(\text{ker}(\psi) = 0 \).

(ii) If \(\text{ker}(\psi) = 0 \), \(\mathcal{B} \) is semisubtractive and \(N \) is cancellative, then \(\psi \) is a monomorphism.

Proof: (i) Let \(b \) be any element of \(\mathcal{B} \), then \(0 = 0 \psi(b) = \psi(0b) = \psi(0) \). Hence \(0 \in \text{ker}(\psi) \).

If \(\psi(b') = 0 \), then \(\psi(b') = \psi(0) \). But \(\psi \) is one to one implies \(b' = 0 \). Therefore \(\text{ker}(\psi) = \{0\} \).

(ii) Let \(\psi(b_1) = \psi(b_2) \) since \(\mathcal{B} \) is semisubtractive semimodule, then there is \(h \) in \(\mathcal{B} \) such that \(b_1 + h = b_2 \) or some \(k \) in \(\mathcal{B} \) satisfying \(b_2 + k = b_1 \), we have two cases

Case 1 \(b_2 = b_1 + h \Rightarrow \psi(b_2) = \psi(b_1) + \psi(h) \Rightarrow \psi(h) = 0 \) (by cancellative) since \(\text{ker}(\psi) = 0 \), then \(h = 0 \) this implies \(b_1 = b_2 \).

Case 2 \(b_1 = b_2 + k \Rightarrow \psi(b_1) = \psi(b_2) + \psi(k) \Rightarrow \psi(k) = 0 \) (by cancellative), since \(\text{ker}(\psi) = 0 \), then \(k = 0 \), hence \(b_2 = b_1 \). Therefore \(\psi \) is a monomorphism.

Definition 15 (7). Let \(\{\mathcal{B}_i\}_{i \in I} \) be a family of left \(\mathcal{R} \)-semimodules then their Cartesian product \(\prod_{i \in I} \mathcal{B}_i \) also has the structure of a left \(\mathcal{R} \)-semimodule under componentwise addition and scalar multiplication. It is called the direct product of \(\{\mathcal{B}_i\} \). By the direct sum of \(\{\mathcal{B}_i\} \) denoted by \(\bigoplus_{i \in I} \mathcal{B}_i \) we mean the subset of \(\prod_{i \in I} \mathcal{B}_i \) consisting of all \((m_i) \in \prod_{i \in I} \mathcal{B}_i \) for which only finite number of \(m_i \neq 0 \). Then \(\bigoplus_{i \in I} \mathcal{B}_i \) is a left \(\mathcal{R} \)-subsemimodule of \(\prod_{i \in I} \mathcal{B}_i \).

Definition 16 (8). A left \(\mathcal{R} \)-semimodule \(\mathcal{B} \) is called cyclic if \(\mathcal{B} \) can be generated by a single element, that is \(\mathcal{B} = \langle b \rangle = \mathcal{R}b = \{tb \ | \ t \in \mathcal{R} \} \) for some \(b \in \mathcal{B} \).

Definition 17 (7). An \(\mathcal{R} \)-semimodule \(E \) is \(\mathcal{B} \)-injective (or \(E \) is injective relative to \(\mathcal{B} \)) if, for each subsemimodule \(N \) of \(\mathcal{B} \), any \(\mathcal{R} \)-homomorphism from \(N \) to \(E \) can be extended to an \(\mathcal{R} \)-homomorphism from \(\mathcal{B} \) to \(E \). (where \(i \) is the inclusion map)

A left \(\mathcal{R} \)-semimodule \(E \) is injective if it is injective relative to every left \(\mathcal{R} \)-semimodule.

Proposition 18 (7). Let \(\{E_a\}_{a \in A} \) be an indexed set of \(\mathcal{R} \)-semimodules then \(\prod_{a \in A} E_a \) is injective if and only if each \(E_a \) is injective for each \(a \).

Definition 19 (9). A nonzero \(\mathcal{R} \)-semimodule \(\mathcal{B} \) is called simple if \(\mathcal{B} \) has no nonzero proper \(\mathcal{R} \)-subsemimodule.

Remark 20 (9). If \(\mathcal{B} \) is simple, then every semimodule \(E \) is injective relative to \(\mathcal{B} \).

Remark 21 (7). A semimodule \(\mathcal{B} \) is quasi-injective if it is \(\mathcal{B} \)-injective. As the following diagram, i.e., there exist \(h \) such that \(h \psi = g \) (with \(\psi \) is a monomorphism).

To the best of our knowledge, the following proposition is not found in the literatures, we will give its proof for semimodules similar to in modules.

Proposition 22. A direct summand of quasi-injective semimodule is quasi-injective.

Proof: Let \(C = C' \oplus C'' \) be quasi-injective semimodule and let \(i_A \) and \(i_C \) be the inclusion maps of \(A \) into \(C' \) and \(C' \) into \(C \) respectively. Let \(\pi_C : C \rightarrow C' \) be the projection map. Consider the following diagram.

$$
\begin{array}{c}
A \\
\xrightarrow{i_A} C' \\
\xrightarrow{i_C} C
\end{array}
$$

since \(C \) is quasi-injective semimodule, then there exists a homomorphism \(\beta : C \rightarrow C \) such that \(\beta i_C i_A = i_C f \).
take $\beta' = \pi_c \beta i_c$
then $\beta' i_A = \pi_c \beta i_c i_A = \pi_c i_c f = 1_c f = f$
this mean, β' extends to an endomorphism of C'. \[\]
Remark 23. It is clear that every injective semimodule is quasi-injective.

Principally Quasi-Injective Semimodules

In this section we extend this work by studying principally quasi-injective semimodules, their endomorphism semirings, also we discuss some concepts which have relation to this notion. Most of the results of this section are shown (for modules) in (1) and (10). However, we discuss it for semimodule.

In (1) some results for injective modules were given. In the following, we state analogous to those results for semimodule.

Definition 1. An \mathcal{R}-semimodule is called **principally quasi-injective** if each \mathcal{R}-homomorphism from cyclic subsemimodule of \mathcal{B} to \mathcal{B} can be extended to an endomorphism of \mathcal{B}. In other words, the following diagram is commutative, i.e., $hi = \psi$.

![Diagram](image)

Note. We will use the notation P.Q.-injective for principally quasi-injective.

Examples 2.

(i) Every injective semimodule is P.Q.-injective.
(ii) Every semi-simple semimodule is P.Q.-injective and hence every simple semimodule is P.Q.-injective.
(iii) \mathbb{Z}_2 as \mathbb{N}-semimodule is P.Q.-injective but not injective.

Proposition 3. Every direct summand of P.Q.-injective semimodule is again P.Q.-injective.
proof: Similar to Proposition (22).

In (10) principally injective module was introduced as follows: an \mathcal{R}-module \mathcal{B} is called principally injective (p-injective) if each \mathcal{R}-homomorphism $\alpha : \mathcal{R}a \to \mathcal{B}$ such that $a \in \mathcal{R}$, extends to \mathcal{R}, i.e., the following diagram is commutative, $\alpha' i = \alpha$. Where i is inclusion map.

For instance \mathbb{Z} as \mathbb{Z}-semimodule is not p-injective, let $f : \mathbb{Z} \to \mathbb{Z}$ be \mathbb{Z}-homomorphism such that $2x \mapsto 3x$ can not be extended to $g : \mathbb{Z} \to \mathbb{Z}$. (g from $\mathcal{R} = \mathbb{Z}$ to $\mathcal{B} = \mathbb{Z}$) since, if $g(1) = 3n$ then $g(2) = 6n$ but $f(2) = 3 \Rightarrow f(2) \neq g(2)$ this contradiction, then g is not an extension of f, so \mathbb{Z} as a \mathbb{Z}-semimodule is not p-injective.

In (7) Ahsan, Shabir and Liu introduced P-injective semimodule as follows.

Definition 4 (7). An \mathcal{R}-semimodule \mathcal{B} is called P-injective if for any principal ideal U of \mathcal{R} and each \mathcal{R}-homomorphism $f : U \to \mathcal{B}$, there exists an \mathcal{R}-homomorphism $g : \mathcal{R} \to \mathcal{B}$, which extends f.

Example 5. \mathbb{Q} as a \mathbb{Z}-semimodule is P-injective.

Proof: Let $I = \mathbb{Z}n$ where $n \in \mathbb{Z}$ (principal ideal of \mathbb{Z}) and $f : I \to \mathbb{Q}$ be \mathbb{Z}-homomorphism such that $f(n) = q$ where, $n \in I$, $q \in \mathbb{Q}$, define a \mathbb{Z}-homomorphism $g : \mathbb{Z} \to \mathbb{Q}$ by $g(1) = \frac{q}{n}$, consider the following diagram:

![Diagram](image)

Then $g(kn) = kn \quad \Rightarrow (kn) \frac{q}{n} = kq = kf(n) = f(\frac{q}{n})$.

The concept "regular module" is defined by several forms see (11), (12) and (13). In this work we will choose the certain condition to define a regular semimodule. Also we investigate relation this concept with P.Q.-injective semimodule where every regular semimodule is P.Q.-injective.

Examples 6.

(i) It is clear that every injective semimodule is principally injective.
(ii) Every regular semimodule is P.Q.-injective semimodule. In fact, if $\mathcal{R}x \leq \mathcal{B}$, then $\mathcal{R}x$ is a direct summand of \mathcal{B}, there exists $B \leq \mathcal{B}$ such that $\mathcal{B} = \mathcal{R}x \oplus B$. Now let $\alpha : \mathcal{R}x \to \mathcal{B}$ be a homomorphism. Define $\alpha' : \mathcal{R}x \oplus B \to \mathcal{R}x \oplus B$ by $\alpha' ((x, y)) = \alpha (tx)$; it is clear that α' is an extension of α.

In (13), regular module was defined, where \mathcal{B} is called regular if every cyclic submodule of \mathcal{B} is a direct summand of \mathcal{B}.
Definition 7 (8). A semimodule \mathcal{B} is called regular if every cyclic subsemimodule of \mathcal{B} is a direct summand.

Example 8. \mathbb{Z}_6 as \mathbb{N}-semimodule is regular.

In (13) \mathcal{Z}-regular module appeared, where an \mathcal{R}-module \mathcal{B} is called \mathcal{Z}-regular if every cyclic submodule of \mathcal{B} is projective and direct summand of \mathcal{B}. Also in (1) principally self-generator module was studied, analogous concepts for semimodule are introduced. Before we define these concepts we need to define a projective semimodule and give its characteristic.

Definition 9 (6). A left \mathcal{R}-semimodule \mathcal{P} is said to be \mathcal{B}-projective if for every an epimorphism $\phi: \mathcal{B} \to N$ and for every homomorphism $\gamma: N \to \mathcal{P}$ there is a homomorphism $\gamma': \mathcal{B} \to \mathcal{P}$ such that the diagram commutes.

A semimodule \mathcal{P} is projective if it is projective relative to every left \mathcal{R}-semimodule.

Example 10. Every semiring over itself is projective.

Proposition 11 (6). Let $P_i \in \Gamma$ be an indexed set of left \mathcal{R}-semimodules, then ΦP_i is projective if and only if each P_i is projective for each i.

Definition 12. A semimodule \mathcal{B} is called \mathcal{Z}-regular if every cyclic subsemimodule of \mathcal{B} is projective and direct summand.

Remark 13. Note that any \mathcal{Z}-regular semimodule is regular, hence it is P.Q. -injective by Examples (6(ii)).

Remark 14(8). For any \mathcal{R}-semimodule \mathcal{B}, $\text{End}_\mathcal{R}(\mathcal{B})$ is the set \mathcal{S} of endomorphisms of \mathcal{B}, it is a semiring with respect to addition and multiplication defined as follows: $\forall f, g, h \in \text{End}(\mathcal{B})$, $f + g = h$ where $h(b) = f(b) + g(b)$ for all $b \in \mathcal{B}$, $fg = h$ where $h(b) = f(g(b))$ for all $b \in \mathcal{B}$. It easy to check that \mathcal{S} is a semiring called the endomorphism semiring of \mathcal{B}.

Remark 15. If \mathcal{B} is left \mathcal{R}-semimodule then \mathcal{B} can be made into a right \mathcal{S}-semimodule as follows: define, $\Phi: \mathcal{B} \times \mathcal{S} \to \mathcal{B}$ by $\Phi(b, f) = bf$, then (i) $b(f_1 + f_2) = bf_1 + bf_2$ (ii) $b + b' = bf + bf'$ where $f, f_1, f_2 \in \mathcal{S}$ and $b, b' \in \mathcal{B}$.

Remarks 16.

(i) $\text{ann}_\mathcal{B}(t) = \{b \in \mathcal{B} | tb = 0 \}$. We will use the notation $r(t) = \text{ann}_\mathcal{B}(t)$, where $t \in \mathcal{R}$.

(ii) $\hspace{1cm} \mathcal{B} = \{bf | f \in \mathcal{S} \} = \{bf = f(b) | f \in \mathcal{S} \}$ (iii) $\mathcal{S} = \{bf | f \in \mathcal{S} \} = \{bf = f(b) | f \in \mathcal{S} \}$

Proof: (i) \Rightarrow (ii)

Let $\vartheta(m) \in m\mathcal{S}$ where $\vartheta \in \mathcal{S}$. If $t m = 0$ then $0 = \vartheta(t m) = t \vartheta(m)$. This implies $\vartheta(m) \in r(l(m))$ hence, $m\mathcal{S} \subseteq r(l(m))$. To show the opposite inclusion, let $n \in r(l(m))$. Define $\gamma: \mathcal{B} \to \mathcal{B}$ by $\gamma(tm) = tn \forall t \in \mathcal{R}$. γ is well-defined.

By (i) γ extends to $\gamma' \in \mathcal{S}$. Now $n = \gamma(m) = \gamma'(m) = \gamma'(r(l(m))) = r(l(m)) = m\mathcal{S}$. Hence $r(l(m)) \subseteq m\mathcal{S}$.

(iii) \Rightarrow (iv) Since ϑ is monomorphism, we have $l(\vartheta(m)) \subseteq l(\vartheta(m))$ in fact, let $\varphi \in l(\vartheta(m))$, then $\varphi(m) = \vartheta(tm) = 0$. Thus $tm \in \ker \vartheta$ hence $tm = 0$, so $\lambda(tm) = t\lambda(m) = 0$ which implies $\varphi \in l(\lambda(m))$, so $\lambda(tm) \subseteq l(\lambda(m))$. By (ii) $\lambda(m)\mathcal{S} = \vartheta(m)\mathcal{S}$. Then there exists $\gamma \in \mathcal{S}$ such that $\vartheta(m) = \gamma(\vartheta(m))$ as required.

(iv) \Rightarrow (i) Take $\theta: \mathcal{B} \to \mathcal{B}$ to be the inclusion homomorphism in (iv), then there exists $\gamma: \mathcal{B} \to \mathcal{B}$ such that the following diagram is commutative.

Hence $\lambda: \mathcal{B} \to \mathcal{B}$ extends to an endomorphism in \mathcal{S}. This means proving (i).}
In (1) principally self-generator module was given. In the following we give an analogous of that notion for semimodule.

Definition 18. An R-semimodule B is said to be **principally self-generator** if for every element $b \in B$, there exists an epimorphism $\alpha: B \to Rb$, and then there exists $b \in B$ such that $a(b') = b$.

Examples 19.

(i) Every cyclic semimodule is principally self-generator.

(ii) The semiring R is principally self-generator R-semimodule.

(iii) Every regular semimodule is principally self-generator.

(iv) Every Z-regular semimodule is principally self-generator.

Proof: Clear. ///

Remarks 20. Let R be a semiring, A is a subset of X. X is a subset of the left semimodule ρR (R over itself), $a \in R$ and $x \in X$ then:

(i) $l(A) = \{ (a) = \{ x \in \rho R | xa = 0, \forall a \in A \}$.

(ii) $l(x) = \{ a \in R | xa = 0 \}$.

(iii) $r(X) = \{ a \in R | ax = 0, \forall a \in X \}$.

(iv) $r(x) = r(\{ x \}) = \{ b \in R | bx = 0 \}$.

In the following some properties for P-injective semimodule which introduced in (9) for modules. We dealt those properties by adding specific conditions for semimodule.

Proposition 21. Let R be a semiring such that ρR is subtractive, semisubtractive and cancellative. Then, the following conditions are equivalent:

(i) ρR is P-injective as R-semimodule.

(ii) $r(l(a)) = aR$ for all a in R.

(iii) $l(b) \subseteq (l(a))$ where $a, b \in R$, implies $aR \subseteq bR$.

(iv) $r(Rb)(l(a)) = r(b) + aR$ for all a, b in R. (we will add the conditions $r(b) + aR$ is subtractive subsemimodule of ρR and ρR is semisubtractive semimodule).

Proof: (i) \Rightarrow (ii) $aR \subseteq (l(a))$, for $x \in aR \Rightarrow x = at$ for some $a \in R$ and so $sa = 0 \Rightarrow sx = s(ata) = (sa)t = 0 \Rightarrow 0$ that is $x \in r(l(a))$. Now assume ρR is p-injective. To prove $r(l(a)) \subseteq aR$. Let $x \in r(l(a))$, this means $sxa = 0 \Rightarrow sx = 0$ for each $s \in R$.

So, the map $Ra \to \rho R$ by $sa \mapsto sx$, $s \in R$ is well defined homomorphism which can be extended to a homomorphism, say $f: R \to \rho R$. But $x = 1x = f(1a) = f(a1) = sf(1) \in aR$. Therefore $r(l(a)) \subseteq aR$.

(ii) \Rightarrow (iii) $l(b) \subseteq (l(a))$ means $[sb = 0$ implies $sa = 0]$, so $aR \subseteq r(l(b))$ and $r(l(b)) = bR$ (by (ii)), hence $aR \subseteq bR$.

(iii) \Rightarrow (i) Let $\alpha: Ra \to Rb$ be an R-homomorphism and let $a(a) = b$ then it is clear that $l(a) \subseteq l(b)$, so by (iii) we have $bR \subseteq aR$, let $b = at$. Define $\alpha': \to Rb$ by $x \mapsto xt$ for each $x \in R$, then $a'(a) = at = b = a(a)$, that is a' is an extension of a to Rb. Therefore ρR is p-injective.

(iv) \Rightarrow (ii) \Rightarrow (i) Let $x \in r(Rb \cap l(a))$, then $l(ba) \subseteq l(bx)$ $[t \in l(b) \Rightarrow t(bx) = 0 \Rightarrow (tb)a = 0 \Rightarrow t\in l(bx)]$ and $r(b) = bR \Rightarrow r(b) + aR$ so we get, $r(l(a)) = aR$.

(iii) \Rightarrow (iv) Let $x \in r(Rb \cap l(a))$, then $l(ba) \subseteq l(bx)$ $[t \in l(b) \Rightarrow t(bx) = 0 \Rightarrow (tb)x = 0 \Rightarrow t(bx) = 0$ that is $r(b) \cap l(b)$ then, (iii), it follows $bR \subseteq aR$ and there is $s \in R$ such that $bx = bas$. Now, since ρR is semisubtractive there are two cases:

Case 1 there exists $h \in R$ such that $s = h + a$s, then $bx = bh + bas\Rightarrow bh = 0$ (by cancellative) $\Rightarrow h \in r(b)$, that is $x \in r(b) + aR$.

Case 2 there exists $h \in R$ such that $s = h + a$s, then $bx = bh + bas\Rightarrow bh = 0$ (by cancellative) $\Rightarrow h \in r(b)$, that is $x = h \in aR \subset r(b) + aR$ and $h \in r(b) \subseteq r(b) + aR$.

Therefore $r(Rb \cap l(a)) \subseteq r(b) + aR$. To prove the opposite inclusion, since $r(Rb) \subseteq r(Rb \cap l(a))$ and $r(l(a)) \subseteq r(Rb \cap l(a))$, then $r(Rb) + r(l(a)) \subseteq r(Rb \cap l(a))$. But $b \in Rb \Rightarrow r(b) \subseteq r(Rb) + r(l(a))$, then $r(b) + aR \subseteq r(Rb) + r(l(a)) \subseteq r(Rb \cap l(a))$. ///

Proposition 22. Let B be P.Q.-injective semimodule with $S = End_R(B)$ and let $m, n \in B$.

(i) If there is an epimorphism from Rm onto Rn, then there is a monomorphism from nS into mS.

(ii) If there is a monomorphism from Rm into Rn, then there is an epimorphism from nS onto mS.

(iii) If $Rm \cong Rn$, then $nS \cong mS$.

Proof: Assume that $\beta: Rm \to Rn$ be any R-epimorphism, write $\beta(m) = an$ where $a \in R$ and define $\delta: nS \to B$ by $\delta[n] = a(na) = (an)a = a[\beta(m)]$ for all $n \in S$. If $b \in S$ extends β, then $\delta[n] = a[\beta(m)] = a[\beta'(m)] = \beta'(m) \in mS$, so $\delta: nS \to mS \subseteq S$-homomorphism.

Now to prove (i), if β is an epimorphism, then $n = \beta(bm)$ such that b $\in \mathbb{B}$. Given $\sigma(n) \in ker\delta$, thus $\sigma(n) = \sigma[\beta(bm)] = b[\sigma(\beta(m))] = b(\sigma(na)) = b(0)$ = 0. Hence δ is a monomorphism and nS embeds in mS.

(ii) If β is monomorphism, then $ann_R(\beta(m)) \subseteq ann_R(m)$, in fact, let $r \in ann_R(\beta(m))$, then $b(\beta(m)) = \beta(tm) = 0\Rightarrow tm \in ker\beta$, but β is monomorphism then $tm = 0$, hence $t \in ann_R(m)$. So by theorem (3.16(iii)) $mS \subseteq \beta(m)S$, but
Let \mathcal{R} be a P-injective semiring and $a, b \in \mathcal{R}$, then
(i) If there is an epimorphism $Rh \rightarrow Ra$, then there is a monomorphism $Ra \rightarrow Rh$.
(ii) If there is a monomorphism $Rh \rightarrow Ra$, then Rh is a homomorphic image of Ra.

Proof: Since $\text{End}(\mathcal{R}) \cong \mathcal{R}$ and by proposition (22). //

Corollary 23. Let \mathcal{R} be a P-injective semiring and $a, b \in \mathcal{R}$, then
(i) If there is an epimorphism $Rh \rightarrow Ra$, then there is a monomorphism $Ra \rightarrow Rh$.
(ii) If there is a monomorphism $Rh \rightarrow Ra$, then Rh is a homomorphic image of Ra.

Definition 24 (14). A nonzero \mathcal{R}-subsemimodule \mathcal{U} of \mathcal{B} is called **essential** (large) and write $\mathcal{U} \leq_e \mathcal{B}$, if $\mathcal{U} \cap L \neq 0$ for every nonzero subsemimodule L of \mathcal{B}.

Example 25. \mathcal{Z}_6 as \mathbb{N}-semimodule. If $K = \{0, 2, 4\}$, then $K \leq_e \mathcal{Z}_6$. But if $L = \{0, 2\} \leq _e \mathcal{Z}_4$, then $L \leq _e \mathbb{Z}_4$.

Definition 26 (2). Let \mathcal{B} be an \mathcal{R}-semimodule, the sum of all simple subsemimodules of \mathcal{B} is called the **socle** of \mathcal{B}, equal to the intersection of all essential subsemimodules of \mathcal{B}, is denoted by $\text{Soc}(\mathcal{B})$. If \mathcal{B} has no simple subsemimodule then we put $\text{Soc}(\mathcal{B}) = 0$. If $\text{Soc}(\mathcal{B}) = \mathcal{B}$, then \mathcal{B} is called semi-simple semimodule.

Remark 27 (15). An \mathcal{R}-semimodule is said to be semi-simple if it is a direct sum of its simple subsemimodule in \mathcal{B}.

Example 28. \mathcal{Z}_6 as \mathbb{N}-semimodule is semi-simple. $\text{Soc}(\mathcal{Z}_6) = \{0, 2, 4\} + \{0, 3\}$. Since $\{0, 2, 4\}, \{0, 3\}$ have no proper subsemimodules except $\{0\}, \{0, 2, 4\}, \{0\}, \{0, 3\}$, respectively, then $\text{Soc}(\mathcal{Z}_6) = \mathcal{Z}_6$. But $\text{Soc}(\mathcal{Z}_4) = \{0, 2\}$. Therefore \mathcal{Z}_4 as \mathbb{N}-semimodule is not semi-simple.

In (1) the relationship between the socle of \mathcal{B} and $P.Q.$-injective modules was given in the following, we give analogous to these properties for semimodule.

Proposition 29. Let \mathcal{B} be a $P.Q.$-injective semimodule with $\mathcal{S} = \text{End}_{\mathcal{R}}(\mathcal{B})$.
(i) If \mathcal{U} is a simple subsemimodule of \mathcal{B}, and \mathcal{U} subsemimodule of \mathcal{B} which is isomorphic to \mathcal{U}, then $\mathcal{S} \leq \mathcal{U}$.
(ii) If Rh is a simple \mathcal{R}-semimodule, $b \in \mathcal{B}$, then $\mathcal{S}b$ is a simple \mathcal{S}-semimodule.
(iii) $\text{Soc}(\mathcal{S}b) \leq \text{Soc}(\mathcal{B})$.

Proof: (i) Let $\psi: \mathcal{U} \rightarrow \mathcal{U}_1$ be an \mathcal{R}-isomorphism where $\mathcal{U}_1 \leq \mathcal{B}$. If $\mathcal{U}_1 = \mathcal{R}u$, then $l(u) = b\psi(u)$, so $u \mathcal{S} = \psi(u)\mathcal{S}$. By Proposition(17) (iii) we have $\psi(u)\mathcal{U}_1 \subseteq \psi(u)\mathcal{S}$. If $\psi'\mathcal{U}_1$ is an extension of ψ to \mathcal{S}, then $\mathcal{U}_1 = \mathcal{R}\psi(u) = \mathcal{R}\psi'(u) \subseteq \mathcal{U}_1\mathcal{S}$.

(ii) To prove $\mathcal{S}b$ is simple, it is enough to prove that any nonzero element of \mathcal{S} has an inverse (multiplication). Consider the following diagram:

```
    \lambda(\mathcal{R}b) \quad \mathcal{B} \\
     \downarrow{\lambda}\quad \quad \quad \quad \quad \quad \quad \mathcal{B} \\
     \mathcal{R}b \quad \quad \quad \quad \quad \quad \quad \mathcal{B} \\
```

We may assume $\lambda \neq 0$. Since $\mathcal{R}b$ is simple, then $\lambda(\mathcal{R}b) \rightarrow \lambda(\mathcal{R}b)$ is an isomorphism, let $\theta: \lambda(\mathcal{R}b) \rightarrow \lambda(\mathcal{R}b)$ be the inverse of λ, i.e., i are inclusion maps from $\mathcal{R}b, \lambda(\mathcal{R}b)$ to \mathcal{B} respectively. Since \mathcal{B} is $P.Q.$-injective semimodule, then there exists $\theta' \in \mathcal{S}$ that extends θ. Now $\theta'[(\lambda(b))] = \theta'(i[(\lambda(b))]) = \lambda(b) = \theta(\lambda(b)) = \theta(b) = b$. Hence $b \mathcal{S}b = \mathcal{S}b \mathcal{S}b$. Hence $\mathcal{S}b$ is simple. ($\mathcal{S}b \subseteq \mathcal{S}b$ always holds).

(iii) This follows from (ii). //

In (1) the notion of kasch module was introduced, where an \mathcal{R}-module \mathcal{B} is called kasch if every simple sub-quotient of \mathcal{B} can be embedded in \mathcal{B}, similarly, we introduce this concept for semimodule as follows. The semimodule \mathcal{B} is called a kasch semimodule if every simple sub-quotient of \mathcal{B} embeds in \mathcal{B}, i.e., there is a monomorphism from \mathcal{U}/Y into \mathcal{B}, where \mathcal{U} and Y are subsemimodules of \mathcal{B} with Y is maximal subsemimodule of \mathcal{U}.

Lemma 30. Let \mathcal{B} be a $P.Q.$-injective semimodule which is kasch semimodule, if \mathcal{U} is maximal subsemimodule of $\rho\mathcal{R}$, then $r(\mathcal{U}) \neq 0$ if and only if $l(m) \subseteq \mathcal{U}$ for some $0 \neq m \in \mathcal{B}$. In particular, $r(\mathcal{U})$ is a simple as right \mathcal{S}-semimodule. Where $r(\mathcal{U}) = \{ b \in \mathcal{B} | ub = 0, \forall u \in \mathcal{U} \}$ and $l(m) = \{ m \in \mathcal{R} | tm = 0 \}$.

Proof: If $0 \neq m \in r(\mathcal{U})$, then $\mathcal{U} \subseteq l(m) \neq \mathcal{R}$, so $\mathcal{U} = l(m)$ by maximality of \mathcal{U}. Conversely, if $l(m) \subseteq \mathcal{U}$ where $m \neq 0$, note that $\mathcal{R}m \neq \mathcal{U}m$ (by maximality of \mathcal{U}). Choose x / y maximal subsemimodule of $\mathcal{R}m / \mathcal{U}m$. As \mathcal{B} is kasch semimodule, let $\alpha: \mathcal{R}m / \mathcal{U}m \rightarrow \mathcal{B}$ be a monomorphism and write $\alpha(m + X) = m'$, then $\mathcal{U}' = \mathcal{U} \alpha(m + X) = \alpha(\mathcal{U}m + X) = \alpha(X) = 0$, that is $m' \in r(\mathcal{U})$ and $r(\mathcal{U}) \neq 0$. Finally, let $0 \neq m'' \in r(\mathcal{U})$, then $\mathcal{U} \subseteq l(m'')$, whence $\mathcal{U} = l(m'')$, since \mathcal{B} is a $P.Q.$-injective by Proposition (3. 16(ii)) then $m'' \mathcal{S} = r(l(m'')) = r(\mathcal{U})$. This shows that $r(\mathcal{U})$ is simple as a right \mathcal{S}-semimodule. //
Proposition 31. Let B be a P.Q.-injective, kasch semimodule with $S = \text{End}_R(B)$, then
(i) $\text{Soc}(\lambda B) = \text{Soc}(B_S)$
(ii) $\text{Soc}(B_S) \subseteq e B_S$

Proof: (i) We have $\text{Soc}(\lambda B) \subseteq \text{Soc}(B_S)$ by Proposition (29(iii))

To show that $\text{Soc}(B_S) \subseteq \text{Soc}(\lambda B)$, let m_S be simple, $m \in B$, and $l(m) \subseteq \mathcal{U}$ is maximal subsemimodule of \mathcal{R}. By Lemma (30), $0 \neq r(\mathcal{U}) \subseteq r(l(m) = m_S$, so $m_S = r(\mathcal{U})$ by the simplicity of m_S. Thus $\mathcal{U} \subseteq l(r(\mathcal{U})) = l(m_S) = l(m) \neq \mathcal{R}$. Since \mathcal{U} is maximal, $l(m) = \mathcal{U}$, whence $\text{Soc}(l \geq \mathcal{R} / \mathcal{U}$ is simple. Then $\text{Soc}(B_S) \subseteq \text{Soc}(\lambda B)$.

(ii) Let $0 \neq m \in B$. If $l(m) \subseteq \mathcal{U}$ is maximal subsemimodule of \mathcal{R}, then $r(\mathcal{U}) \subseteq r(l(m) = m_S$, by Proposition (17(ii)). As $r(\mathcal{U})$ is simple Lemma (30) and $r(\mathcal{U}) \neq 0$, then $\text{Soc}(B_S) = \mathcal{B}_{\mathcal{U}}$. //

Proposition 32. Let B be a P.Q.-injective semimodule with $S = \text{End}_R(B)$, and let m_1, m_2, \ldots, m_n be elements of B.

(i) If $m_1 S \oplus \ldots \oplus m_n S$ is a direct sum, then any \mathcal{R}-homomorphism $\lambda: \text{Rm}_1 \oplus \ldots \oplus \text{Rm}_n \rightarrow B$ has an extension in S.

(ii) If $\text{Rm}_1 \oplus \ldots \oplus \text{Rm}_n$ is a direct sum, then $(m_1 + \ldots + m_n) = m_1 S + \ldots + m_n S$.

Proof: (i) Let λ_i and β denote the restrictions of λ to Rm_i and $\text{Rm}(m_1 + \ldots + m_n)$ respectively and let λ' and β' extend λ_i and β to B. Then $\Sigma_i \beta'(m_i) = \beta'(\Sigma_i m_i) = \lambda(\Sigma_i m_i) = \lambda(\Sigma_i \lambda_i(m_i)) = \lambda'(\Sigma_i m_i)$. Since $\text{Rm}_i S$ is a direct, we obtain $\beta'(m_i) = \lambda'(m_i)$, so β' extends λ.

(ii) Define $\lambda_i: \mathcal{R}(m_1 + \ldots + m_n) \rightarrow B$ by $\lambda_i[r(m_1 + \ldots + m_n) = r(m_i)$ for all $r \in \mathcal{R}$. Then λ_i is well defined. Since B is a P.Q.-injective semimodule, then there exists $\lambda_i' \in S$ that extends λ_i, hence $m_i = \lambda_i(\Sigma_i m_i) = \lambda_i'(\Sigma_i m_i) = \lambda'(\Sigma_i m_i) S$ and it follows that $\Sigma_i m_i S \subseteq (\Sigma_i m_i) S$. The reverse inclusion always holds. //

To show the next result we need the following definition.

Definition 33(8). A subsemimodule K of \mathcal{R}-semimodule B is called fully invariant if for each endomorphism $f: B \rightarrow B$, then $f(K) \subseteq K$.

Example 34. Every subsemimodule of Z as Z-semimodule is invariant.

Let $B = Z$ and $K = nZ$, where $n \in Z$ and let $f: B \rightarrow B$, then $f(nZ) = nf(Z) \subseteq nZ$.

Proposition 35. Let B be a P.Q.-injective semimodule with $S = \text{End}_R(B)$, and let A, B_1, B_2, \ldots, B_n be fully invariant subsemimodules of B. If $B_1 \oplus \ldots \oplus B_n$ is a direct sum of B, then $A \cap (B_1 \oplus \ldots \oplus B_n) = (A \cap B_1) \oplus \ldots \oplus (A \cap B_n)$.

Proof: It is known and easy to check that $\oplus (A \cap B) \subseteq A \cap (\oplus B_i)$.

Let $a = \sum b_i \in A \cap [\oplus B_i]$ and let $\pi_k: \oplus_{i=1}^n B_i \rightarrow B_k$ be the projection map and i, i' are inclusion maps from $\oplus_{i=1}^n B_i$ and RB_k to B respectively. Since $\oplus B_i S$ is a direct sum, because each B_i is invariant, then by Proposition (32(i)) each π_k has an extension π'_k in S, i.e., $\pi'_k[i(a)] = i'[\pi_k(a)]$. Since A is fully invariant, then $\pi'_k(a) = \pi'_k[i(a)] = i'[\pi_k(a)] = \pi_k(a) = b_k \in A \cap B_k$ for each k where $a \in \oplus B_i (A \cap B_i)$. //

References:

شبه المقاسات شبه الاغمارية رئيسية

ختم صاحب حمزه الجبوري

قسم الرياضيات، كلية التربية للعلوم الصرفة، جامعة بابل، بابل، العراق.

الخلاصة:

تقدم في هذا العمل، مفهوم شبه المقاس الرئيس شبه الاغماري، ودرس الشروط التي تحتاجها للحصول على خصائص وصفات مشابهة كما في الموديولات.

سيما شبه المقاس B ريسا شبه اغماريا إذا كان لكل تشاكسل من أي شبه مقياس جزئي دوري من B يمكن توسيعه إلى تشاكسل في شبه حلقة التشاكسلات في B.

الكلمات المفتاحية: شبه المقاسات، شبه المقاسات شبه الاغمارية، شبه المقاسات شبه الاغمارية الرئيسية.