Correlation between Particulate Matter 10 (PM$_{10}$) Exposure Time and Black Dots in Buccal Cells of Medan Landfill Recycling Workers

T. K. Intan1,2, M. Ichwan3,4, D. Munir5, N. N. Soeroso6, A. P. Tarigan6, Z. Yamamoto7, N. C. Siregar8

1Department of Anatomical Pathology, Faculty of Medicine, Universitas Sumatera Utara, Indonesia.
2Faculty of Medicine, Universitas Sumatera Utara, Indonesia.
3Department of Pharmacology & Therapeutic, Faculty of Medicine, Universitas Sumatera Utara, Indonesia.
4Faculty of Medicine, Universitas Sumatera Utara, Indonesia.
5Department of Ear, Nose and Throat, Head and Neck, Faculty of Medicine, Universitas Sumatera Utara, Indonesia.
6Department of Pulmonology and Respiratory, Faculty of Medicine, Universitas Sumatera Utara, Indonesia.
7Department of Histology, Faculty of Medicine, Universitas Sumatera Utara, Indonesia.
8Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia.

*Corresponding Author.

Received 20/10/2023, Revised 12/04/2024, Accepted 14/04/2024, Published Online First 20/05/2024

© 2022 The Author(s). Published by College of Science for Women, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This research explores the link between particulate matter (PM$_{10}$) exposure and number of black dots in buccal epithelial cell nuclei in recycling workers (PDU), at the Medan City landfill, Indonesia. The study aims to identify the correlation PM$_{10}$ levels, pollutant characteristics at the landfill, the appearance of AgNOR-expressed black dots in PDU groups. The measurements of PM$_{10}$ exposure were carried out in open landfills in Medan city, and the subject of study is recycling workers who worked in landfills. Buccal epithelial cells were collected using an oral cytobrush smear, and the black dots were examined cytologically. Statistical analysis assessed the relationship between prolonged PM$_{10}$ exposure and the number of black dots. The study found that most recycling workers were older than 55 (36%), with significant pollution exposure effects indicated by a higher average number of black dots in their buccal cells compared to non-recycling workers (BPDU), with the highest numbers in the 36-45 and 46-55 age groups (each 30%). When looking at their work hours, more than half of BPDU workers (52%) worked for 8 hours a day, and the majority of PDU also worked for the same duration of time. This suggests an association between their occupational exposure to environmental pollutants and health impacts, also considering age and work hours. The findings underscore the need to factor in these aspects when addressing worker health in polluted environments.

Keywords: AgNORs, black dots, buccal epithelial cells, early detection, malignancy, Open landfill, recycling workers.

Introduction

Indonesia, with a population of 251 million people, plays a substantial role in waste production in Asia, contributing 0.7 kg/person/day. A study revealed that Medan ranked fourth among Indonesian cities,
generating 3,730,953.8 kg/day of urban waste, following Jakarta and Surabaya. Across various Indonesian cities, a comprehensive analysis detected 15 heavy metals in ambient air, including sodium, calcium, magnesium, and zinc, all of which have associations with morbidity. Open urban waste landfill sites are significant sources of anthropogenic gas emissions, particularly methane and particulate matter (PM$_{10}$), resulting from incomplete waste combustion. This incomplete combustion leads to environmental pollution, encompassing human, animal, and natural ecosystems. Studies in India, Indonesia, and the Philippines identified carcinogenic substances such as aldrin, asbestos, cadmium, chromium, mercury, and volatile inorganics in landfill environments. Therefore, it is necessary to investigate the emissions of hazardous gases and pollutants in Indonesia as these have adverse effects on human health, particularly about respiratory disorders and the potential risk of cancer in those exposed.

Landfill-generated particulate matter 10 (PM$_{10}$), particles with a diameter of 10 micrometers or less, pose respiratory risks. Exposure dosage depends on PM$_{10}$ concentration, aerodynamic diameter, deposition rate, and respiratory system cleaning mechanisms. PM$_{10}$ exposure has been linked to respiratory problems and changes in cells of the nose and throat, with studies in Nigeria and India showing a connection to nose and throat cancers. Workers at recycling landfill sites experience lung function issues and cell alterations. Different types of elements in PM$_{10}$ and combustion emissions are what lead to molecular-level studies of black dots that appear after being exposed to PM$_{10}$ and black carbon in the air. Polycyclic aromatic hydrocarbons in ambient air, considered carcinogenic, exhibit mutagenic and epigenetic effects by binding with DNA, RNA, and cellular proteins. Chemical pollutants in the environment kill over 13 million people every year through epigenetic processes like changes in DNA methylation, histone modification, and microRNA. This causes global hypomethylation, which is linked to many types of cancer. PM$_{10}$ exposure is linked to hypermethylation of genes like p16 (ink4a), APC, SYK, and CCND2. A previous study suggests using samples from lung or nasal organs as biomarkers for detecting the impact of environmental pollutants, including metals like Cd, As, Co, and Cr, on humans. Some studies have found that environmental pollution causes over 13 million deaths annually, with 24% linked to epigenetics, including DNA methylation, histone modification, and microRNA, playing a crucial role as etiological factors in various diseases. Scientists are still looking into the molecular mechanisms that make PM$_{10}$ cause cancer. They are focusing on epigenetic changes and the possibility of using biomarkers to find out how environmental pollutants affect people's health.

The oral cavity, as the first entry point for various harmful substances, reflects systemic conditions, and its moist mucosal layer serves as the primary barrier against potential hazards like microorganisms or toxic substances. The oral epithelial cells, observed for early genotoxic events induced by carcinogenic agents through inhalation and ingestion, are crucial targets of karyolysis. Using a cytobrush and Papanicolaou staining to look at the cytogenetics of buccal epithelial cells from fuel station workers in Yogyakarta showed a lot of cytogenetic damage, such as pyknosis, karyorrhexis, and karyolysis. Prasanna and team conducted a study on the proliferation index of buccal epithelial cells, analyzing 90 samples from normal, smoker, and betel chower groups to demonstrate the utility of Argyrophilic Nucleolar Organizing Regions (AgNORs) cytology staining as a method to screen large populations likely to be exposed to carcinogenic pollutants, such as PM$_{10}$. The argyrophilic protein selectively binds with silver and two proteins involved in tRNA transcription, resulting in the formation of black dots. Therefore, the expression of black dots via AgNORs in a nucleolus cell could serve as an indicator of the binding of carcinogenic pollutants. Recycling workers, who are at high risk of carcinogenic exposure in landfills, are informal workers reliant on surrounding litter for their livelihood. Consequently, understanding any associations linked to cancer development is crucial, emphasizing the need for effective strategies to protect public health, which remains a major concern.

This study aims to investigate the relationship between PM$_{10}$ and the expression of buccal epithelial
cells of waste recycling workers (PDU) in landfill sites, specifically in Indonesia, where such research is lacking. The goal is to identify the correlation and ratio of PM$_{10}$ and pollutant characteristics at the Medan City landfill site concerning the number of black dots in the nuclei of buccal epithelial cells in the recycling workers' group (PDU). The research results will help us to understand the meaning of the black dots found in the nuclei of buccal epithelial cells, as shown by AgNORs staining. This is especially important for the high-risk PDU group in Indonesia, especially in Medan, where the Medan City landfill site raises the risk of cancer.

Materials and Methods

Research Design
This cross-sectional study looks at how exposure to PM$_{10}$ affects the number of black dots found in the nuclei of buccal epithelial cells using AgNORs staining in recycling workers.

Research Population and Sample
The research population comprises recycling workers at the landfill site in Medan, specifically in Desa Terjun, Sub-district Medan Marelan, Medan city, based on predefined geographical maps. Respondents were selected based on PM$_{10}$ concentration mapping, and their willingness to participate served as the sampling criterion. The control group consists of non-recycling community members located in Medan city districts with normal PM$_{10}$ concentrations.

The study sample included recycling workers (PDU) at the landfill site in Desa Terjun, Kecamatan Medan Marelan, Kota Medan, meeting inclusion and exclusion criteria. The control group consisted of non-recycling community members located in Medan city districts with normal PM$_{10}$ concentrations.

Sample size calculations were performed for each variable under examination. For the first variable, investigating the relationship between PM$_{10}$ exposure and black dots occurrence in recycling workers at the landfill, the sample size was calculated using the following equation based on a previous study19 to satisfy statistical analysis for unmatched categorical data analysis:

$$n_1 = n_2 = 2 \left(\frac{Z_\alpha + Z_\beta S}{x_1 - x_2} \right)^2$$

With n as the sample size needed; Z_α is the critical value from the standard normal distribution corresponding to the desired significance level α, equal to 1.96; Z_β is the critical value corresponding to the probability of a Type II error; S is the pooled standard deviation of the outcomes; x expected means. Thus, the required sample size is 47 individuals.

PM$_{10}$ Data Collection
The data collection methods for PM$_{10}$ in this study involve both primary and secondary data. Secondary data include the quantity and types of waste transportation equipment, wind speed and direction, and surrounding data around the landfill site in Desa Terjun, TPA Terjun. Primary data encompass the concentration of pollutant parameters such as SO$_2$, CO, NO$_2$, O$_3$, HC, and PM$_{10}$ at the landfill location. The table 1 below outlines the methods used for collecting primary data:

<table>
<thead>
<tr>
<th>No</th>
<th>Parameter</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PM$_{10}$</td>
<td>Air Quality Detector</td>
</tr>
<tr>
<td>2</td>
<td>Carbon Monoxide (CO)</td>
<td>Air Quality Detector</td>
</tr>
<tr>
<td>3</td>
<td>Nitrogen Dioxide (NO$_2$)</td>
<td>*SNI 7119-2:2017</td>
</tr>
<tr>
<td>4</td>
<td>Sulfur Dioxide (SO$_2$)</td>
<td>*SNI 7119-7:2017</td>
</tr>
<tr>
<td>5</td>
<td>Ozone (O$_3$)</td>
<td>*SNI 7119-8:2017</td>
</tr>
<tr>
<td>6</td>
<td>Hydrocarbons (HC)</td>
<td>Air Quality Detector</td>
</tr>
</tbody>
</table>

*SNI = Indonesian National Standard
The parameters for PM$_{10}$ were assessed in accordance with the Indonesian Standard Air Quality Ambient guidelines measured by the local staffs of the Local Environmental Division Services, as outlined in Appendix VII of Government Regulation No. 21 of 2021. The pollutants were quantified using the equation:

$$C_2 = C_1 \left(\frac{t_1}{t_2} \right)^p$$

In this equation, C_1 represents the pollutant parameter concentration per hour (μg/m3), t_1 is equivalent to one hour, t_2 is 24 hours, and p is a constant with a value of 0.18.

The concentrations of CO, NO$_2$, SO$_2$, O$_3$, and HC were determined according to the air pollutant standard index issued by the Indonesian Ministry of Environment and Forestry, No. 14 of 2020. This is calculated as follows:

$$I = \left(\frac{I_a - I_b}{X_a - X_b} \right) (X_x - X_b) + I_b$$

In this equation, APSI is an integer; I_a and I_b are the upper and lower limits, respectively. X_a is the upper limit of ambient concentration (μg/m3), X_b is the lower limit of ambient concentration (μg/m3), and X_x is the real-time measurement of ambient concentration (μg/m3).

Procedure for buccal epithelial cells and AgNORs staining

The procedure for collecting cytological specimens of buccal epithelial cells and AgNORs staining involves the removal of specimens by healthcare professionals, both at the landfill site and in the community. The AgNORs staining examination is conducted at the Pathological Anatomy Laboratory, Faculty of Medicine, University of Sumatera Utara (FK USU). The interpretation of staining results and cytology specimen evaluation were evaluated, assisted by a pathology expert.

Before buccal epithelial cell samples are taken, research subjects go through a full oral hygiene routine. This includes gargling to get rid of extra saliva and oral debris. Subsequently, subjects follow up with gargling using betadine mouthwash after the sample collection. The necessary tools for buccal epithelial cell smear collection, such as a cytobrush, glass slides, fixation alcohol solution, gloves, and a storage box for microscopic specimens, are then prepared. The cytobrush procedure is conducted by placing the brush in the left and right buccal cavities, rotating it 360° several times, and gently applying the brush to the glass slide in a circular motion. Following the procedure, the glass slide is immersed in an ethanol solution for 15 minutes, and the specimen is air-dried before storage for subsequent staining.

Following the collection of cytological smears from the oral cavity, the specimens undergo a meticulous staining process for AgNOR analysis. The specimens are immersed in a silver staining solution, comprising 1 part 2% gelatin in 1% formic acid and 2 parts 25% silver nitrate solution, maintained at 37°C for precisely 11 minutes. The staining reaction is carefully halted by washing the slides with distilled water to eliminate any non-specific silver precipitate. Following that, there is a quick counterstaining step using light green for one minute and then a running water rinse. Gradual dehydration of the specimens is achieved through a series of ethanol concentrations (50%, 70%, and 95%). Subsequently, the slides are air-dried to completion before being mounted for microscopic examination. The final step involves scrutinizing the specimens under a light microscope at a powerful 1000x magnification. The evaluation focuses on quantifying AgNOR parameters, with particular attention to AgNOR, requiring the enumeration of cells exhibiting more than 5 black dots in every 100 observed cells.

Statistical Analysis

The gathered data will be subjected to analysis using the statistical program SPSS v20. Univariate analysis will be conducted to obtain mean values, standard deviation, median, minimum, and maximum values. Prior to this, all data will undergo a normality test using the Shapiro-Wilk test, where a p-value > 0.05 indicates a normal distribution. To examine the relationship between PM$_{10}$ and AgNORs, multivariate analysis will be carried out using multiple linear regressions. The goal of this test is to find out what factors affect the amount of AgNORs expressed in cells in the buccal cavity and what factors are different between people who were
exposed to PM10 and people who were not exposed to PM\textsubscript{10}. A significance level of p < 0.05 means that the results are statistically significant.

Research Ethics
This research was conducted after obtaining approval from the Research Ethics Committee of the University of Sumatera Utara with the given number No:1092/KEP/USU/2021. Following approval, the subsequent steps were as follows: (1) Acquire a location permit letter from the Department of Cleanliness and Greenery of Medan City; (2) Conduct a briefing for the respondents who have signed the informed consent form provided by the authors.

Results and Discussion

The Open-Landfill Terjun comprises an active zone and an inactive zone. The active zone serves as the area actively utilized for waste stacking and accumulation processes, while the inactive zone refers to the area not involved in waste stacking and accumulation processes. Points 1 through 3 (UA-1, UA-2, and UA-3) represent the active zone in this research location and point 4 (UA-4) represents one inactive zone for comparison purposes. The division of these zones introduces variations in the activities taking place within them. Waste management activities at TPA Terjun primarily occur in the active zone, involving tasks such as registering and weighing waste transport trucks, as well as levelling and compacting waste using heavy machinery like excavators and bulldozers. As a comparison of the air quality in ambient conditions, Fig. 1 below shows the air quality in TPA Terjun and the National Ambient Air Quality Standards (NAAQS) issued by the US Agency.

![Figure 1. The concentration of PM\textsubscript{10} at the TPA Terjun and its comparison to the NAAQS standard](image)

The elevated levels of PM\textsubscript{10} in this study emanate from various activities within the landfill, including waste loading and unloading, transportation, waste covering, and accumulation, as well as the chaotic actions of waste pickers, leading to airborne particulate matter. Besides PM\textsubscript{10}, the sampling results also detected emissions of several gases, such as sulfur dioxide (SO\textsubscript{2}) with \(<11.7\text{–}<11.7 \, \mu g/m^3\) (SNI 7119-7:2017), nitrogen dioxide (NO\textsubscript{2}) with 32.01 – 73.80 \, \mu g/m3 (SNI 7119-2:2017), CO with 238 – 212.6 \, \mu g/m3 (Air Quality Detector), O\textsubscript{3} with 19.74 – 24.85 \, \mu g/m3 (SNI 7119-8:2017) and HC with 25.5 – 30.6 \, \mu g/m3 (Air Quality Detector). A significant negative consequence of the open dumping system at the landfill is the deterioration of air quality. The waste disposal method in Medan, specifically at the open dumping site located in Kelurahan/Desa Terjun, Kecamatan Medan Marelan, has been operating since 1993, contributing to air quality degradation as the population increases. Approximately 66% of waste management practices in Indonesia terminate in open dumping sites, as reported by the Ministry of Forestry and Environment in 202120. Ambient air pollutant parameters around the landfill can be categorized as conventional pollutants and greenhouse gas pollutants. Conventional pollutants include particulate matter, SO\textsubscript{2}, NO\textsubscript{2}, H\textsubscript{2}S, CO, HC, and O\textsubscript{3}, while the predominant greenhouse gas emitted at the open dumping site is methane (CH\textsubscript{4}). Other frequently found parameters at the landfill include odors, H\textsubscript{2}S, Pb, Polychlorinated dibenzo-p-dioxins dibenzofurans (PDDs/Fs), and particulate matter21. The research outcomes emphasize that poorly managed landfills pose environmental and public health disturbances.

Recyclers and the local community near the landfill, particularly recycling workers, are exposed to particulate matter and pollutants, necessitating attention due to their direct impact on public health.
This is associated with recycling workers' activities in waste sorting, waste transport vehicle operation, and occurrences of fires managed by personnel and recycling workers, affecting ambient air quality. Pollutant parameters around the landfill include both conventional and greenhouse gas pollutants. Air pollutant parameters around the landfill can be characterized as both conventional pollutants and greenhouse gas pollutants. The pollutants not only diminish air quality but also lead to secondary impacts, such as public health disturbances. Parameters identified in this study include SO₂, CO, NO₂, Total Suspended Particles (TSP), O₃, HC, PM₁₀ and lead, aligning with findings from other studies.

The characteristics of the research respondents based on age are depicted in Table 4 for the PDU group and Table 5 for the BPDU group.

Table 4. Distribution of PDU groups based on age

<table>
<thead>
<tr>
<th>No.</th>
<th>Age (years)</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26-35</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>36-45</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>46-55</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>>55</td>
<td>18</td>
<td>36</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 5. Distribution of BPDU groups based on age

<table>
<thead>
<tr>
<th>No.</th>
<th>Age (years)</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18-25</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>26-35</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>36-45</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>46-55</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>>55</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4 displays the distribution of the PDU group based on age, revealing that the majority fall in the age group of over 55 years, comprising 18 individuals (36%). Furthermore, Table 5 illustrates the characteristics of the BPDU group, where participants range in age from 18 to over 55 years.

Recycling workers, often referred to as waste pickers or scavengers, play a crucial role in supporting family economic sectors, particularly in lower socio-economic groups. These individuals depend on the informal waste sector for their livelihoods, which involves working without employment contracts (non-permanent workers), lacking regular income, using simple tools without protection, and facing high risks and vulnerability to various diseases. Thirarattanasunthon conducted a study in Thailand to understand the health risks faced by these unprotected workers, their health knowledge, behaviors, and gender aspects. The study was conducted on recycling workers, with a control group provided with protective equipment and a group without any protection. The motivation for this research was the growing and increasing waste problem in Thailand, and the fact that recycling workers from lower socio-economic backgrounds rely on this work to supplement their family income. This situation poses a significant threat to the health of recycling workers. The study found that the average age of recycling workers ranged from 14 to 60 years, with an average age of 43.59 years. The most common age group was between 36-45 years.
(30%). Analyzing the subject characteristics based on gender, it is evident that the majority of recycling workers are male, accounting for 56%, while females make up 44%. These findings align with studies conducted by Thirarattanasunthon and other researchers such as Hafiar and Subekti reports.29,30 The age and gender distribution of recycling workers highlight the demographic challenges and health risks associated with this occupation.

Workers exposed to and at high risk from waste include government employees managing landfill sites, waste collectors, and communities surrounding landfill areas. The risk of pollutant and waste exposure depends on the protection and equipment used, as well as the duration of employment as a recycling worker. Respiratory tract infections and complications from inhaled particulate matter are among the impacts experienced by recycling workers.31,32

Respondents’ characteristics based on working hours in PDU and BPDU groups

The distribution of working hours per day for the PDU group is presented in Table 6, where the majority works 8 hours a day, comprising 46% of the workers. Beyond age and gender characteristics, critical aspects include employment status, duration of work in years, the number of working days per week, and the number of working hours per day, all of which significantly impact health. The entire recycling worker group in this study consists of non-permanent workers (100%). The research indicates that most recycling workers have been employed for more than 10 years (74%) and engage in waste sorting for an average for 9.04±3.69.

Table 6 reveals the distribution of the PDU group based on the number of working hours per day. The working hours for the BPDU group are outlined in Table 7, where 52% work for 8 hours. The correlation between the duration of work and the number of working hours for recycling workers at the TPA Terjun site significantly impacts their health, especially when working without protection and having low knowledge of pollutant risks and toxic materials found in the TPA Terjun’s area. Apart from particulate matter, the toxicity mechanism due to inhaled pollutants can lead to both local and systemic damage in the body.

In this study, the community group serves as a control, located outside the TPA Terjun in the Medan Marelan District, not working as recycling workers, and situated in the Kota Medan District with low and normal PM$_{10}$ concentrations. The majority of community workers are female (66%), and males comprise 34%, with the highest age group falling between 36-45 years (30%) and 46-55 years (30%). The observed phenomena can be attributed to several factors. Firstly, the community was assembled through a network of individuals in the surrounding district, where the PM$_{10}$ threshold value is within normal limits. After the community was gathered, they were educated about this study. The location being an office area resulted in the presence of working-age participants under 55 years (pre-retirement age). Lastly, the selection of participants was skewed towards women due to discussions related to smoking issues, which led to more women participating as samples compared to men.

<table>
<thead>
<tr>
<th>No.</th>
<th>Working hours</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>13</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>26</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Working hours</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>23</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
Analysis of Differences and Ratios in the Number of Black Dots in the Nuclei of Buccal Epithelial Cells Expressing AgNORs in the PDU and BPDU Groups

A statistical test (t-test) was used to look at the differences and ratios in the number of black dots inside the nuclei of buccal epithelial cells expressing AgNORs in the PDU and BPDU groups. Fig. 2 shows a significant difference with a value of \(P=0.0001 \), indicating that the number of black dots in the nuclei of buccal epithelial cells expressing AgNORs is higher in the PDU group compared to the BPDU group.

The analysis using the AgNOR staining technique is commonly utilized to explain the prognosis of malignant lesions. Argyrophilic proteins, which define NORs, show up as black dots inside the nucleus. The number of black dots found is closely related to proliferation and differentiation, serving to differentiate between normal, benign, and malignant lesions. The calculation procedure follows Crocker's method, utilizing an Olympus Binocular Microscope (Model CY21Fs1) with a magnification of 1000x under immersion oil and an LCD HDMI Samsung (Model S22D300HY – Type LS22D300).

There are several steps involved in standardization: (1) Count all structures displaying black dot patterns, whether inside or outside cell groupings, (2) Calculate the count per cell grouping, (3) Tally the number of black dots in satellite cells. Once tallied, the mean value for each specimen is computed as the result representing the number of black dots in each specimen.

Figure 2. Mean differences and ratios (±SD) of black dots in the nuclei of buccal epithelial cells expressing AgNORs between PDU and BPDU groups

Figure 3. Photomicrographs of buccal epithelial cells in the PDU group expressing AgNORs (1000x) with high proliferation (>5 black dots in the nuclei of buccal epithelial cells, a, b, and c).

Photomicrographs of buccal epithelial cells in the BPDU group expressing AgNORs (1000x) with low proliferation (<3 black dots in the nuclei of buccal epithelial cells, d, e, and f).

Particulate Matter (PM\(_{10}\)) induces both direct and indirect DNA damage and cellular modification. The interaction of PM\(_{10}\) with cell plasma membranes, receptors, and ion channels triggers a biological
response in cells, leading to the formation of reactive oxidative stress (ROS). ROS alters the cellular redox cycle, initiating a cascade of processes, including inflammation, apoptosis, and damage to protein, lipid, and nucleotide molecules. In fact, every cell type has three options in its cycle: division, non-division, or cell death (apoptosis), as a response to internal and external signals, ultimately resulting in cell dysregulation causing uncontrolled cell proliferation and, consequently, cancer. Ultimately, cell dysregulation results in the manifestation of cell proliferation, one of which is seen in the form of black dots, implying cellular changes within the cells. Fig. 2 above shows the differences in the expression of black dots found in the nuclei of buccal epithelial cells in the PDU and BPDU groups.

The comparison of numbers of black dots in epithelial cell between the PDU and BPDU during the exposure of PM₁₀ is displayed in Table 8. As the data distribution is not normal, the data was analysed via Mann-Whitney in exploring the association between PM₁₀ and the number of black dots in the nuclei of buccal epithelial cells per 100 cells expressing AgNORs.

Table 8. Comparison of number of black dots based on PDU and BPDU workers

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>PDU (n=50)</th>
<th>BPDU (n=50)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numbers of black dots in epithelial cell</td>
<td>686.12±104.25</td>
<td>303.56±46.10</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

*Mann-Whitney U

In the BPDU group, the average value of the number of black dots in Table 8 is a mean of 303.56±46.10 in the nuclei of buccal epithelial cells per 100 buccal epithelial cells expressing AgNORs, while in the PDU group, it is a mean of 686.12±104.25. Therefore, with the Mann-Whitney test, the difference between the two groups is significant (P=0.0001). The difference with a P value of 0.0001 is also obtained after analysis with the t-test, where the PDU group exposed to particulate matter at the TPA location in Medan City shows an increase in the number of black dots in the nuclei of buccal epithelial cells compared to the BPDU group (Fig. 2).

The number of black dots obtained in the PDU group is 686.12±104.25, and in the BPDU group, it is 303.56±46.10 with a significant P value (P=0.0001). AgNORs staining is a simple, easy, and cost-effective staining technique. This staining can identify changes in epithelial cells at the dysplasia level, making it easier to identify benign, premalignant, and malignant epithelial cell lesions as prognostic markers for tumors.

The morphological aspects of cell proliferation can also be observed and evaluated using AgNORs histochromic staining. The AgNORs staining method is simple and relatively cost-effective, facilitating the evaluation of morphology in cytology, biopsy, diagnosis, and prognosis. Counting black spots of AgNORs staining in cell nuclei is related to cell proliferation activity, where NORs are chromosomes undergoing reorganization during telophase. The evaluation of black dots is the same, whether it is done histopathologically or cytologically. If more than five black dots are found in the nucleolus of a cell, the cell is considered dysplastic, regardless of whether the assessment is histopathological or cytological. A study noted that AgNORs staining is progressively used in histopathological diagnostic research due to the strong correlation between the number of black dots found and cell transformation into malignancy. Even the shape, number, and distribution of AgNORs in the nucleus can predict the characteristics of breast carcinoma. The S phase is the cell division phase where AgNORs staining is sensitive and easily observable, specifically the number, size, and distribution within the nucleus, which is useful for diagnostic and prognostic purposes. The number, size, and distribution of AgNORs in the nucleus are related to cell proliferation activity and can be parameters for diagnostic and prognostic detection of neoplasia, including oral cavity neoplasia, by determining the number or size of black dots. The potential of AgNORs has also been reported by Tomazeli and Modolo’s work who have demonstrated the potential detection of malignant lesions using AgNORs staining by quantitatively analysing AgNOR protein content, with a significant Oneway ANOVA value (P=0.01) 37. Similarly, research conducted by Malgaonkar who have analyzed buccal mucosa cytology specimens from
betel nut chewers using the cytobrush technique with AgNORs staining, revealing a P value of 0.0000. Proliferation can be observed both cytologically and histopathologically. In the application of histopathology, NORs can be used to observe tumor growth, potential malignancy, differentiate between benign and malignant lesions, and also to predict prognosis and tumor recurrence. The calculation per 100 cells showed both intra-nucleolus and extra-nucleolus, and if the cell nuclei overlapped, the calculation was considered as one cell. This implies that NORs can serve as a significant tool in the clinical diagnosis as shown in this study with PDU group had more black dots in each nucleus cell (Fig. 3).

The results of this study with AgNORs staining on buccal epithelial cells of the PDU and BPDU groups show a significant difference, where the depiction of the number of black dots in the nuclei of buccal epithelial cells in the PDU group indicates a count of >3 per one nucleus of buccal epithelial cell, and in the BPDU group, the number of black dots is below 3 points per one nucleus of buccal epithelial cell. A study was conducted on 30 individuals, comparing normal individuals, smokers, and tobacco/betel chewers aged between 20 and 70 years. Cytology was performed on the buccal epithelial cell mucosa using a scraper or spatula. The results of Prasanna’s research showed a comparison of scoring among the three groups: normal, smokers, and tobacco chewers. An ANOVA test revealed the highest value of 10.83 in smokers and 7 in normal individuals. This difference was statistically significant with a t-test p-value of 93.404 (<0.001). However, when comparing smokers and tobacco chewers, the mean difference was 0.6, which was not statistically significant with a p-value of 0.258. In other words, there was no significant difference between the smoker group and the betel chewer group (P=0.258).

Research to discover pollutants and the distribution of ambient air quality at the Final Disposal Site of Desa Terjun, Medan City, may have been extensively conducted. Still, the relationship between PM10 pollutants and the number of black dots in the nuclei of buccal epithelial cells in waste recyclers has never been explored. With the significant relationship and ratio obtained on the number of black dots in the nuclei of buccal epithelial cells between the PDU and BPDU groups, the use of the AgNORs staining technique can be considered an efficient and cost-effective method as an evaluation tool for the condition and morphology of buccal epithelial cells in communities vulnerable to working in pollutant conditions, in an effort to prevent and early detect conditions of malignant diseases in the oral cavity.

Conclusion

The relationship between PM10 pollutants and the number of black dots in the nuclei of buccal epithelial cells of waste recyclers is a significant area of study, especially for communities at high risk due to their occupations. The AgNOR staining technique on exfoliative smears can serve as an effective early detection method for cancerous lesions, particularly useful for mass screening. This is crucial for recycling workers exposed to dangerous pollutant levels, if the black dots exceed five points in a single cell nucleus, further examination becomes mandatory to prevent malignant diseases. The significant relationship and ratio obtained on the number of black dots in the nuclei of buccal epithelial cells between the PDU and BPDU groups underscore the efficiency and cost-effectiveness of the AgNORs staining technique. This serves as an evaluation tool for the condition and morphology of buccal epithelial cells in communities vulnerable to working in pollutant conditions, emphasizing the importance of early detection and prevention of malignant diseases in oral epithelial cells, particularly among those working in high-risk environments such as waste recycling.

Acknowledgment

We would like to show our gratitude to the local governments and communities in the surrounding area of TPA Terjun for their cooperation in facilitating the authors to do the study.
Authors’ Declaration

- Conflicts of Interest: None.
- We hereby confirm that all the Figures and Tables in the manuscript are ours. Furthermore, any Figures and images, that are not ours, have been included with the necessary permission for re-publication, which is attached to the manuscript.
- No animal studies are present in the manuscript.
- Authors sign on ethical consideration’s approval.
- Ethical Clearance: The project was approved by the local ethical committee at Universitas Sumatera Utara, Indonesia.

Authors’ Contribution Statement

T.K.I, D.M. and M.I. designed the study. T.K.I, and N.N.S. performed the extraction and administration of experiments. T.K.I performed data collection. T.K.I, M.I. and N.N.S. performed cytological experiments and analyzed the data. T.K.I, D.M. and M.I. wrote the paper with input from all authors.

References

35. Espitia-Perez L, Jimenez-Vidal L, Espitia-Perez P. Particulate Matter Exposure:Genomic: Instability,
الخلاصة

ينتشر هذا البحث العلاقة غير المدروسة بين التعرض للمواد الجسيمية (PM10) وعدد النقاط السوداء في نوى الخلايا الظهارية الشدقية (AgNORs) في عمال إعادة التدوير في ميدان إندونيسيا. تم إجراء قياسات التعرض وعدد النقاط السوداء في خلايا الظهارية الشدقية بين عمال إعادة التدوير والمختصرين بـ (PDU) في ميدان إندونيسيا. تتأثر هذه النتائج أيضًا بالعمر وعدد ساعات العمل يوميًا. وهذا يؤكد أهمية أخذ هذه العوامل بعين الاعتبار في حماية صحة العمال في بيئات إعادة التدوير.

الكلمات المفتاحية: AgNORs، النقاط السوداء، الخلايا الظهارية الشدقية، الكشف المبكر، الأورام الخبيثة، العامل المعرض، عمال إعادة التدوير.