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Introduction 

In recent years, ecological modelling research has 

become more interesting to both mathematicians and 

biologists because of its dynamism. The richness of 

the dynamics is yielded by the interaction of the 

species in the ecology. Moreover, the interaction of 

the species is fascinating to investigate in the 

ecosystem. In 1798, Malthus formulated a single-

species model. The modification of the single-

species model was developed by Verhulst in 1838. 

Based on the single-species model many models 

were formulated. A two-species model was 

developed by Lotka and Volterra such as Prey and 

Predator in 1926 1-3. Numerous researchers have 

established different kinds of functional responses 

like Crowley Martin functional response, 

Beddington functional response, and Holling type I, 
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II, III, and IV to study the interaction between prey 

and predator employing harvesting, refuge, and these 

responses. The relationship between a predator's rate 

of prey consumption per unit of time and the quantity 

or density of its prey is known as the functional 

response 4. Many researchers studied the dynamics 

of prey predator model in the presence of various 

functional response, Allee effect, reaction and 

diffusion5, 6. Later on, three species and many species 

models were developed. In 1961, Kerner 7 expanded 

the Lotka-Volterra Model to include a three-species 

feeding chain. Chauvet et al 8 investigated a linear 

food chain for a three-species lotka-Volterra model. 

Hasting and Powell 9 developed the three-level food 

chain model which is linear and demonstrates the 

chaotic dynamics in the ecosystem. The three-

species model's oscillatory behavior has been 

investigated 10. Klebanoff created an ecological 

model class that exhibits the chaotic behavior of a 

three-species model with bifurcation 11. A tri-trophic 

food chain model with a hybrid functional response 

was investigated for its chaotic behavior 12, 13. The 

dynamics of the fractional order prey-predator model 

were studied by Prabir Panja together with 

harvesting 14. Zabidin Salleh et al 15 incorporated 

Holling type III functional responses in the tri-

trophic food chain model. A cyclic three-species 

model's dynamic behavior was mathematically 

explained by Krishna das et al 16. The dynamic 

behavior of the three-species food chain model was 

examined by numerous authors with various 

functional responses 17-19. Ashok Mondal used the 

Crowley Martin functional response, which displays 

the Hopf bifurcation and persistence, to analyse the 

dynamical behavior of the food chain model 20. 
Permanence and persistence refer to each species' 

ability to persist over the long term in a given 

population and it was first introduced by Goodman 
21. Many authors have looked into the longevity of 

the three-species model 22, 23. Arif et al 24 investigated 

the non-autonomous prey-predator model's reaction 

to the fluctuation rescue effect. Ali et al 25 studied the 

dynamics of food chain model involving Holling 

type IV and Holling type II functional response with 

leslie gower model. Naji 26 studied the chaotic 

dynamics of the prey-predator relationship. The 

chaotic behavior of food chain model with Holling 

type IV functional response was studied by Ali et al 
27, 28.The stability analysis of three species model 

with prey T axis has been investigated 29, 30. The 

behavior of three species model with the effect of 

noise has been examined 31, 32. Researchers have 

looked at the dynamic behavior of a three-species 

model including intraspecific rivalry between 

predators33, 34. The three-species model's durability 

and stability were extensively researched by several 

authors 35-37. Many studies have incorporated the 

dynamic interactions of a three-species model with 

diverse functional responses, Allee effects, 

interspecific competition, refuges, and various types 

of delays. The models previously used were based on 

either a single functional response or the same type 

of functional response. Now, they include a mixed 

functional response in the model. The model 

introduces a novel approach by combining a mixed 

functional response, including Holling type III and 

Crowley Martin functional responses, in a three-

species model. Crowley-Martin's functional 

response is a suitable choice among many functional 

responses. The Crowley-Martin functional response 

is utilized in situations where there is no predation 

occurring in a large population of both prey and 

predators. The ecosystem dynamics are more 

accurately represented by the Holling type III 

functional response when top predators are more 

effective at higher predator numbers and less 

effective at lower predator densities. The predator's 

persistence is maintained by utilizing the Holling 

type III functional response. 

              The main objective of the research is to 

investigate the dynamical behavior of the three-

species food chain model in the presence of various 

functional responses such as Crowley Martin 

functional response and Holling type III functional 

response. The local and global stability of the system 

are analyzed. The stability of the system depends on 

the presence of equilibrium points. The behavior of 

the model is examined using the Jacobian matrix. 

The system's overall stability and longevity are also 

evaluated using the Routh Hurwitz Criteria and 

Lyapunov function. 
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Mathematical Framework 

Before the description of the mathematical model, 

some of the aspects are introduced. Three species 

models, comprising prey, predator, and top predator, 

have been considered. The three species are 

organized in a linear food chain, where the Predator 

hunts the Prey and the Top Predator hunts the 

Predator, as shown in a diagram.

The feeding on the three species involves mixed 

functional responses such as Crowley Martin 

Functional Response between Predator and Prey 

while Holling type –III functional response between 

Top predator and Predator. In the absence of a 

Predator, the Prey population grows logistically with 

the intrinsic growth rate (r) and the carrying capacity 

(K). The Population densities of Prey, Predator and 

Top Predator over time are represented as  

𝑁1(𝑡), 𝑁2(𝑡) and 𝑁3(t). The Crowley-Martin 

response function is affected by predator density, 

catch rate, handling time, and the level of disturbance 

among predators. The Crowley-Martin response 

functional response suggests that reciprocal 

interferences among predators still have a significant 

impact on eating rate when the prey population is 

huge. The Holling type-III functional response is 

defined by a sigmoidal relationship, where a 

substantial portion of predator devoured by the top 

predator increases in a density-dependent manner 

within specific predator population ranges. This 

physiological response enables the predator to 

persist.  
  

 By considering the above aspects, the mathematical 

model can be formulated which is given below: 

 

 
𝑑𝑁1

𝑑𝑇
= 𝑟𝑁1 (1 −

𝑁1

𝐾
) −

𝛼𝑁1𝑁2

(1+𝐴𝑁1)(1+𝐵𝑁2)
 

 
𝑑𝑁2

𝑑𝑇
=

𝛼1𝑁1𝑁2

(1+𝐴𝑁1)(1+𝐵𝑁2)
− 𝐷1𝑁2 −

𝛽𝑁2
2𝑁3

𝑀2+𝑁2
2      1 

         

 
𝑑𝑁3

𝑑𝑇
=

𝛽1𝑁2
2𝑁3

𝑀2+𝑁2
2 − 𝐷2𝑁3, 

 

where  𝑁3(0), 𝑁2(0), 𝑁1(0) > 0. The parameters of 

the model 𝛼, 𝛼1, 𝛽, 𝛽1, 𝐷1, 𝐷2 and M are assumed to 

be positive. Here α, β are the predation rates of 

Predator and Top predator while 𝛼1being the rate of 

transition from Prey to Predator and 𝛽1 the rate of 

transition from Predator to Top Predator. M is the 

half-saturation constant. 𝐷1, 𝐷2 is the mortality rate 

of predator and Top Predator.                             

             The following method (non-

dimensionalization) is used to reduce the number of 

parameters in the system of Eq. 1. The dimensionless 

parameters are  𝑛1 =
𝑁1

𝐾
, 𝑛2 =

𝑁2

𝐾
, 𝑛3 =

𝑁3

𝐾
   and t = 

rT.            

After non-dimensionalization, the above system is of 

the form  

 

       
𝑑𝑛1

𝑑𝑡
= 𝑛1(1 − 𝑛1) −

𝑏1𝑛1𝑛2

(1+𝑏2𝑛1)(1+𝑏3𝑛2)
 

 

      
 𝑑𝑛2

𝑑𝑡
=

𝑏4𝑛1𝑛2

(1+𝑏2𝑛1)(1+𝑏3𝑛2)
− 𝑑1𝑛2 −

𝑏5𝑛2
2𝑛3

1+𝑏6𝑛2
2       2 

                                                                    

      
𝑑𝑛3

𝑑𝑡
=

𝑏7𝑛2
2𝑛3

1+𝑏6𝑛2
2 −𝑑2𝑛3, 

 with  𝑛3(0) = 𝑛30 > 0, 𝑛2(0) = 𝑛20 > 0, 𝑛1(0) =
𝑛10 > 0 , 

where 𝑏1 =
𝛼𝐾

𝑟
, 𝑏2 = 𝐴𝐾, 𝑏3 = 𝐵𝐾, 𝑏4 =

𝛼1𝐾

𝑟
,  𝑑1 =

𝐷1𝐾

𝑟
, 𝑏5 =

𝛽𝐾2

𝑟𝑀2 , 𝑏6 =
𝐾2

𝑀2  , 𝑏7 =
𝛽1𝐾2

𝑟𝑀2  , 𝑑2 =
𝐷2𝐾

𝑟
. 

 

Positivity and Boundedness 

        The Existence of positivity in the system with 

its initial condition guarantees the model. The 

following illustrates the system's positivity and 

boundedness: 

 

Positivity 

   The solution (𝑛1, 𝑛2, 𝑛3) for the system of Eq.2 

with its initial condition  𝑛1(0) ≥ 0, 𝑛2(0) ≥
0, 𝑛3(0) ≥ 0   remains positive in 𝑅+

3 . 

 

Proof: 

  The system of Eq. 2 can be written in the following 

form with its initial condition as  
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𝑑𝑛1

𝑛1
= [(1 − 𝑛1) −

𝑏1𝑛2

(1+𝑏2𝑛1)(1+𝑏3𝑛2)
] 𝑑𝑡  

  

       
𝑑𝑛2

𝑛2
= [

𝑏4𝑛1

(1+𝑏2𝑛1)(1+𝑏3𝑛2)
− 𝑑1 −

𝑏5𝑛2𝑛3

1+𝑏6𝑛2
2] 𝑑𝑡        3   

           

       
𝑑𝑛3

𝑛3
= [

𝑏7𝑛2
2

1+𝑏6𝑛2
2 −𝑑2] 𝑑𝑡. 

                                                                                  

Integration of the above system of Eq. 3 now results 

in 

                  

                𝑛1(𝑡) = 𝑛1(0)𝑒𝑥𝑝 [∫ {(1 − 𝑛1(𝑠)) −
𝑡

0
𝑏1𝑛2(𝑠)

(1+𝑏2𝑛1(𝑠))(1+𝑏3𝑛2(𝑠))
} 𝑑𝑠] → 𝑛1(𝑡) ≥ 0 

 

               𝑛2(𝑡) =

𝑛2(0)𝑒𝑥𝑝 [∫ {
𝑏4𝑛1(𝑠)

(1+𝑏2𝑛1(𝑠))(1+𝑏3𝑛2(𝑠))
− 𝑑1 −

𝑡

0

𝑏5𝑛2(𝑠)𝑛3(𝑠)

1+𝑏6𝑛2
2(𝑠)

} 𝑑𝑠] → 𝑛2(𝑡) ≥ 0 

 

                    𝑛3(𝑡) =

𝑛3(0)𝑒𝑥𝑝 [∫ {
𝑏7𝑛2

2(𝑠)

1+𝑏6𝑛2
2(𝑠)

−𝑑2}
𝑡

0
𝑑𝑠] → 𝑛3(𝑡) ≥ 0. 

Thus all of the system of the Eq.2 solution remains 

positive in 𝑅+
3 . 

 

Boundedness 

     The system’s of Eq. 2 possible solutions are 

uniformly bounded in 𝑅+
3 . 

 

Proof: 

Since    
𝑑𝑛1

𝑑𝑡
≤ 𝑛1(1 − 𝑛1).                     

Let    B = 𝑛1 +
𝑏1

𝑏4
𝑛2 +

𝑏1𝑏5

𝑏4𝑏7
𝑛3  

        
𝑑𝐵

𝑑𝑡
= 𝑛1(1 − 𝑛1) −

𝑏1𝑑1𝑛2

𝑏4
−

𝑏1𝑏5𝑑2𝑛3

𝑏4𝑏7
 

  

       
𝑑𝐵

𝑑𝑡
≤ 𝑛1 −

𝑏1𝑑1𝑛2

𝑏4
−

𝑏1𝑏5𝑑2𝑛3

𝑏4𝑏7
                  

   

        
𝑑𝐵

𝑑𝑡
≤ 2𝑛1 − 𝐾𝐵, where K = min {1, d1, d2}. 

 

Hence  
𝑑𝐵

𝑑𝑡
+ 𝐾𝐵 ≤ 2𝑛1 ≤ 2   [Using the known 

result   Lim
𝑡→∞

sup 𝑛1(𝑡) ≤ 1]  at the largest value of t. 

Solving the above differential inequality which 

results in  

                           0 ≤ 𝐵(𝑛1, 𝑛2, 𝑛3) ≤
2

𝐾
+

𝐵(𝑛1(0),𝑛2(0),𝑛3(0))

𝑒𝐾𝑡 ⟹ 0 ≤ 𝐵 ≤
2

𝐾
  as t → ∞ . 

The system’s of Eq. 2 solution lies in the region: M 

={(𝑛1, 𝑛2, 𝑛3): 0 ≤ 𝐵 ≤
2

𝐾
+ 𝛿,   𝑓𝑜𝑟 𝑎𝑛𝑦 𝛿 > 0}. 

Hence the theorem. 

 

Equilibrium Points: 

          The stability of the system depends on the 

equilibrium points existing. The equilibrium points 

can be determined for the above system of Eq. 2. 

1. 𝐸0(0,0,0) is the equilibrium point that exists 

trivially. 

2. 𝐸1(1,0,0) is an axial equilibrium point that 

exists axially 

3. 𝐸2(𝑛̂1, 𝑛̂20) is the equilibrium point that 

exists  

       𝑎1𝑛̂1
3 + 𝑎2𝑛̂1

2 + 𝑎3𝑛̂1 + 𝑏1𝑑1 = 0 and    

 

       𝑛̂2 =
𝑛1(𝑏4−𝑏2𝑑1)−𝑑1

𝑑1𝑏3(1+𝑏2𝑛1)
,     

where   𝑎1 = −𝑏2𝑏3𝑏4 , 𝑎2 = −[𝑏3𝑏4(1 −
𝑏2)],𝑎3 = −[𝑏4(𝑏1 − 𝑏3) − 𝑏2𝑛1𝑑1].This 

equilibrium point exists only if it satisfies the 

condition that 𝑏4 > 𝑏2𝑑1 

 

4. The inner equilibrium point 𝐸3(𝑛1
∗ , 𝑛2

∗ , 𝑛3
∗) 

of the system of Eq. 2 is given by 

𝑛1
∗ =

(𝑏2−1)

2𝑏2
+ √(

𝑏2−1

2𝑏2
)
2
+

𝑏4

𝑏2
 , 𝑛2

∗ =

(
𝑑2

𝑏7−𝑏6𝑑2
)
1

2⁄
, 𝑛3

∗ =

1+𝑏6 (𝑛2
∗)2

𝑏5𝑛2
∗ [

𝑏4𝑛1
∗

(1+𝑏2𝑛1
∗)(1+𝑏3𝑛2

∗)
− 𝑑1] where       

𝑏4 = 1 − (
𝑏1𝑑2

1
2⁄

(𝑏7−𝑏6𝑑2)
1

2⁄ +𝑏3𝑑2
1

2⁄
)         

 

 This equilibrium point exists only if it 

follows the below conditions 

              i) 𝑏7 > 𝑏6𝑑2  ii) 𝑏4𝑛1
∗ > 𝑑1(1 +

𝑏2𝑛1
∗)(1 + 𝑏3𝑛2

∗)  iii) 𝑏3 > 𝑏1    . 

 

Stability Analysis: 

          The Stability Analysis for the System of Eq. 2 

is determined using the Jacobian matrix along with 

the existing equilibrium points. The Jacobian Matrix 

is of the form  

J(𝑛1, 𝑛2, 𝑛3) =   

[
 
 
 
 

𝜕𝑓

𝜕𝑛1

𝜕𝑓

𝜕𝑛2

𝜕𝑓

𝜕𝑛3

𝜕𝑔

𝜕𝑛1

𝜕𝑔

𝜕𝑛2

𝜕𝑔

𝜕𝑛3

𝜕ℎ

𝜕𝑛1

𝜕ℎ

𝜕𝑛2

𝜕ℎ

𝜕𝑛3]
 
 
 
 

 , 
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where  f = 𝑛1(1 − 𝑛1) −
𝑏1𝑛1𝑛2

(1+𝑏2𝑛1)(1+𝑏3𝑛2)
 , g = 

𝑏4𝑛1𝑛2

(1+𝑏2𝑛1)(1+𝑏3𝑛2)
− 𝑑1𝑛2 −

𝑏5𝑛2
2𝑛3

1+𝑏6𝑛2
2 , h = 

𝑏7𝑛2
2𝑛3

1+𝑏6𝑛2
2 −𝑑2𝑛3 . 

                                  

Therefore, the Jacobian matrix for the system of Eq. 

2 is  

J(𝑛1, 𝑛2, 𝑛3) = [

𝐽11 𝐽12 0
𝐽21 𝐽22 𝐽23

0 𝐽32 𝐽33

]  ,              4   

                                         

 where  𝐽11 = 1 −2𝑛1 −
𝑏1𝑛2

(1+𝑏2𝑛1)2(1+𝑏3𝑛2)
 , 𝐽12 =

−
𝑏1𝑛1

(1+𝑏2𝑛1)(1+𝑏3𝑛2)2
 , 𝐽21 =

𝑏4𝑛2

(1+𝑏2𝑛1)2(1+𝑏3𝑛2)
  

𝐽22 =
𝑏4𝑛1

(1+𝑏2𝑛1)(1+𝑏3𝑛2)2
− 𝑑1 −

2𝑏5𝑛2𝑛3

(1+𝑏6𝑛2
2)

2 , 𝐽23 =

−𝑏5𝑛2
2

1+𝑏6𝑛2
2 , 𝐽32 =

2𝑏7𝑛2𝑛3

(1+𝑏6𝑛2
2)

2 , 𝐽33 =
𝑏7𝑛2

2

1+𝑏6𝑛2
2 −𝑑2 

 

All potential equilibrium points are employed in Eq. 

4 to determine the stability of the model. The 

procedures for determining the stability are as 

follows.  

At the point 𝐸0(0,0,0) in Eq. 4 then the matrix is 

given by J(𝐸0) = [

1 0 0
0 −𝑑1 0
0 0 −𝑑2

] . Thus the 

characteristic equation of the above matrix is given 

as |
1 − 𝜆 0 0

0 −𝑑1 − 𝜆 0
0 0 −𝑑2 − 𝜆

| = 0. The 

Eigenvalues are 𝜆1 = 1 > 0, 𝜆2 = −𝑑1 < 0, 𝜆3 =
−𝑑2 < 0.  The system is unstable because the 

eigenvalues are real distinct and the point is saddle 

since one of its eigenvalue is an absolute value. 

 

At the Point 𝐸1(1,0,0) in Eq. 4 then the matrix is 

given by  𝐽(𝐸1) =

[
 
 
 −1

−𝑏1

1+𝑏2
0

0
𝑏4

1+𝑏2
− 𝑑1 0

0 0 −𝑑2]
 
 
 

 . Thus 

the characteristic equation of the above matrix is 

given as ||

−1 − 𝜆
−𝑏1

1+𝑏2
0

0
𝑏4

1+𝑏2
− 𝑑1 − 𝜆 0

0 0 −𝑑2 − 𝜆

|| = 0. 

The corresponding eigenvalues are 𝜆1 = −1 <

0, 𝜆2 =
𝑏4

1+𝑏2
− 𝑑1 < 0, 𝜆3 = −𝑑2 < 0 .The system 

is locally asymptotically stable only if  
𝑏4

1+𝑏2
< 𝑑1. 

At the point 𝐸2(𝑛̂1, 𝑛̂2, 0)  in Eq. 4 then the Matrix 

       J(𝐸2) =  

[
 
 
 
 
 
 1 − 2𝑛̂1 −

𝑏1𝑛̂2

(1 + 𝑏2𝑛̂1)
2(1 + 𝑏3𝑛̂2)

−
𝑏1𝑛̂1

(1 + 𝑏2𝑛̂1)(1 + 𝑏3𝑛̂2)
2

0

𝑏4𝑛̂2

(1 + 𝑏2𝑛̂1)
2(1 + 𝑏3𝑛̂2)

𝑏4𝑛̂1

(1 + 𝑏2𝑛̂1)(1 + 𝑏3𝑛̂2)
2
− 𝑑1

−𝑏5𝑛̂2
2

1 + 𝑏6𝑛̂2
2

0 0
𝑏7𝑛̂2

2

1 + 𝑏6𝑛̂2
2 −𝑑2

]
 
 
 
 
 
 

Thus the characteristic equation of the above matrix 

is given as follows  

                        

|

|
1 − 2𝑛̂1 −

𝑏1𝑛̂2

(1 + 𝑏2𝑛̂1)
2(1 + 𝑏3𝑛̂2)

− 𝜆 −
𝑏1𝑛̂1

(1 + 𝑏2𝑛̂1)(1 + 𝑏3𝑛̂2)
2

0

𝑏4𝑛̂2

(1 + 𝑏2𝑛̂1)
2(1 + 𝑏3𝑛̂2)

𝑏4𝑛̂1

(1 + 𝑏2𝑛̂1)(1 + 𝑏3𝑛̂2)
2
− 𝑑1 − 𝜆

−𝑏5𝑛̂2
2

1 + 𝑏6𝑛̂2
2

0 0
𝑏7𝑛̂2

2

1 + 𝑏6𝑛̂2
2 −𝑑2 − 𝜆

|

|

= 0

The corresponding eigenvalues are 𝜆1, 𝜆2 and 𝜆3. 

One of the root is 𝜆3 =
𝑏7𝑛̂2

2

1+𝑏6𝑛̂2
2 −𝑑2 then the 

remaining roots can be found from the following 

characteristic equation 𝜆2 + 𝐵1𝜆 + 𝐵2 = 0 where 
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𝐵1 = 𝑑1 −
𝑏4𝑛̂1

(1+𝑏2𝑛̂1)(1+𝑏3𝑛̂2)2
+

𝑏1𝑛̂2

(1+𝑏2𝑛̂1)2(1+𝑏3𝑛̂2)
+

2𝑛̂1 − 1, 

𝐵2 =
𝑏4𝑛̂1

(1+𝑏2𝑛̂1)(1+𝑏3𝑛̂2)2
− 𝑑1 + 2𝑛̂1𝑑1 +

𝑏1𝑑1𝑛̂2

(1+𝑏2𝑛̂1)2(1+𝑏3𝑛̂2)
−

2𝑏4𝑛̂1
2

(1+𝑏2𝑛̂1)(1+𝑏3𝑛̂2)2
. 

The Eigenvalues of the above characteristic equation 

have negative real roots if and only if  𝐵1 > 0, 𝐵2 >

0 by using Routh Hurwitz criterion. Thus the system 

is locally asymptotically stable at 𝐸2 only if  𝐵1 > 0,
𝐵2 > 0 and 𝑏7𝑛̂2

2 < 𝑑2(1 + 𝑏6𝑛̂2
2). 

 

At this point, 𝐸3(𝑛1
∗ , 𝑛2

∗ , 𝑛3
∗)  in Eq. 4, the Jacobian 

matrix is given as  

J(𝐸3) =  

[
 
 
 
 
 
 
 1 − 2𝑛1

∗ −
𝑏1𝑛2

∗

(1 + 𝑏2𝑛1
∗)2(1 + 𝑏3𝑛2

∗) 
−

𝑏1𝑛1
∗

(1 + 𝑏2𝑛1
∗)(1 + 𝑏3𝑛2

∗)2
0

𝑏4𝑛2
∗

(1 + 𝑏2𝑛1
∗)2(1 + 𝑏3𝑛2

∗)

𝑏4𝑛1
∗

(1 + 𝑏2𝑛1
∗)(1 + 𝑏3𝑛2

∗)2
− 𝑑1 −

2𝑏5𝑛2
∗𝑛3

∗

(1 + 𝑏6𝑛2
∗2)

2

−𝑏5𝑛2
∗2

1 + 𝑏6𝑛2
∗2

0
2𝑏7𝑛2

∗𝑛3
∗

(1 + 𝑏6𝑛2
∗2)

2

𝑏7𝑛2
∗2

1 + 𝑏6𝑛2
∗2 −𝑑2

]
 
 
 
 
 
 
 

Thus, the characteristic equation of the above matrix 

is given as follows 

             

|

|

|
1 − 2𝑛1

∗ −
𝑏1𝑛2

∗

(1 + 𝑏2𝑛1
∗)2(1 + 𝑏3𝑛2

∗) 
− 𝜆 −

𝑏1𝑛1
∗

(1 + 𝑏2𝑛1
∗)(1 + 𝑏3𝑛2

∗)2
0

𝑏4𝑛2
∗

(1 + 𝑏2𝑛1
∗)2(1 + 𝑏3𝑛2

∗)

𝑏4𝑛1
∗

(1 + 𝑏2𝑛1
∗)(1 + 𝑏3𝑛2

∗)2
− 𝑑1 −

2𝑏5𝑛2
∗𝑛3

∗

(1 + 𝑏6𝑛2
∗2)

2 − 𝜆
−𝑏5𝑛2

∗2

1 + 𝑏6𝑛2
∗2

0
2𝑏7𝑛2

∗𝑛3
∗

(1 + 𝑏6𝑛2
∗2)

2

𝑏7𝑛2
∗2

1 + 𝑏6𝑛2
∗2 −𝑑2 − 𝜆

|

|

|

= 0

The Corresponding Characteristic Equation is as 

follows 𝜆3 + 𝐿1𝜆
2 + 𝐿2𝜆 + 𝐿3 = 0  where 

𝐿1 = 𝑑1 +
2𝑏5𝑛2

∗𝑛3
∗

(1+𝑏6𝑛2
∗2

)
2 −

𝑏4𝑛1
∗

(1+𝑏2𝑛1
∗)(1+𝑏3𝑛2

∗)2
+ 𝑑2 − 

𝑏7𝑛2
∗2

1+𝑏6𝑛2
∗2 + 2𝑛1

∗ +
𝑏1𝑛2

∗

(1+𝑏2𝑛1
∗)2(1+𝑏3𝑛2

∗) 
− 1 , 

𝐿2 = [
𝑏4𝑏7𝑛1

∗𝑛2
∗2

(1+𝑏2𝑛1
∗)(1+𝑏3𝑛2

∗)2(1+𝑏6𝑛2
∗2

)
− 𝑑1𝑑2 +

2𝑏5𝑛2
∗𝑛3

∗𝑑2

(1+𝑏6𝑛2
∗2

)
2 −

𝑏4𝑛1
∗𝑑2

(1+𝑏2𝑛1
∗)(1+𝑏3𝑛2

∗)2
−

𝑏7𝑛2
∗2

𝑑1

1+𝑏6𝑛2
∗2 +

(
𝑏1𝑛2

∗

(1+𝑏2𝑛1
∗)2(1+𝑏3𝑛2

∗) 
+ 2𝑛1

∗ − 1)(𝑑1 + 𝑑2 +

2𝑏5𝑛2
∗𝑛3

∗

(1+𝑏6𝑛2
∗2

)
2 −

𝑏7𝑛2
∗2

1+𝑏6𝑛2
∗2) +

𝑏4𝑛1
∗

(1+𝑏2𝑛1
∗)(1+𝑏3𝑛2

∗)2
−

2𝑏4𝑛1
∗2

(1+𝑏2𝑛1
∗)(1+𝑏3𝑛2

∗)2
], 

𝐿3 = [(
𝑏1𝑛2

∗

(1+𝑏2𝑛1
∗)2(1+𝑏3𝑛2

∗) 
+ 2𝑛1

∗ − 1)(
2𝑏5𝑛2

∗𝑛3
∗𝑑2

(1+𝑏6𝑛2
∗2

)
2 −

𝑏7𝑛2
∗2

𝑑1

1+𝑏6𝑛2
∗2 − 𝑑1𝑑2) +

2𝑏4𝑏7𝑛1
∗𝑛2

∗2

(1+𝑏2𝑛1
∗)(1+𝑏3𝑛2

∗)2(1+𝑏6𝑛2
∗2

)
−

2𝑏4𝑑2𝑛1
∗2

(1+𝑏2𝑛1
∗)(1+𝑏3𝑛2

∗)2
+

𝑏4𝑛1
∗𝑑2

(1+𝑏2𝑛1
∗)(1+𝑏3𝑛2

∗)2
−

𝑏4𝑏7𝑛1
∗𝑛2

∗2

(1+𝑏2𝑛1
∗)(1+𝑏3𝑛2

∗)2(1+𝑏6𝑛2
∗2

)
]. 

 

The Eigenvalues of the above characteristic equation 

have negative real roots if and only if  𝐿1 > 0, 𝐿3 >
0 and 𝐿1𝐿2 − 𝐿3 > 0 𝑏y using Routh Hurwitz 

criterion. Thus the system is locally asymptotically 

stable at 𝐸3. 

 

Global Stability Analysis: 

              Here the global stability is done for the 

positive inner equilibrium point and not for the 

boundary points. The global stability exists for 

coexistence equilibrium point. The global stability 

around the interior equilibrium point 

𝐸3(𝑛1
∗ , 𝑛2

∗ , 𝑛3
∗)  𝑓𝑜𝑟 the system of Eq. 2 is determined 

by constructing a suitable Lyapunov function. The 

function is given as   V(𝑛3, 𝑛2, 𝑛1) = 𝑉3(𝑛3, 𝑛2, 𝑛1) 

+𝑉2(𝑛3, 𝑛2, 𝑛1)+ 𝑉1(𝑛3, 𝑛2, 𝑛1) where 𝑉3 = 𝑛3 −
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𝑛3
∗ − 𝑛3

∗  𝑙𝑛
𝑛3

𝑛3
∗  ,𝑉2 = 𝑛2 − 𝑛2

∗ − 𝑛2
∗  𝑙𝑛

𝑛2

𝑛2
∗ , 𝑉1 = 𝑛1 −

𝑛1
∗ − 𝑛1

∗  𝑙𝑛
𝑛1

𝑛1
∗  . 

 This implies Lyapunov function (V) is continuous in 

 𝑅+
3 . Let us take the derivative of the V along with the 

time given as 

𝑉̇ =
𝑑𝑉

𝑑𝑡
=

𝑛3−𝑛3
∗

𝑛3

𝑑𝑛3

𝑑𝑡
 +

𝑛2−𝑛2
∗

𝑛2

𝑑𝑛2

𝑑𝑡
+

   𝑛1−𝑛1
∗   

𝑛1

𝑑𝑛1

𝑑𝑡
  

 

  
1

𝑛1

𝑑𝑛1

𝑑𝑡
= (1 − 𝑛1) −

𝑏1𝑛2

(1+𝑏2𝑛1)(1+𝑏3𝑛2)
 

 

  
1

𝑛2

𝑑𝑛2

𝑑𝑡
=

𝑏4𝑛1

(1+𝑏2𝑛1)(1+𝑏3𝑛2)
− 𝑑1 −

𝑏5𝑛2𝑛3

1+𝑏6𝑛2
2         

 

  
1

𝑛3

𝑑𝑛3

𝑑𝑡
=

𝑏7𝑛2
2

1+𝑏6𝑛2
2 −𝑑2       

 𝑉̇ (𝑛3, 𝑛2, 𝑛1)  =  (𝑛3 − 𝑛3
∗) [

𝑏7𝑛2
2

1+𝑏6𝑛2
2 −𝑑2] + 

(𝑛2 − 𝑛2
∗) [

𝑏4𝑛1

(1+𝑏2𝑛1)(1+𝑏3𝑛2)
− 𝑑1 −

𝑏5𝑛2𝑛3

1+𝑏6𝑛2
2] + 

(𝑛1 − 𝑛1
∗) [(1 − 𝑛1) −

𝑏1𝑛2

(1 + 𝑏2𝑛1)(1 + 𝑏3𝑛2)
] 

                                 

                         =   (𝑛3 − 𝑛3
∗) [

𝑏7(𝑛2−𝑛2
∗)2

1+𝑏6(𝑛2−𝑛2
∗)2

] + (𝑛2 −

𝑛2
∗) [

𝑏4(𝑛1−𝑛1
∗)

(1+𝑏2(𝑛1−𝑛1
∗))(1+𝑏3(𝑛2−𝑛2

∗))
−

𝑏5(𝑛2−𝑛2
∗)(𝑛3−𝑛3

∗)

1+𝑏6(𝑛2−𝑛2
∗)2

] 

+ 

(𝑛1 − 𝑛1
∗) [−(𝑛1 − 𝑛1

∗)

−
𝑏1(𝑛2 − 𝑛2

∗)

(1 + 𝑏2(𝑛1 − 𝑛1
∗))(1 + 𝑏3(𝑛2 − 𝑛2

∗))
] 

 
𝑑𝑉

𝑑𝑡
= − (𝑛1 − 𝑛1

∗)2 −

[
𝑏1(𝑛2−𝑛2

∗)(𝑛1−𝑛1
∗)

(1+𝑏2(𝑛1−𝑛1
∗))(1+𝑏3(𝑛2−𝑛2

∗))
−

𝑏4(𝑛1−𝑛1
∗)(𝑛2−𝑛2

∗)

(1+𝑏2(𝑛1−𝑛1
∗))(1+𝑏3(𝑛2−𝑛2

∗))
]           

−(𝑛2 − 𝑛2
∗)2 [

𝑏5(𝑛3 − 𝑛3
∗)

1 + 𝑏6(𝑛2 − 𝑛2
∗)2

−
𝑏7(𝑛3 − 𝑛3

∗)

1 + 𝑏6(𝑛2 − 𝑛2
∗)2

] 

𝑑𝑉

𝑑𝑡
  ≤ − (𝑛1 − 𝑛1

∗)2−(𝑛2 − 𝑛2
∗)2 [

𝑏5(𝑛3−𝑛3
∗)

1+𝑏6(𝑛2−𝑛2
∗)2

−

𝑏7(𝑛3−𝑛3
∗)

1+𝑏6(𝑛2−𝑛2
∗)2

] 

                   

 𝑉̇ (𝑛3, 𝑛2, 𝑛1) ≤ − (𝑛1 − 𝑛1
∗)2−(𝑛2 −

𝑛2
∗)2 [

𝑏5(𝑛3−𝑛3
∗)

1+𝑏6(𝑛2−𝑛2
∗)2

−
𝑏7(𝑛3−𝑛3

∗)

1+𝑏6(𝑛2−𝑛2
∗)2

] 

 

Therefore,  𝑉 ̇  is a negative definite function. This 

shows that the inner equilibrium point 𝐸3(𝑛1
∗ , 𝑛2

∗ , 𝑛3
∗)  

of the system is globally asymptotically stable .Thus, 

𝐸3(𝑛1
∗ , 𝑛2

∗ , 𝑛3
∗) is globally asymptotically stable, 

according to the Lyapunov theorem. 

 

Permanence 

        The Average Lyapunov function is used to 

demonstrate the system's of Eq. 2 permanence (Gard 

and Hallam) 22. 
 

Theorem:  

   The system of Eq. 2 is said to be permanent when 

it satisfies the following conditions as  

a) 
𝑏4

1+𝑏2
> 𝑑1 

b) 
𝑏7𝑛2

2

1+𝑏6𝑛2
2 > 𝑑2. 

 

Proof: 

The typical Lyapunov function is represented by the 

following form 𝜎(𝑛1, 𝑛2, 𝑛3) = 𝑛1
𝑝1𝑛2

𝑝2𝑛3
𝑝3 where 

𝑝1, 𝑝2𝑎𝑛𝑑 𝑝3 are positive in the interior  𝑅+
3  . Then  

 

𝜓(𝑛1, 𝑛2, 𝑛3) =
𝜎̇

𝜎
= 𝑝1 ((1 − 𝑛1) −

𝑏1𝑛2

(1+𝑏2𝑛1)(1+𝑏3𝑛2)
) + 𝑝2 (

𝑏4𝑛1

(1+𝑏2𝑛1)(1+𝑏3𝑛2)
− 𝑑1 −

𝑏5𝑛2𝑛3

1+𝑏6𝑛2
2)  

  +𝑝3 (
𝑏7𝑛2

2

1+𝑏6𝑛2
2 −𝑑2).  

 

The Permanence of the system is validated when  

𝜓(𝑛1, 𝑛2, 𝑛3) > 0. The values 𝜓(𝑛1, 𝑛2, 𝑛3)  at the 

equilibrium point 𝐸0, 𝐸1, 𝐸2, are as follows 

                                                                     

𝐸0: 𝑝1 − 𝑝2𝑑1 − 𝑝3𝑑2 

       

𝐸1: 𝑝2 (
𝑏4

1 + 𝑏2
− 𝑑1) − 𝑝3𝑑2 

 

𝐸2: 𝑝3 (
𝑏7𝑛̂2

2

1+𝑏6𝑛̂2
2 −𝑑2). 

For certain 𝑝𝑛 > 0 (n =1, 2, 3), this 𝜓(0,0,0) > 0 is 

satisfied. Additionally, 𝜓  is positive at 𝐸1 𝑎𝑛𝑑 𝐸2 

whenever the inequalities a) and b) hold. As a result, 

the system of Eq. 2 is permanent. 

 

Note:   

The conditions 
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𝐸1 =
𝑏4

1 + 𝑏2
− 𝑑1 > 0 

𝐸2 =
𝑏7𝑛2

2

1 + 𝑏6𝑛2
2 −𝑑2 > 0 

assured that the boundary equilibrium points E1 and 

E2 are Unstable. At these conditions the system 

becomes unstable. Since in the Stability Analysis the 

system becomes stable at the equilibrium point E1 at 
𝑏4

1+𝑏2
− 𝑑1 < 0 and E2 at 

𝑏7𝑛̂2
2

1+𝑏6𝑛̂2
2 −𝑑2 < 0. 

Results and Discussion 

Analytical findings are justified by the numerical 

simulation. Here the dynamical behavior of the three 

species model has been studied analytically with 

mixed functional response such as Crowley martin 

functional response and Holling type III functional 

response. The numerical simulations are done for the 

stability of the system. The Figs. 1-6 shows the 

stable, oscillatory behavior and phase portrait of the 

model. A numerical simulation has been done with 

the following set of parameters to show the dynamic 

behavior of the system of Eq. 2. The system's of Eq. 

2 phase portraits are obtained, together with the 

associated time series graph. In the ecology the 

parameters value cannot be predicted exactly it 

varies. Therefore, the values are taken randomly for 

the simulation. The phase potraits are obtained by 

considering different initial points only. Let us 

consider the value of the parameter as b1 = 0.2, b2 = 

0.3, b3 = 0.17, b4 = 0.4, d1 = 0.38, b5 = 1.9, b6 = 1.5, 

b7 = 0.09 and d2 = 0.4 for the Fig. 1 which depicts 

that the system variations of n1, n2, and n3 along time 

t converge to an equilibrium state. For the same set 

of values, Fig. 2 is obtained which shows the 

system's phase portrait, which is locally 

asymptotically stable at point E(0.9212, 0.3629, and 

0.6837). The other set of values is b7 = 0.3,b6 = 0.2, 

b5 = 0.2,  b4 = 0.45, b3 = 0.05, b2 = 0.1, b1 = 0.2, d1 = 

0.25 and d2 = 0.2 for the Fig. 3 which depicts the 

stable behavior of the system concerning time t. Fig.  

4 shows the system's phase portrait for the values of 

b7 = 0.3, b6 = 0.2, b5 = 0.2, b4 = 0.45, b3 = 0.05, b2 = 

0.1, b1 = 0.2,  d1 = 0.25, and d2 = 0.2 and the 

equilibrium point is asymptotically stable at 

E(0.8327, 0.6967, and 1.777). Fig.  5 depicts the 

oscillations of the populations concerning time t with 

the following values of parameters as b1 = 0.2, b2 = 

0.3, b3 = 0.17, b4 = 0.4, d1 = 0.25, b5 = 0.2, b6 = 0.2, 

b7 = 0.3 and d2 = 0.2. Fig. 6 depicts the phase diagram 

of the system with the same values of parameters 

which is asymptotically stable at E (0.8415, 0.676, 

and 1.322).     

 
Figure 1.  Variations of n1, n2, and n3 along time t 

converge to an equilibrium state. 

       

 
Figure 2. The phase diagram of the system around 

point E (0.9212, 0.3629, and 0.6837). 
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Figure 3. The stable behavior of the system with 

time t. 

 

 
Figure 4. The System is asymptotically stable at E 

(0.8327, 0.6967, and 1.777) 

 
Figure 5. Oscillatory behavior of the given system 

concerning time t. 

 
Figure 6. The system is asymptotically stable at 

the point E (0.8415, 0.676, and 1.322) 

 

Conclusion 

The mathematical framework of three species 

models in the ecosystem with the densities of Prey 

(N1), Predator (N2) and Top Predator (N3) has been 

studied in this present paper. The interaction between 

these species with a mixed functional response is 

examined. The system’s positivity and boundedness 

are studied. The system’s feasible equilibrium points 

are all determined. The implicit premise in 

deterministic scenarios is the models which are 

created have been justified by their stability around 

the interior equilibrium. The local stability is 

examined using Routh-Hurwitz criteria and global 

stability by the Lyapunov function around the 

interior equilibrium point 𝐸3(𝑛1
∗ , 𝑛2

∗ , 𝑛3
∗). Further, the 

conditions for permanence are analyzed. 

Computational simulations are done using 

MATLAB software. The paper can be further 

extended by adding any kind of delay in the model or 

other functional responses such as debeddington 

functional response, non-monotone functional 

response, and Holling type IV functional response. 
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 الفريسة والمفترس والمفترس الأعلى الذي يتضمن استجابات وظيفية مختلفة تحليل نموذج

 كافيثا ، ك..ديفيا ب

 .قسم الرياضيات، كلية العلوم المتقدمة، معهد فيلور للتكنولوجيا، فيلور، الهند

 

 ةالخلاص

يقترح هذا البحث نموذجا رياضيا لدراسة السلوك الديناميكي لنظام ثلاثة أنواع، وهي الفريسة والمفترس والمفترس العلوي. يعد سلوك  

ة الوظيفية التغذية لكل حيوان مفترس بمثابة استجابة وظيفية. يتم التفاعل بين الأنواع عن طريق الاستجابة الوظيفية. يتم دمج الاستجاب

لكراولي مارتن بين الفريسة والمفترس بينما تحدث الاستجابة الوظيفية من النوع الثالث هولينج بين المفترس والمفترس الأعلى. تم فحص 

ر وجود إيجابية وحدود النظام. يتم تحديد نقاط التوازن للنظام. لقد تم جعل النظام خطيا من خلال تطبيق المصفوفة اليعقوبية. المنظو

الرئيسي المستخدم لمناقشة ديناميكيات النظام هو الديمومة والاستقرار. يتم إجراء مزيد من تحليل استقرار النظام عند كل نقطة توازن. 

لفهم ديناميكيات النظام النموذجي، تم دراسة الاستقرار المقارب للعديد من حلول التوازن، المحلية والعالمية. تسُتخدم معايير روث 

المناسبة، تم إنشاء الاستقرار المقارب العالمي  Lyapunovلتحليل الاستقرار المحلي عند كل نقطة توازن. باستخدام وظيفة  هورويتز

لحل التوازن الداخلي الإيجابي. من منظور بيولوجي، يعتبر النظام دائمًا إذا استمرت جميع سكانه في الوجود في المستقبل. تم تحديد 

وأخيراً  .MATLAB. لدعم النتائج التحليلية، تم إجراء العديد من عمليات المحاكاة العددية باستخدام برنامج وجود شروط دوام النظام

 .وبالاعتماد على نتائج المحاكاة التحليلية والعددية تمت مناقشة تأثير الاستجابة الوظيفية بين الفريسة والمفترس والمفترس العلوي.

لسلسلة الغذائية، الاستجابة الوظيفية، الاستقرار العالمي، المصفوفة اليعقوبية، النمو اللوجستي، تحليل نموذج ا ك الكلمات المفتاحية:

 .الاستقرار

https://doi.org/10.21123/bsj.2024.10018

