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Analysis of Prey, Predator and Top Predator Model
Involving Various Functional Responses

Divya B. , K. Kavitha *

Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India

ABSTRACT

This research proposes a mathematical model to investigate the dynamical behavior of the system of three species,
namely prey, predator and top predator. The feeding behavior of each predator serves as a functional response.
The interaction between the species is carried out by a functional response. Crowley Martin functional response is
incorporated between prey and predator while Holling type III functional response occurs between predator and top
predator. The existence of positivity and boundedness of the system have been examined. The equilibrium points of the
system are determined. The system has been linearized by applying the Jacobian matrix. The main perspective used to
discuss the system’s dynamics is that of permanence and stability. Further stability analysis of the system is carried out
at around each equilibrium point. To comprehend the dynamics of the model system, the asymptotic stability of several
equilibrium solutions, both local and global, is investigated. Routh Hurwitz criteria are used to analyze local stability
at every equilibrium point. Using an appropriate Lyapunov function, the global asymptotic stability of the positive
interior equilibrium solution is established. From a biological perspective, a system is considered to be permanent if
all of its populations continue to exist in the future. The existence of permanence conditions of the system have been
determined. To support the analytical results, several numerical simulations are carried out using the MATLAB software.
Finally based on the results of the analytical and numerical simulations, the impact of the functional response between
the prey, predator and top predator was discussed.

Keywords: Food chain model, Functional response, Global stability, Jacobian matrix, Logistic growth, Stability analysis

Introduction

In recent years, ecological modelling research has become more interesting to both mathematicians and
biologists because of its dynamism. The richness of the dynamics is yielded by the interaction of the species
in the ecology. Moreover, the interaction of the species is fascinating to investigate in the ecosystem. In 1798,
Malthus formulated a single-species model. The modification of the single-species model was developed by
Verhulst in 1838. Based on the single-species model many models were formulated. A two-species model was
developed by Lotka and Volterra such as Prey and Predator in 1926.1–3 Numerous researchers have estab-
lished different kinds of functional responses like Crowley Martin functional response, Beddington functional
response, and Holling type I, II, III, and IV to study the interaction between prey and predator employing
harvesting, refuge, and these responses. The relationship between a predator’s rate of prey consumption per unit
of time and the quantity or density of its prey is known as the functional response.4 Many researchers studied
the dynamics of prey predator model in the presence of various functional response, Allee effect, reaction and
diffusion.5,6 Later on, three species and many species models were developed. In 1961, Kerner7 expanded
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the Lotka-Volterra Model to include a three-species feeding chain. Chauvet et al.8 investigated a linear food
chain for a three-species lotka-Volterra model. Hasting and Powell9 developed the three-level food chain model
which is linear and demonstrates the chaotic dynamics in the ecosystem. The three-species model’s oscillatory
behavior has been investigated.10 Klebanoff created an ecological model class that exhibits the chaotic behavior
of a three-species model with bifurcation.11 A tri-trophic food chain model with a hybrid functional response
was investigated for its chaotic behavior.12,13 The dynamics of the fractional order prey-predator model were
studied by Prabir Panja together with harvesting.14 Zabidin Salleh et al.15 incorporated Holling type III
functional responses in the tri-trophic food chain model. A cyclic three-species model’s dynamic behavior
was mathematically explained by Krishna das et al.16 The dynamic behavior of the three-species food chain
model was examined by numerous authors with various functional responses.17–19 Ashok Mondal used the
Crowley Martin functional response, which displays the Hopf bifurcation and persistence, to analyse the
dynamical behavior of the food chain model.20 Permanence and persistence refer to each species’ ability to
persist over the long term in a given population and it was first introduced by Goodman.21 Many authors
have looked into the longevity of the three-species model.22,23 Arif et al.24 investigated the non-autonomous
prey-predator model’s reaction to the fluctuation rescue effect. Ali et al.25 studied the dynamics of food chain
model involving Holling type IV and Holling type II functional response with leslie gower model. Naji26

studied the chaotic dynamics of the prey-predator relationship. The chaotic behavior of food chain model
with Holling type IV functional response was studied by Ali et al.27,28 The stability analysis of three species
model with prey T axis has been investigated.29,30 The behavior of three species model with the effect of
noise has been examined.31,32 Researchers have looked at the dynamic behavior of a three-species model
including intraspecific rivalry between predators.33,34 The three-species model’s durability and stability were
extensively researched by several authors.35–37 Many studies have incorporated the dynamic interactions of
a three-species model with diverse functional responses, Allee effects, interspecific competition, refuges, and
various types of delays. The models previously used were based on either a single functional response or the
same type of functional response. Now, they include a mixed functional response in the model. The model
introduces a novel approach by combining a mixed functional response, including Holling type III and Crowley
Martin functional responses, in a three-species model. Crowley-Martin’s functional response is a suitable choice
among many functional responses. The Crowley-Martin functional response is utilized in situations where there
is no predation occurring in a large population of both prey and predators. The ecosystem dynamics are more
accurately represented by the Holling type III functional response when top predators are more effective at
higher predator numbers and less effective at lower predator densities. The predator’s persistence is maintained
by utilizing the Holling type III functional response.

The main objective of the research is to investigate the dynamical behavior of the three-species food chain
model in the presence of various functional responses such as Crowley Martin functional response and Holling
type III functional response. The local and global stability of the system are analyzed. The stability of the system
depends on the presence of equilibrium points. The behavior of the model is examined using the Jacobian
matrix. The system’s overall stability and longevity are also evaluated using the Routh Hurwitz Criteria and
Lyapunov function.

Mathematical framework

Before the description of the mathematical model, some of the aspects are introduced. Three species models,
comprising prey, predator, and top predator, have been considered. The three species are organized in a linear
food chain, where the Predator hunts the Prey and the Top Predator hunts the Predator, as shown in a diagram.

The feeding on the three species involves mixed functional responses such as Crowley Martin Functional
Response between Predator and Prey while Holling type –III functional response between Top predator and
Predator. In the absence of a Predator, the Prey population grows logistically with the intrinsic growth
rate (r) and the carrying capacity (K). The Population densities of Prey, Predator and Top Predator over
time are represented as N1(t ),N2(t ) and N3(t). The Crowley-Martin response function is affected by predator
density, catch rate, handling time, and the level of disturbance among predators. The Crowley-Martin response
functional response suggests that reciprocal interferences among predators still have a significant impact
on eating rate when the prey population is huge. The Holling type-III functional response is defined by a
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sigmoidal relationship, where a substantial portion of predator devoured by the top predator increases in a
density-dependent manner within specific predator population ranges. This physiological response enables the
predator to persist.

By considering the above aspects, the mathematical model can be formulated which is given below:

dN1

dT
= rN1

(
1−

N1

K

)
−

αN1N2

(1+ AN1) (1+ BN2)
dN2

dT
=

α1N1N2

(1+ AN1) (1+ BN2)
− D1N2 −

βN2
2N3

M2 + N2
2

dN3

dT
=
β1N2

2N3

M2 + N2
2
− D2N3,

(1)

where N3(0),N2(0),N1(0) > 0. The parameters of the model α, α1, β, β1,D1,D2 and M are assumed to be
positive. Here α, β are the predation rates of Predator and Top predator while α1being the rate of transition
from Prey to Predator and β1 the rate of transition from Predator to Top Predator. M is the half-saturation
constant. D1,D2 is the mortality rate of predator and Top Predator.

The following method (non-dimensionalization) is used to reduce the number of parameters in the system of
Eq. (1). The dimensionless parameters are n1 =

N1
K , n2 =

N2
K , n3 =

N3
K and t = rT.

After non-dimensionalization, the above system is of the form

dn1

dt
= n1 (1− n1)−

b1n1n2(
1+ b2n1

) (
1+ b3n2

)
dn2

dt
=

b4n1n2(
1+ b2n1

) (
1+ b3n2

) − d1n2 −
b5n2

2n3

1+ b6n2
2

dn3

dt
=

b7n2
2n3

1+ b6n2
2
− d2n3,

(2)

with n3(0) = n30 > 0, n2(0) = n20 > 0, n1(0) = n10 > 0, where b1 =
αK
r , b2 = AK, b3 = BK, b4 =

α1K
r , d1 =

D1K
r , b5 =

βK2

rM2 , b6 =
K2

M2 , b7 =
β1K2

rM2 , d2 =
D2K
r .

Positivity and boundedness

The Existence of positivity in the system with its initial condition guarantees the model. The following
illustrates the system’s positivity and boundedness:

Positivity

The solution (n1, n2, n3) for the system of Eq. (2) with its initial condition n1(0) ≥ 0, n2(0) ≥ 0, n3(0) ≥ 0
remains positive in R3

+
.

Proof: The system of Eq. (2) can be written in the following form with its initial condition as

dn1

n1
=

[
(1− n1)−

b1n2(
1+ b2n1

) (
1+ b3n2

)] dt
dn2

n2
=

[
b4n1(

1+ b2n1
) (

1+ b3n2
) − d1 −

b5n2n3

1+ b6n2
2

]
dt

dn3

n3
=

[
b7n2

2
1+ b6n2

2
− d2

]
dt .

(3)
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Integration of the above system of Eq. (3) now results in

n1(t ) = n1(0)exp

[∫ t

0

{
(1− n1(s))−

b1n2(s)(
1+ b2n1(s)

) (
1+ b3n2(s)

)} ds]→ n1(t ) ≥ 0

n2(t ) = n2(0)exp

[∫ t

0

{
b4n1(s)(

1+ b2n1(s)
) (

1+ b3n2(s)
) − d1 −

b5n2(s)n3(s)
1+ b6n2

2(s)

}
ds

]
→ n2(t ) ≥ 0

n3(t ) = n3(0)exp
[∫ t

0

{
b7n2

2(s)
1+ b6n2

2(s)
−d2

}
ds
]
→ n3(t ) ≥ 0.

Thus all of the system of the Eq. (2) solution remains positive in R3
+

.

Boundedness

The system’s of Eq. (2) possible solutions are uniformly bounded in R3
+

.

Proof: Since dn1
dt ≤ n1(1− n1).

Let B = n1 +
b1

b4
n2 +

b1b5

b4b7
n3

dB
dt
= n1 (1− n1)−

b1d1n2

b4
−
b1b5d2n3

b4b7
dB
dt
≤ n1 −

b1d1n2

b4
−
b1b5d2n3

b4b7
dB
dt
≤ 2n1 − KB,where K = min {1,d1,d2}.

Hence dB
dt + KB ≤ 2n1 ≤ 2 [Using the known result Limt→∞ sup n1(t ) ≤ 1] at the largest value of t.

Solving the above differential inequality which results in

0 ≤ B(n1, n2, n3) ≤
2
K
+
B(n1(0), n2(0), n3(0))

eKt
⇒ 0 ≤ B ≤

2
K

as t →∞.

The system’s of Eq. (2) solution lies in the region: M = {(n1, n2, n3) : 0 ≤ B ≤ 2
K + δ, for any δ > 0}. Hence

the theorem.

Equilibrium points
The stability of the system depends on the equilibrium points existing. The equilibrium points can be

determined for the above system of Eq. (2).

1. E0(0,0,0) is the equilibrium point that exists trivially.
2. E1(1,0,0) is an axial equilibrium point that exists axially
3. E2(n̂1, n̂20) is the equilibrium point that exists

a1n̂3
1 + a2n̂2

1 + a3n̂1 + b1d1 = 0 and

n̂2 =
n1
(
b4 − b2d1

)
− d1

d1b3(1+ b2n1)
,

where a1 = −b2b3b4, a2 = −[b3b4(1− b2)], a3 = −[b4
(
b1 − b3

)
− b2n1d1]. This equilibrium point exists

only if it satisfies the condition that b4 > b2d1
4. The inner equilibrium point E3(n∗1, n∗2, n∗3) of the system of Eq. (2) is given by

n∗1 =
(b2 − 1)

2b2
+

√(
b2 − 1

2b2

)2

+
b4

b2
, n∗2 =

(
d2

b7 − b6d2

)1/2

, n∗3 =
1+ b6

(
n∗2
)2

b5n∗2

[
b4n∗1(

1+ b2n∗1
) (

1+ b3n∗2
) − d1

]
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where

b4 = 1−

(
b1d2

1/2(
b7 − b6d2

)1/2
+ b3d2

1/2

)

This equilibrium point exists only if it follows the below conditions
i) b7 > b6d2 ii) b4n∗1 > d1

(
1+ b2n∗1

) (
1+ b3n∗2

)
iii) b3 > b1.

Stability analysis
The Stability Analysis for the System of Eq. (2) is determined using the Jacobian matrix along with the

existing equilibrium points. The Jacobian Matrix is of the form

J (n1, n2, n3) =



∂ f
∂n1

∂ f
∂n2

∂ f
∂n3

∂g
∂n1

∂g
∂n2

∂g
∂n3

∂h
∂n1

∂h
∂n2

∂h
∂n3

 ,

where f = n1(1− n1)− b1n1n2
(1+b2n1)(1+b3n2) , g = b4n1n2

(1+b2n1)(1+b3n2) − d1n2 −
b5n2

2n3
1+b6n2

2
, h = b7n2

2n3
1+b6n2

2
− d2n3.

Therefore, the Jacobian matrix for the system of Eq. (2) is

J (n1, n2, n3) =

J11 J12 0
J21 J22 J23
0 J32 J33

 , (4)

where J11 = 1− 2n1 −
b1n2

(1+b2n1)2(1+b3n2) , J12 = −
b1n1

(1+b2n1)(1+b3n2)2 , J21 =
b4n2

(1+b2n1)2(1+b3n2) , J22 =
b4n1

(1+b2n1)(1+b3n2)2 −

d1 −
2b5n2n3

(1+b6n2
2)2 , J23 =

−b5n2
2

1+b6n2
2
, J32 =

2b7n2n3

(1+b6n2
2)2 , J33 =

b7n2
2

1+b6n2
2
−d2.

All potential equilibrium points are employed in Eq. (4) to determine the stability of the model. The
procedures for determining the stability are as follows.

At the point E0(0,0,0) in Eq. (4) then the matrix is given by J(E0) =
[

1 0 0
0 −d1 0
0 0 −d2

]
. Thus the characteristic

equation of the above matrix is given as
∣∣∣∣ 1−λ 0 0

0 −d1−λ 0
0 0 −d2−λ

∣∣∣∣ = 0. The Eigenvalues are λ1 = 1 > 0, λ2 = −d1 <

0, λ3 = −d2 < 0. The system is unstable because the eigenvalues are real distinct and the point is saddle since
one of its eigenvalue is an absolute value.

At the Point E1(1,0,0) in Eq. (4) then the matrix is given by J (E1) =

[
−1 −b1

1+b2
0

0 b4
1+b2
−d1 0

0 0 −d2

]
. Thus the characteristic

equation of the above matrix is given as

∣∣∣∣∣ −1−λ −b1
1+b2

0

0 b4
1+b2
−d1−λ 0

0 0 −d2−λ

∣∣∣∣∣ = 0. The corresponding eigenvalues are λ1 =

−1 < 0, λ2 =
b4

1+b2
− d1 < 0, λ3 = −d2 < 0. The system is locally asymptotically stable only if b4

1+b2
< d1.

At the point E2(n̂1, n̂2,0) in Eq. (4) then the Matrix

J (E2) =



1− 2n̂1 −
b1n̂2(

1+ b2n̂1
)2 (1+ b3n̂2

) −
b1n̂1(

1+ b2n̂1
) (

1+ b3n̂2
)2 0

b4n̂2(
1+ b2n̂1

)2 (1+ b3n̂2
) b4n̂1(

1+ b2n̂1
) (

1+ b3n̂2
)2 − d1

−b5n̂2
2

1+ b6n̂2
2

0 0
b7n̂2

2
1+ b6n̂2

2
−d2
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Thus the characteristic equation of the above matrix is given as follows∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− 2n̂1 −
b1n̂2(

1+ b2n̂1
)2 (1+ b3n̂2

) − λ −
b1n̂1(

1+ b2n̂1
) (

1+ b3n̂2
)2 0

b4n̂2(
1+ b2n̂1

)2 (1+ b3n̂2
) b4n̂1(

1+ b2n̂1
) (

1+ b3n̂2
)2 − d1 − λ

−b5n̂2
2

1+ b6n̂2
2

0 0
b7n̂2

2
1+ b6n̂2

2
−d2 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

The corresponding eigenvalues are λ1, λ2 and λ3. One of the root is λ3 =
b7n̂2

2
1+b6n̂2

2
− d2 then the remaining roots

can be found from the following characteristic equation λ2
+ B1λ+ B2 = 0 where

B1 = d1 −
b4n̂1(

1+ b2n̂1
) (

1+ b3n̂2
)2 + b1n̂2(

1+ b2n̂1
)2 (1+ b3n̂2

) + 2n̂1 − 1

B2 =
b4n̂1(

1+ b2n̂1
) (

1+ b3n̂2
)2 − d1 + 2n̂1d1 +

b1d1n̂2(
1+ b2n̂1

)2 (1+ b3n̂2
) − 2b4n̂2

1(
1+ b2n̂1

) (
1+ b3n̂2

)2 .
The Eigenvalues of the above characteristic equation have negative real roots if and only if B1 > 0, B2 > 0

by using Routh Hurwitz criterion. Thus the system is locally asymptotically stable at E2 only if B1 > 0, B2 > 0
and b7n̂2

2 < d2(1+ b6n̂2
2).

At this point, E3(n∗1, n∗2, n∗3) in Eq. (4), the Jacobian matrix is given as

J (E3) =



1− 2n∗1 −
b1n∗2(

1+ b2n∗1
)2 (1+ b3n∗2

) −
b1n∗1(

1+ b2n∗1
) (

1+ b3n∗2
)2 0

b4n∗2(
1+ b2n∗1

)2 (1+ b3n∗2
) b4n∗1(

1+ b2n∗1
) (

1+ b3n∗2
)2 − d1 −

2b5n∗2n∗3(
1+ b6n∗2

2)2 −b5n∗2
2

1+ b6n∗2
2

0
2b7n∗2n∗3(

1+ b6n∗2
2)2 b7n∗2

2

1+ b6n∗2
2−d2


Thus, the characteristic equation of the above matrix is given as follows∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− 2n∗1 −
b1n∗2(

1+ b2n∗1
)2 (1+ b3n∗2

) − λ −
b1n∗1(

1+ b2n∗1
) (

1+ b3n∗2
)2 0

b4n∗2(
1+ b2n∗1

)2 (1+ b3n∗2
) b4n∗1(

1+ b2n∗1
) (

1+ b3n∗2
)2 − d1 −

2b5n∗2n∗3(
1+ b6n∗2

2)2 − λ −b5n∗2
2

1+ b6n∗2
2

0
2b7n∗2n∗3(

1+ b6n∗2
2)2 b7n∗2

2

1+ b6n∗2
2−d2 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

The Corresponding Characteristic Equation is as follows λ3
+ L1λ

2
+ L2λ+ L3 = 0 where

L1 = d1 +
2b5n∗2n∗3(

1+ b6n∗2
2)2 − b4n∗1(

1+ b2n∗1
) (

1+ b3n∗2
)2 + d2 −

b7n∗2
2

1+ b6n∗2
2 + 2n∗1 +

b1n∗2(
1+ b2n∗1

)2 (1+ b3n∗2
) − 1,

L2 =

[
b4b7n∗1n∗2

2(
1+ b2n∗1

) (
1+ b3n∗2

)2 (1+ b6n∗2
2) − d1d2 +

2b5n∗2n∗3d2(
1+ b6n∗2

2)2 − b4n∗1d2(
1+ b2n∗1

) (
1+ b3n∗2

)2 − b7n∗2
2d1

1+ b6n∗2
2

+

(
b1n∗2(

1+ b2n∗1
)2 (1+ b3n∗2

) + 2n∗1 − 1

)(
d1 + d2 +

2b5n∗2n∗3(
1+ b6n∗2

2)2 − b7n∗2
2

1+ b6n∗2
2

)
+

b4n∗1(
1+ b2n∗1

) (
1+ b3n∗2

)2
−

2b4n∗1
2(

1+ b2n∗1
) (

1+ b3n∗2
)2
]
,
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L3 =

[(
b1n∗2(

1+ b2n∗1
)2 (1+ b3n∗2

) + 2n∗1 − 1

)(
2b5n∗2n∗3d2(
1+ b6n∗2

2)2 − b7n∗2
2d1

1+ b6n∗2
2 − d1d2

)

+
2b4b7n∗1n∗2

2(
1+ b2n∗1

) (
1+ b3n∗2

)2 (1+ b6n∗2
2) − 2b4d2n∗1

2(
1+ b2n∗1

) (
1+ b3n∗2

)2 + b4n∗1d2(
1+ b2n∗1

) (
1+ b3n∗2

)2
−

b4b7n∗1n∗2
2(

1+ b2n∗1
) (

1+ b3n∗2
)2 (1+ b6n∗2

2)
]
.

The Eigenvalues of the above characteristic equation have negative real roots if and only if L1 > 0, L3 > 0
and L1L2 − L3 > 0 by using Routh Hurwitz criterion. Thus the system is locally asymptotically stable at E3.

Global stability analysis
Here the global stability is done for the positive inner equilibrium point and not for the boundary points. The

global stability exists for coexistence equilibrium point. The global stability around the interior equilibrium
point E3(n∗1, n∗2, n∗3) for the system of Eq. (2) is determined by constructing a suitable Lyapunov function.
The function is given as V(n3, n2, n1) = V3 (n3, n2, n1) + V2 (n3, n2, n1) + V1 (n3, n2, n1) where V3 = n3 − n∗3 −
n∗3 ln

n3
n∗3

, V2 = n2 − n∗2 − n∗2 ln
n2
n∗2

, V1 = n1 − n∗1 − n∗1 ln
n1
n∗1

.
This implies Lyapunov function (V) is continuous in R3

+
. Let us take the derivative of the V along with the

time given as

V̇ =
dV
dt
=
n3 − n∗3
n3

dn3

dt
+
n2 − n∗2
n2

dn2

dt
+

n1 − n∗1
n1

dn1

dt
1
n1

dn1

dt
= (1− n1)−

b1n2(
1+ b2n1

) (
1+ b3n2

)
1
n2

dn2

dt
=

b4n1(
1+ b2n1

) (
1+ b3n2

) − d1 −
b5n2n3

1+ b6n2
2

1
n3

dn3

dt
=

b7n2
2

1+ b6n2
2
−d2

V̇ (n3, n2, n1) =
(
n3 − n∗3

) [ b7n2
2

1+ b6n2
2
−d2

]
+
(
n2 − n∗2

) [ b4n1(
1+ b2n1

) (
1+ b3n2

) − d1 −
b5n2n3

1+ b6n2
2

]

+
(
n1 − n∗1

) [
(1− n1)−

b1n2(
1+ b2n1

) (
1+ b3n2

)] = (n3 − n∗3
) [ b7

(
n2 − n∗2

)2
1+ b6

(
n2 − n∗2

)2
]

+
(
n2 − n∗2

) [ b4
(
n1 − n∗1

)(
1+ b2

(
n1 − n∗1

)) (
1+ b3

(
n2 − n∗2

)) − b5
(
n2 − n∗2

)
(n3 − n∗3)

1+ b6
(
n2 − n∗2

)2
]

+
(
n1 − n∗1

) [
−
(
n1 − n∗1

)
−

b1(n2 − n∗2)(
1+ b2

(
n1 − n∗1

)) (
1+ b3

(
n2 − n∗2

))]
dV
dt
= −

(
n1 − n∗1

)2
−

[
b1
(
n2 − n∗2

) (
n1 − n∗1

)(
1+ b2

(
n1 − n∗1

)) (
1+ b3

(
n2 − n∗2

)) − b4
(
n1 − n∗1

) (
n2 − n∗2

)(
1+ b2

(
n1 − n∗1

)) (
1+ b3

(
n2 − n∗2

))]

−
(
n2 − n∗2

)2 [ b5(n3 − n∗3)
1+ b6

(
n2 − n∗2

)2 − b7
(
n3 − n∗3

)
1+ b6

(
n2 − n∗2

)2
]

dV
dt
≤ −

(
n1 − n∗1

)2
−
(
n2 − n∗2

)2 [ b5(n3 − n∗3)
1+ b6

(
n2 − n∗2

)2 − b7
(
n3 − n∗3

)
1+ b6

(
n2 − n∗2

)2
]

V̇ (n3, n2, n1) ≤ −
(
n1 − n∗1

)2
−
(
n2 − n∗2

)2 [ b5(n3 − n∗3)
1+ b6

(
n2 − n∗2

)2 − b7
(
n3 − n∗3

)
1+ b6

(
n2 − n∗2

)2
]
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Fig. 1. Variations of n1, n2, and n3 along time t converge to an equilibrium state.

Therefore, V̇ is a negative definite function. This shows that the inner equilibrium point E3(n∗1, n∗2, n∗3) of
the system is globally asymptotically stable. Thus, E3(n∗1, n∗2, n∗3) is globally asymptotically stable, according to
the Lyapunov theorem.

Permanence

The Average Lyapunov function is used to demonstrate the system’s of Eq. (2) permanence (Gard and
Hallam).22

Theorem: The system of Eq. (2) is said to be permanent when it satisfies the following conditions as

a) b4
1+b2

> d1

b) b7n2
2

1+b6n2
2
> d2.

Proof: The typical Lyapunov function is represented by the following form σ (n1, n2, n3) = np1
1 n

p2
2 n

p3
3 where

p1, p2 and p3 are positive in the interior R3
+

. Then

ψ (n1, n2, n3) =
σ̇

σ
= p1

(
(1− n1)−

b1n2(
1+ b2n1

) (
1+ b3n2

))+ p2

(
b4n1(

1+ b2n1
) (

1+ b3n2
) − d1 −

b5n2n3

1+ b6n2
2

)

+ p3

(
b7n2

2
1+ b6n2

2
−d2

)
.

The Permanence of the system is validated when ψ (n1, n2, n3) > 0. The values ψ (n1, n2, n3) at the equilibrium
point E0,E1,E2, are as follows

E0 : p1 − p2d1 − p3d2

E1 : p2

(
b4

1+ b2
− d1

)
− p3d2

E2 : p3

(
b7n̂2

2
1+ b6n̂2

2
−d2

)
.

For certain pn > 0 (n = 1, 2, 3), this ψ (0,0,0) > 0 is satisfied. Additionally, ψ is positive at E1 and E2
whenever the inequalities a) and b) hold. As a result, the system of Eq. (2) is permanent.
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Fig. 2. The phase diagram of the system around point E (0.9212, 0.3629, and 0.6837).

Fig. 3. The stable behavior of the system with time t.

Note
The conditions

E1 =
b4

1+ b2
− d1 > 0

E2 =
b7n2

2
1+ b6n2

2
− d2 > 0

assured that the boundary equilibrium points E1 and E2 are Unstable. At these conditions the system becomes
unstable. Since in the Stability Analysis the system becomes stable at the equilibrium point E1 at b4

1+b2
− d1 < 0

and E2 at b7n̂2
2

1+b6n̂2
2
− d2 < 0.

Results and discussion

Analytical findings are justified by the numerical simulation. Here the dynamical behavior of the three species
model has been studied analytically with mixed functional response such as Crowley martin functional response
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Fig. 4. The system is asymptotically stable at E (0.8327, 0.6967, and 1.777).

Fig. 5. Oscillatory behavior of the given system concerning time t.

and Holling type III functional response. The numerical simulations are done for the stability of the system.
The Figs. 1 to 6 shows the stable, oscillatory behavior and phase portrait of the model. A numerical simulation
has been done with the following set of parameters to show the dynamic behavior of the system of Eq. (2). The
system’s of Eq. (2) phase portraits are obtained, together with the associated time series graph. In the ecology
the parameters value cannot be predicted exactly it varies. Therefore, the values are taken randomly for the
simulation. The phase potraits are obtained by considering different initial points only. Let us consider the value
of the parameter as b1 = 0.2, b2 = 0.3, b3 = 0.17, b4 = 0.4, d1 = 0.38, b5 = 1.9, b6 = 1.5, b7 = 0.09 and d2 = 0.4
for the Fig. 1 which depicts that the system variations of n1, n2, and n3 along time t converge to an equilibrium
state. For the same set of values, Fig. 2 is obtained which shows the system’s phase portrait, which is locally
asymptotically stable at point E(0.9212, 0.3629, and 0.6837). The other set of values is b7 = 0.3,b6 = 0.2,
b5 = 0.2, b4 = 0.45, b3 = 0.05, b2 = 0.1, b1 = 0.2, d1 = 0.25 and d2 = 0.2 for the Fig. 3 which depicts
the stable behavior of the system concerning time t. Fig. 4 shows the system’s phase portrait for the values
of b7 = 0.3, b6 = 0.2, b5 = 0.2, b4 = 0.45, b3 = 0.05, b2 = 0.1, b1 = 0.2, d1 = 0.25, and d2 = 0.2 and the
equilibrium point is asymptotically stable at E(0.8327, 0.6967, and 1.777). Fig. 5 depicts the oscillations of
the populations concerning time t with the following values of parameters as b1 = 0.2, b2 = 0.3, b3 = 0.17,
b4 = 0.4, d1 = 0.25, b5 = 0.2, b6 = 0.2, b7 = 0.3 and d2 = 0.2. Fig. 6 depicts the phase diagram of the system
with the same values of parameters which is asymptotically stable at E (0.8415, 0.676, and 1.322).
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Fig. 6. The system is asymptotically stable at the point E (0.8415, 0.676, and 1.322).

Conclusion

The mathematical framework of three species models in the ecosystem with the densities of Prey (N1),
Predator (N2) and Top Predator (N3) has been studied in this present paper. The interaction between these
species with a mixed functional response is examined. The system’s positivity and boundedness are studied.
The system’s feasible equilibrium points are all determined. The implicit premise in deterministic scenarios is
the models which are created have been justified by their stability around the interior equilibrium. The local
stability is examined using Routh-Hurwitz criteria and global stability by the Lyapunov function around the
interior equilibrium point E3(n∗1, n∗2, n∗3). Further, the conditions for permanence are analyzed. Computational
simulations are done using MATLAB software. The paper can be further extended by adding any kind of delay
in the model or other functional responses such as debeddington functional response, non-monotone functional
response, and Holling type IV functional response.
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تاباجتسانمضتیيذلاىلعلأاسرتفملاوسرتفملاوةسیرفلاجذومنلیلحت

ةفلتخمةیفیظو

اثیفاك.ك،.بایفید

.دنھلا،رولیف،ایجولونكتللرولیفدھعم،ةمدقتملامولعلاةیلك،تایضایرلامسق

ةصلاخلا

ةیذغتلاكولسدعی.يولعلاسرتفملاوسرتفملاوةسیرفلايھو،عاونأةثلاثماظنليكیمانیدلاكولسلاةساردلایضایراجذومنثحبلااذھحرتقی

نتراميلواركلةیفیظولاةباجتسلااجمدمتی.ةیفیظولاةباجتسلااقیرطنععاونلأانیبلعافتلامتی.ةیفیظوةباجتساةباثمبسرتفمناویحلكل

دودحوةیباجیإدوجوصحفمت.ىلعلأاسرتفملاوسرتفملانیبجنیلوھثلاثلاعونلانمةیفیظولاةباجتسلااثدحتامنیبسرتفملاوةسیرفلانیب

ةشقانملمدختسملايسیئرلاروظنملا.ةیبوقعیلاةفوفصملاقیبطتللاخنمایطخماظنلالعجمتدقل.ماظنللنزاوتلاطاقندیدحتمتی.ماظنلا

،يجذومنلاماظنلاتایكیمانیدمھفل.نزاوتةطقنلكدنعماظنلارارقتسالیلحتنمدیزمءارجإمتی.رارقتسلااوةمومیدلاوھماظنلاتایكیمانید

ةطقنلكدنعيلحملارارقتسلاالیلحتلزتیوروھثوررییاعممدختسُت.ةیملاعلاوةیلحملا،نزاوتلالولحنمدیدعللبراقملارارقتسلااةساردمت

،يجولویبروظنمنم.يباجیلإايلخادلانزاوتلالحليملاعلابراقملارارقتسلااءاشنإمت،ةبسانملاLyapunovةفیظومادختساب.نزاوت

ءارجإمت،ةیلیلحتلاجئاتنلامعدل.ماظنلاماودطورشدوجودیدحتمت.لبقتسملايفدوجولايفھناكسعیمجترمتسااذإامًئادماظنلاربتعی

ریثأتةشقانمتمتةیددعلاوةیلیلحتلاةاكاحملاجئاتنىلعدامتعلاابوًاریخأو.MATLABجمانربمادختسابةیددعلاةاكاحملاتایلمعنمدیدعلا

.يولعلاسرتفملاوسرتفملاوةسیرفلانیبةیفیظولاةباجتسلاا

.رارقتسلاالیلحت،يتسجوللاومنلا،ةیبوقعیلاةفوفصملا،يملاعلارارقتسلاا،ةیفیظولاةباجتسلاا،ةیئاذغلاةلسلسلاجذومنك:ةیحاتفملاتاملكلا


	Analysis of Prey, Predator and Top Predator Model Involving Various Functional Responses
	How to Cite this Article

	Analysis of Prey, Predator and Top Predator Model Involving Various Functional Responses
	Introduction
	Mathematical framework
	Positivity and boundedness
	Positivity
	Boundedness
	Equilibrium points
	Stability analysis
	Global stability analysis
	Permanence
	Note
	Results and discussion
	Conclusion
	Acknowledgement
	Authors' declaration
	Authors' contribution statement
	References

