
Um-Salama Science Journal Vol.4(1)2007

158

On Training Of Feed Forward Neural Networks

Luma.N.Mohammed .Tawfiq*

Date of acceptance 6/9/2005

Abstract:
In this paper we describe several different training algorithms for feed forward

neural networks(FFNN). In all of these algorithms we use the gradient of the performance

function, energy function, to determine how to adjust the weights such that the

performance function is minimized, where the back propagation algorithm has been used

to increase the speed of training. The above algorithms have a variety of different

computation and thus different type of form of search direction and storage requirements,

however non of the above algorithms has a global properties which suited to all

problems.

INTRODUCTION:
Back propagation (BP) process

can train multilayer FFNN’s. With

differentiable transfer functions, to

perform a function approximation to

continuous function f Rn, pattern

association and pattern classification.

The term of back propagation to the

process by which derivatives of network

error with respect to network weights

and biases, can be computed. This

process can be used with a number of

different optimization strategies.

 There are two different ways in which

BP algorithms can be implemented;

incremental mode and batch mode .All

of algorithms, in this paper, operate in

the batch mode and are invoked using

certain type of training.

1.Variable Learning Rate

 With standard gradient descent, the

 learning rate is held constant through

out training. The performance of the

algorithm is very sensitive to the proper

setting of the learning rate. If the

learning rate is set too high, the

algorithm become unstable. If the

learning rate is too small, the algorithm

will take too long to converge. Our

numerical results shows that it is not

practical to determine the optimal setting

for the learning rate before training and,

in fact, the optimal learning rate changes

during the training process, as the

algorithm moves across the performance

surface.

 We now describe in some

detail one-dimensional search procedure

that is guaranteed to find a learning rate

satisfying the strong Wolfe conditions

(1). As before, we assume that ρ is a

search direction and that f is bounded

below along the direction . The

algorithm has two stages. The first stage

begins with a trial estimate 1, and

keeps increasing it until it finds either an

acceptable learning rate or an interval of

desired learning rates. In the latter case,

the second stage is invoked by calling a

function called zoom (Zoom Algorithm),

which successively decreases the size of

the interval until an acceptable learning

rates is identified. Now we introduce

Strong Wolfe Conditions:

f(wk + kk) f(wk) + 10
4
k

T
kf k ... (1a)

|f(wk + kk) k | 0.1|
T
kf k | …. (1b)

Variable Learning Rate

Algorithm:
Set 0 0, choose 1 > 0 and max.;

i 1;

*College of Education Ibn Al-Haitham, Baghdad University

Um-Salama Science Journal Vol.4(1)2007

159

repeat

Evaluate (i) ;

If (i) > (0) + 10
4
i(0) or [(i)

(i1) and i > 1]

* zoom (i1, i) and stop ;

Evaluate (i) ;

If | (i)| 0.1(0)

Set * i and stop ;

If (i) 0

Set * zoom(i-1, i) an stop ;

Choose i+1 (i, max)

i i +1,

end (repeat).

Note that, the sequence of trial

learning rates {i} is monotonically

increasing, but that the order of the

arguments supplied to the zoom function

may vary. The procedure uses the

knowledge that the interval (i i)

contains learning rate satisfying the

strong Wolfe conditions if one of the

following three conditions is satisfied:

(i) i violates the sufficient decrease

condition ;

(ii) (i) (i1) ;

(iii) (i) 0.

The last step of the algorithm

performs extrapolation to find the next

trial value i+1. To implement this step,

we can use approaches like the

interpolation procedures above, or we

can simply set i+1 to some constant

multiple of

We now specify the function

zoom, which will requires a little

explanation. The order of its input

arguments is such that each call has the

form zoom (Lo, hi), where:

a) The interval bounded by Lo and

hi contains learning rates that

satisfy the strong Wolfe conditions;

b) Lo is among all learning rates

generated so far and satisfying the

sufficient decrease condition, the one

giving the smallest function value;

and

c) hi is chosen so that (lo)(hi

10) < 0.

Each iteration of zoom

generates an iterate j between Lo and

hi, and then replaces one of these end

points by j in such a way that the

properties (a), (b) and (c) continue to

hold.

Zoom Algorithm :
Repeat

Interpolate (using quadratic, cubic ,

or bisection) to find a trial learning rate

j between lo and hi ;

Evaluate (j) ;

If (j)>(0)+104(0)or(j) (lo)

 hi j ;

else

 evaluate (j) ;

 if | (j)| 0.1(0)

 set * j and stop ;

 if (j)(hi lo) 0

 hi lo ;

 lo j ;

end (repeat).

 If the new estimate j

happens to satisfy the strong Wolfe

conditions, then Zoom has served its

purpose of identifying such a point, so it

terminates with * j. Otherwise, if j

satisfies the sufficient decrease

condition and has a lower function value

than αLo, then we set Lo j to

maintain condition (b). If this results in a

Um-Salama Science Journal Vol.4(1)2007

160

violation of condition (c), we remedy the

situation by setting hi to the old value

of Lo.

2. Resilient Backpropagation

(trainrp):
 Multilayer networks typically

use sigmoid transfer functions in the

hidden layers. These functions are often

called "squashing" functions, since they

compress an infinite input range into a

finite output range. Sigmoid functions

are characterized by the fact that their

slope must approach zero as the input

gets large. This causes a problem when

using steepest descent to train a

multilayer network with sigmoid

functions, since the gradient can have a

very small magnitude; and therefore,

cause small changes in the weights and

biases, even though the weights and

biases are far from their optimal values.

The purpose of the resilient back

propagation (Rprop) training algorithm

is to eliminate these harmful effects of

the magnitudes of the partial derivatives.

Only the sign of the derivative is used to

determine the direction of the weight

update; the magnitude of the derivative

has no effect on the weight update. The

size of the weight change is determined

by a separate update value. The update

value for each weight and bias is

increased by a factor delt_inc whenever

the derivative of the performance

function with respect to that weight has

the same sign for two successive

iterations. The update value is decreased

by a factor delt_dec whenever the

derivative with respect that weight

changes sign from the previous iteration.

If the derivative is zero, then the update

value remains the same. Whenever the

weights are oscillating the weight change

will be reduced. If the weight continues

to change in the same direction for

several iterations, then the magnitude of

the weight change will be increased.

3.BFGS Algorithm (TRAINBFG);
 The basic step of this method is

x k+1 = xk - Ak
-1

 gk

where Ak is the Hessian matrix (second

derivatives)[1] of the performance index

at the current values of the weights and

biases and gk is the gradient of the error

surface at w(k). This method often

converges faster than conjugate gradient

methods. Unfortunately, it is complex

and expensive to compute the Hessian

matrix for FFNN. There is a class of

algorithms that is based on Newton's

method, but which doesn't require

calculation of second derivatives. They

update an approximate Hessian matrix at

each iteration of the algorithm. The

update is computed as a function of the

gradient. The BFGS method that has

been most successful in published

studies is the Broyden, Fletcher,

Goldfarb, and Shanno update. This

algorithm has been implemented in the

trainbfg routine.

For a very large ANN it may be better to

use resilient BP or one of the CG

algorithms. For smaller ANN, however,

BFGS algorithm can be used as an

efficient training function.

4. One Step Secant Algorithm

(TRAINOSS);
 Since the BFGS algorithm

requires more storage and computation

in each iteration than the conjugate

gradient algorithms, there is need for a

secant approximation with smaller

storage and computation requirements.

The one step secant (OSS) method is an

attempt to bridge the gap between the

conjugate gradient algorithms and the

quasi-Newton (secant) algorithms. This

algorithm does not store the complete

Hessian matrix; it assumes that at each

iteration, the previous Hessian was the

identity matrix. This has the additional

advantage that the new search direction

can be calculated without computing a

matrix inverse. This algorithm requires

less storage and computation per epoch

than the BFGS algorithm. It requires

Um-Salama Science Journal Vol.4(1)2007

161

slightly more storage and computation

per epoch than the conjugate gradient

algorithms. It can be considered a

compromise between full quasi-Newton

algorithms and conjugate gradient

algorithms.

5. LM Algorithm (TRAINLM):
 The Levenberg-Marquardt (LM)

algorithm was designed to approach

second order training speed without

having to compute the Hessian matrix.

When the performance function has the

form of a sum of squares, then the

Hessian matrix can be approximated as

H J
T
J and the gradient can be

computed as g J
T
e, where J is the

Jacobian matrix, which contains first

derivatives of the network errors with

respect to the weights and biases, and e

is a vector of network errors. The LM

algorithm uses this approximation to the

Hessian matrix in the following Newton

update: w(k +1) w(k) [J
T
J + I]

1
J

T
e

.

When the scalar 0, this is just

Newton’s method. When is large, this

becomes gradient descent with a small

step size.

The training parameters for trainlm are

epochs, show, goal, time, min_grad,

max_fail, mu, mu_dec, mu_inc,

mu_max, mem_reduc. The parameter

mu is the initial value for µ. This value is

multiplied by mu_dec whenever the

performance function is reduced by a

step. It is multiplied by mu_inc

whenever a step would increase the

performance function. If mu becomes

larger than mu_max, the algorithm is

stopped. The parameter mem_reduc is

used to control the amount of memory

used by the algorithm.

6. CG Algorithms (TRAINCG):
The conjugate gradient (CG) algorithms

perform a search along conjugate

directions, which produces generally

faster convergence than gradient descent

directions [Hagan and Beale, 1996]. The

CG algorithms start out by searching in

the gradient descent direction (negative

of the gradient) on the first iteration ,0

 g0. Then the next search direction is

determined so that it is conjugate to

previous search directions, that is:

w(k+1) w(k) + k k . Where k

gk + k k1 .

The various versions of CG are

distinguished by the manner in which the

k is computed.

In this paper, we will present six

different variations of CG algorithms

with a comparison between them. In

most of the training algorithms a

learning rate is used to determine the

length of the weight update (step size).

In most of the CG algorithms, the step

size is adjusted at each iteration. A

search is made along the CG direction to

determine the step size, which will

minimize the performance function

along that line search. The CG

algorithms that usually used in FFNN as

a training algorithm is much faster than

variable learning rate back propagation,

and are sometimes faster than Resilient

BP, although the results will vary from

one problem to another.

 The general procedure for

determining the new search direction is

to combine the new gradient descent

direction with the previous search

direction: k gk + k k1 .

For Fletcher-Reeves update procedure

(TRAINCGF)[2] : k

1k
T

1k

k
T
k

gg

gg

For the Polak - Ribiere update

(TRAINCGP) [3] : k

1k
T

1k

k
T

1k

gg

gg

Um-Salama Science Journal Vol.4(1)2007

162

For the Dixon update (TRAINCGD) [4] :

k

1k
T

1k

k
T
k

g

gg

For the Al-Assady and Al-Bayati update

(TRAINCGA) [5]: k

k
T

1k

1k
T
k

g

gg

For the Hestenes - Stiefel update

(TRAINCGH) [6] : k

1k
T

1k

1k
T
k

g

gg

For Reyadh – Luma update

(TRAINCGR): k

1k
T

1k

1k
T
k

g

gg

The training parameters are :epochs,

show, goal, time, min-grad, sigma, max-

fail, lambda, srchFcn.

The training status will be displayed

every show iterations of the algorithm.

The other parameters determine when

the training is stopped. The training will

stop when the number of iterations

exceeds an epochs, if the performance

function drops below goal, if the

magnitude of the gradient is less than

mingrad or if the training time is longer

than time in seconds. The parameter

srchfcn is the name of the line search

function and the parameter sigma

determines the change in the weight for

the second derivative approximation .

The parameter lambda regulates the

indefiniteness of the derivative.

Remark:
1- For all CG algorithms, the search

direction will be periodically reset to the

negative of the gradient. The standard

reset point occurs when the number of

iterations is equal to the number of

FFNN parameters (weights and biases).

2- For all CG algorithms, the

parameters show and epoch set to 5 and

300, respectively.

Each of the CG algorithms, which we

have discussed so far, requires a line

search at each iteration. This line search

is computationally expensive, since it

requires that the ANN response to all

training inputs which should be

computed several times for each search.

But the other hand one can designed an

algorithm to avoid the time consuming

for performing line search. results for

many different problems. It does require

the computation of the derivatives (back

propagation) in addition to the

computation of performance function,

but it over comes this limitation by

locating the minimum with fewer steps.

7. SPEED AND MEMORY

COMPARISON:
It is very difficult to know

which training algorithm will be the

fastest for a given problem. It will

depend on many factors including the

complexity of the problem, the number

of data points in the training set, the

number of weights and biases in the

FFNN, the error goal, and whether the

FFNN is being used for pattern

recognition (discriminant analysis) or

function approximation (regression).

In general, on FFNN’s which

contain up to a few hundred weights the

LM algorithm will have the fastest

convergence. The trainrp function is the

fastest algorithm on pattern recognition

problems. However, it does not perform

well on function approximation on

problems. The CG algorithms, in

particular traincgp, seem to perform well

over a wide variety of problems,

particularly for FFNN’s with a large

number of weights. The traincgr

algorithm is almost as fast as the LM

algorithm on function approximation

problems (faster for large FFNN’s) and

Um-Salama Science Journal Vol.4(1)2007

163

is almost as fast as trainrp on pattern

recognition problems. The CG

algorithms have relatively modest

memory requirements.

The trainbfg performance is

similar to that of trainlm. It does not

require as much storage as trainlm, but

the computation required does increase

geometrically with the size of the FFNN,

since the equivalent of a matrix inverse

must be computed at each iteration. Of

the CG algorithms, the traincgd requires

the most storage, but usually has the

fastest convergence. The traincgh and

traincga have easily implemented for

large problem.

The variable learning rate

algorithm traingdx is usually much

slower than the other methods and has

about the same storage requirements as

trainrp but it can still be useful for some

problems. For most situations, we

recommend that we try to use the LM

algorithm first, if this algorithm requires

too much memory, then try traincgp or

traincgr or trainbfg algorithm. The

following table gives some example

convergence times for the various

algorithms on one particular regression

problem. In this problem a 1-15-1

FFNN’s was trained on a data set with

41 input/output pairs until a mean square

error performance of 0.009 was

obtained. Twenty different test runs were

made for each training algorithm to

obtain the average numbers shown in the

table.

Function Technique Time(sec) Epochs

Trainrp Rprop. 12.95 185

Traincgh Hestenes-stiefel CG 27.22 112

Traincgf Fletcher-Powell CG 18.03 94

Traincgp Polak-Ribiere CG 18.66 79

Traincgd Dixon CG 24.53 101

Traincgr Reyadh-Luma CG 14.98 58

Trainbfg BFGS Alg. 9.76 38

Trainlm LM Alg. 2.07 8

Traingdx Variable learning rate 63.17 124

Traincga Al-Assady and Al-Bayati

CG

7136 54

Now we introduce the

following problem. 1-5-1 network, with

tansig transfer functions in the hidden

layer and a linear transfer function in the

output layer, is used to approximate a

single period of a sine wave. The

following table summarizes the results

of training the ANN using nine different

training algorithms. Each entry in the

table represents 30 different trials, where

different random initial weights are used

in each trial. In each case, the ANN is

trained until the squared error is less than

0.002. The fastest algorithm for this

problem is the LM algorithm. On the

average ,it is over four times faster than

the next fastest algorithm. This is the

type of problem for which the LM

algorithm is best suited -- a function

approximation problem where the

network has less than one hundred

weights and the approximation must be

very accurate.

Algorithm Mean.Time(s) Min.Time(s) Max.Time(s)

LM 1.14 0.65 1.83

BFG 5.22 3.17 14.38

RP 5.67 2.66 17.24

CGF 7.86 3.57 31.23

CGP 8.24 4.07 32.32

OSS 9.64 3.97 59.63

CGR 5.92 2.31 16.47

CGA 27.69 17.21 258.15

CGD 6.09 3.18 23.64

CGH 6.61 2.99 23.65

The performance of the various

algorithms can be affected by the

accuracy required of the approximation.

8. LIMITATIONS AND

CAUTIONS:
The gradient descent algorithm

is generally very slow, because it

requires small learning rates for stable

learning. The momentum variation is

usually faster than simple gradient

descent, since it allows higher learning

rates while maintaining stability, but it is

still too slow for many practical

applications. These two methods would

normally be used only when incremental

training is desired. Multi-layered

Um-Salama Science Journal Vol.4(1)2007

164

networks are capable of performing just

about any linear or non-linear

computation, and can approximate any

reasonable smooth function arbitrarily

well. Such networks overcome the

problems associated with the feed

forward and linear networks.

Picking the learning rate for a

non-linear network is still an open

problem. As with linear networks, a

learning rate that is too large leads to

unstable learning. Conversely, a learning

rate that is too small results in incredibly

long training times. Unlike linear

networks, there is no easy way of

picking a good learning rate for non-

linear multilayer networks.

The error surface of a non-

linear network is more complex than the

error surface of a linear network. The

problem is that non-linear transfer

function in multilayer networks

introduce many local minima in the error

surface. Settling in a local minimum may

affect the convergence and depending on

how close the local minimum is to the

global minimum and how low an error is

required. In any case, be cautioned that

although a multilayer back propagation

network with enough neurons can

implement just about any function, back

propagation will not always find the

correct weights for the optimum

solution.

References:
1. Yegnanarayana. B. 2000. Artificial

Neural Networks, Newdelhi .

2. Fletcher.R.and Reeves.C.M.,

1964.Function Minimization by

Conjugate Gradients, Computer

Journal, (7): 149 –154 .

3. Polak .E .and Ribiere. G. 1969. Note

sure La Convergence does methods

Directions Conjugate, Rev. Fr. Infr,

Rech open, 16-R1, (6):86-97.

4. Dixon. L.G. 1975. Conjugate

Gradient algorithms quadratic

termination with out linear search,

Jor. of Tnst. of Math. and its

applications ,(15):124-131.

5. Al - Bayati and Al – Assady N.

1996. Conjugate Gradient Methods,

Technical Research Report, NO.1,

School of Computer Studies, Leeds

University, U. K.,(1):76-83.

6. Hestenes M. R. and Stiefel E. 1952.

Methods of Conjugate Gradient for

Solving linear System, J. Res. NBS,

(49):214-225.

 حـول تدريـب الشبكـات العصبيـة الصنـاعيـة

 *لمى ناجي محمد توفيق

 /كلية التربية ابن الهيثم /جامعة بغدادقسم الرياضيات أ.م.د. *

 الخلاصة:

كـ تلـ التقدميـة ويـ يتضمن البحث مناقشة أنواع مختلفـة من خوارزميات تدريب الشبكات العصبيــة اات التغايــة
ـا مشتقـة دالـة الطاقـة لتحديد كيفيـة ضبط الأوزان بحيث تصبح دالـة الطاقـة أصغر ما يمكـن الخوارزميـات استخدمن

و لقد استخدمنـا خوارزميــة اننتشـار المرتــد لزيــادع سراــة التـدريب. تختلـر الخوارزميـات أاـبا يـ حسـاباتها و
د أثبتـت النتـا ا العمليــة بـين أيـا مــن لـال نحصـ الـي صـين متنواـة يـ اتجـاا التفتـين و الخـزن الـاف تقتضيــ يقـ

 الخوارزميات أابا ن تمتل خواص ر يسية مث انستقراريـة و التقـارب و الت تجعلها مناسبة لك المسا ـ .

