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Abstract

This research proposes a mathematical model to investigate the dynamical behavior of the system of
three species, namely prey, predator and top predator. The feeding behavior of each predator serves as
a functional response. The interaction between the species is carried out by a functional response.
Crowley Martin functional response is incorporated between prey and predator while Holling type |11
functional response occurs between predator and top predator. The existence of positivity and
boundedness of the system have been examined. The equilibrium points of the system are determined.
The system has been linearized by applying the Jacobian matrix. The main perspective used to discuss
the system's dynamics is that of permanence and stability. Further stability analysis of the system is
carried out at around each equilibrium point. To comprehend the dynamics of the model system, the
asymptotic stability of several equilibrium solutions, both local and global, is investigated. Routh
Hurwitz criteria are used to analyze local stability at every equilibrium point. Using an appropriate
Lyapunov function, the global asymptotic stability of the positive interior equilibrium solution is
established. From a biological perspective, a system is considered to be permanent if all of its
populations continue to exist in the future. The existence of permanence conditions of the system have
been determined. To support the analytical results, several numerical simulations are carried out using
the MATLAB software. Finally based on the results of the analytical and numerical simulations, the
impact of the functional response between the prey, predator and top predator was discussed.

Keywords: Food chain model, Functional Response, Global Stability, Jacobian Matrix, Logistic
Growth, Stability Analysis.

Introduction

In recent years, ecological modelling research has
become more interesting to both mathematicians and
biologists because of its dynamism. The richness of
the dynamics is yielded by the interaction of the
species in the ecology. Moreover, the interaction of
the species is fascinating to investigate in the
ecosystem. In 1798, Malthus formulated a single-
species model. The modification of the single-

species model was developed by Verhulst in 1838.
Based on the single-species model many models
were formulated. A two-species model was
developed by Lotka and Volterra such as Prey and
Predator in 1926 . Numerous researchers have
established different kinds of functional responses
like Crowley Martin functional response,
Beddington functional response, and Holling type I,
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I, 111, and IV to study the interaction between prey
and predator employing harvesting, refuge, and these
responses. The relationship between a predator's rate
of prey consumption per unit of time and the quantity
or density of its prey is known as the functional
response *. Many researchers studied the dynamics
of prey predator model in the presence of various
functional response, Allee effect, reaction and
diffusion®®. Later on, three species and many species
models were developed. In 1961, Kerner 7 expanded
the Lotka-Volterra Model to include a three-species
feeding chain. Chauvet et al ® investigated a linear
food chain for a three-species lotka-Volterra model.
Hasting and Powell ° developed the three-level food
chain model which is linear and demonstrates the
chaotic dynamics in the ecosystem. The three-
species model's oscillatory behavior has been
investigated °. Klebanoff created an ecological
model class that exhibits the chaotic behavior of a
three-species model with bifurcation . A tri-trophic
food chain model with a hybrid functional response
was investigated for its chaotic behavior * 3, The
dynamics of the fractional order prey-predator model
were studied by Prabir Panja together with
harvesting 4. Zabidin Salleh et al *° incorporated
Holling type Ill functional responses in the tri-
trophic food chain model. A cyclic three-species
model's dynamic behavior was mathematically
explained by Krishna das et al '®. The dynamic
behavior of the three-species food chain model was
examined by numerous authors with various
functional responses *"*°. Ashok Mondal used the
Crowley Martin functional response, which displays
the Hopf bifurcation and persistence, to analyse the
dynamical behavior of the food chain model 2.
Permanence and persistence refer to each species'
ability to persist over the long term in a given
population and it was first introduced by Goodman
21 Many authors have looked into the longevity of
the three-species model ?* %, Arif et al * investigated
the non-autonomous prey-predator model's reaction
to the fluctuation rescue effect. Ali et al *° studied the
dynamics of food chain model involving Holling
type 1V and Holling type Il functional response with
leslie gower model. Naji ?® studied the chaotic
dynamics of the prey-predator relationship. The

chaotic behavior of food chain model with Holling
type IV functional response was studied by Ali et al
21 28 The stability analysis of three species model
with prey T axis has been investigated * ¥, The
behavior of three species model with the effect of
noise has been examined 3" 3. Researchers have
looked at the dynamic behavior of a three-species
model including intraspecific rivalry between
predators® **, The three-species model's durability
and stability were extensively researched by several
authors *%. Many studies have incorporated the
dynamic interactions of a three-species model with
diverse functional responses, Allee effects,
interspecific competition, refuges, and various types
of delays. The models previously used were based on
either a single functional response or the same type
of functional response. Now, they include a mixed
functional response in the model. The model
introduces a novel approach by combining a mixed
functional response, including Holling type 11l and
Crowley Martin functional responses, in a three-
species model. Crowley-Martin's  functional
response is a suitable choice among many functional
responses. The Crowley-Martin functional response
is utilized in situations where there is no predation
occurring in a large population of both prey and
predators. The ecosystem dynamics are more
accurately represented by the Holling type Il
functional response when top predators are more
effective at higher predator numbers and less
effective at lower predator densities. The predator's
persistence is maintained by utilizing the Holling
type 111 functional response.

The main objective of the research is to
investigate the dynamical behavior of the three-
species food chain model in the presence of various
functional responses such as Crowley Martin
functional response and Holling type 111 functional
response. The local and global stability of the system
are analyzed. The stability of the system depends on
the presence of equilibrium points. The behavior of
the model is examined using the Jacobian matrix.
The system's overall stability and longevity are also
evaluated using the Routh Hurwitz Criteria and
Lyapunov function.
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Mathematical Framework

Before the description of the mathematical model,
some of the aspects are introduced. Three species
models, comprising prey, predator, and top predator,
have been considered. The three species are

Prevy Predator

>

The feeding on the three species involves mixed
functional responses such as Crowley Martin
Functional Response between Predator and Prey
while Holling type —I11 functional response between
Top predator and Predator. In the absence of a
Predator, the Prey population grows logistically with
the intrinsic growth rate (r) and the carrying capacity
(K). The Population densities of Prey, Predator and
Top Predator over time are represented as
N;(t),N,(t) and Ng(t). The Crowley-Martin
response function is affected by predator density,
catch rate, handling time, and the level of disturbance
among predators. The Crowley-Martin response
functional response suggests that reciprocal
interferences among predators still have a significant
impact on eating rate when the prey population is
huge. The Holling type-11l functional response is
defined by a sigmoidal relationship, where a
substantial portion of predator devoured by the top
predator increases in a density-dependent manner
within specific predator population ranges. This
physiological response enables the predator to
persist.

By considering the above aspects, the mathematical
model can be formulated which is given below:

dN. N aNqN.
—1=rN1(1——1)—#
dr K (1+AN;)(1+BN,)

dN, a1N{N; BN3N3

dT ~ (1+AN;)(14+BN,) M2 +N2

dN3 _ B1N3N3
dT =~ M2+N2

- D2N31

where N3(0), N,(0), N;(0) > 0. The parameters of
the model «a, a4, 8, B1, D1, D, and M are assumed to
be positive. Here o, p are the predation rates of
Predator and Top predator while a;being the rate of
transition from Prey to Predator and $; the rate of
transition from Predator to Top Predator. M is the

organized in a linear food chain, where the Predator
hunts the Prey and the Top Predator hunts the
Predator, as shown in a diagram.

—h Top Predator

half-saturation constant. D,, D, is the mortality rate
of predator and Top Predator.

The following method (non-
dimensionalization) is used to reduce the number of
parameters in the system of Eq. 1. The dimensionless

Ny N3
parameters are n; = ~ M2 = andt=
IT.
After non-dimensionalization, the above system is of
the form

N3
Tl3 —7

dnq binin,
—=n1-n)-— =
de 1( 1) (1+byny)(1+b3ny)
dn bynin bsnin

2 _ 1M1 M2 _dlnz_szz 2
dt (1+b2n1)(1+b3n2) 1+b6n2

any _ bomins
dt ~ 1+bgn

Wlth n3(0) = Nz3g > 0,1’12(0) = Nyo > 0, Tll(O) =

ny >0,

Where bl = G;_K,bz = AK,b3 = BK,b4_ = %, d1 =

_KZ _ﬁlKZ
=z b7

2N3,

_ DK

Dle _ﬁbi
r 205 T 6 M2 P2 T

M2’
Positivity and Boundedness

The Existence of positivity in the system with
its initial condition guarantees the model. The
following illustrates the system's positivity and
boundedness:

Positivity

The solution (n4,n,,n3) for the system of Eq.2
with its initial condition n,(0) = 0,n,(0) >
0,n3(0) = 0 remains positive in R3.

Proof:
The system of Eq. 2 can be written in the following
form with its initial condition as
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dn, [ bin,

—=11-n) — ————

nq _( 1) (1+b2n1)(1+b3n2)

dn2 — [ b4n1 _ d _ b5n2n3] dt 3
n, _(1+b2n1)(1+b3n2) 1 1+b6n%

dn3 _ [ b7n%

dns _ _—d,| dt.

ns _1+b6n2

Integration of the above system of Eq. 3 now results
in

ny(8) = ny (0)exp | [y {(1 = ny(s)) -

byny(s)
(1+b2n1(5))(1+b3n2(s))} ds] —ny(t) 20
ny(t) = o)
t 4Ny (s B 3
n, (O)pr [fo {(1+b2n1(5))(1+b3n2(s)) dl

bsn,(s)nz(s)
1+bgn3(s) }dS] > (t) 20

nz(t) =

t [_byn3(s)
nz(0)exp [fo {#:1;(5) —dz} ds] - ny(t) = 0.
Thus all of the system of the Eq.2 solution remains
positive in R3.

Boundedness
The system’s of Eq. 2 possible solutions are
uniformly bounded in R3.

Proof:
. dn
Since d—tl <n, (1 —ny).
b byb
Let B=n; + b—1n2 +b1—b5n3
4 477
dB b1d1n2 b1b5d2n3
—=n(1—-ny) — -
dt 1( 1) by byb,
d_B < bldlnz b1b5d2n3
at — by bab;

‘Z—I: < 2n, — KB, where K = min {1, d1, dz}.

Hence ‘;—f + KB <2n; <2 [Using the known
result %_1)12 supnq(t) < 1] atthe largest value of t.
Solving the above differential inequality which
results in

0 < B(ny,ny,n3) < %+

B(n41(0),n2(0),n3(0))
oKt

2
=>OSBSE ast— oo,

The system’s of Eq. 2 solution lies in the region: M
={(n1,n2,n3): 0<B< %+ 6, foranyd > O}.
Hence the theorem.

Equilibrium Points:

The stability of the system depends on the
equilibrium points existing. The equilibrium points
can be determined for the above system of Eq. 2.

1. E,(0,0,0) is the equilibrium point that exists

trivially.

2. E;(1,0,0) is an axial equilibrium point that
exists axially

3. E,(74,1,0) is the equilibrium point that
exists

alﬁ% + azﬁ% + a3ﬁ1 + b1d1 = 0 and

~ _ ny(by—bydy)—d,y
27 dybs(1+byny)
Where a, = _b2b3b4 , Ay = _[b3b4(1 -
by)],as = —[bsy(by — b3) — bynyd4].This
equilibrium point exists only if it satisfies the
condition that b, > b,d;

4. The inner equilibrium point E5(nj, n3,n3)
of the system of Eq. 2 is given by

2
x _ (b—1) (bz—l) by
n = 2b, + 2b, + b, '

()" ;
n =
b7—-bed; ' 3

1+bg (n3)? bun}
bG(*Z) RV —dl] where
5N (1+byn7)(1+b3n3)

1
byd, /2
b — 1 _ ( 142 )
4 (b7—bedz)1/2‘*'173¢121/2

n; =

This equilibrium point exists only if it

follows the below conditions

i) b; > bgd, i) byni >d(1+
b,n7)(1 + bgn3) iii) b3 > by

Stability Analysis:

The Stability Analysis for the System of Eq. 2
is determined using the Jacobian matrix along with
the existing equilibrium points. The Jacobian Matrix
is of the form

ony 0n, 0ng
99 99 99
6n1 anz 61’13
oh dh dh

ony 0n, O0ng

a_fa_fa_f]

J(ny,ny,m3) =
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binqn
where f=n(1-n)—-——— 22—, ¢ =
(1+b2n1)(1+b3n2)

bynqn bsn3n

4NNy —dyn, — 5N i , h —
(1+byn1)(1+b3ny) 1+bgn3
byn3ng
1+bgn? 2N3 -

613

Therefore, the Jacobian matrix for the system of Eq.
21s

characteristic equation of the above matrix is given

1-4 0 0
as 0 —d;— 1 0 = 0. The
0 0 —d, — 1

Eigenvalues are 1, =1>0,4, =—-d; <0,4; =
—d, < 0. The system is unstable because the
eigenvalues are real distinct and the point is saddle
since one of its eigenvalue is an absolute value.

11 ]12 0
J(ny,ny,n3) = []21 J22 ]23] , 4 At the Point E;(1,0,0) in Eq. 4 then the matrix is
-b,
0 J32 J33 -1 1+b, 0
B byn, B given by J(E;) = o by _ d, 0 |- Thus
Where ]11 —_— 1 _2n1 - (1+b2n1)2(1+b3n2) y ]12 —_— 1+b2
_ bing _ byn, 0 0 _dZ
(1+byn1)(1+b3n,)2 Jo1 = (1+byn1)2(1+b3ny) the characteristic equation of the above matrix is
] — b4n1 _ d _ 2b5n2n3 ] — _1 —A —b1 0
227 (14byn1) (1+b31;)> ! (1+bgn2)” 23 1+b;
—bsn3 _ 2bymyng _ byn _ given as 0 by d. — 1 0 = 0.
1+bgn3 Jaz = (1+bgn)* Ja3 = 1+bgn 2 14p, 1
0 0 —d, — 1
All potential equilibrium points are employed in Eg. 1€ cor;espondlng eigenvalues are A; = —1<
4 to determine the stability of the model. The 0,1, = 1+‘; —dy < 0,43 =—d, <0 .The system
procedures for determining the stability are as . 2 . .. by
follows is locally asymptotically stable only if T < dy.
. 2
At the point E;(0,0,0) in Eqg. 4 then the matrix is At the point E; (i1, 715, 0) in EQ. 4 then the Matrix
1 0 0 J(E,) =
given by J(Ey) = [O -d; 0 Thus the
0 0 —d,
i b7l b7l
1— Zﬁl _ _ 172 _ _ _ 171 _ 0
(1 + by7iy)%2(1 + bsfiy) (1 + byfi;)(A + bsfiy)?
byfiy byfly P —bsfi}
(1 + b,7;)2(1 + bsfiy) (14 byi)(1 + b3fix)2 1 1+ bgh
b5
0 0 — = —d,
1 + bgni5 |
Thus the characteristic equation of the above matrix
is given as follows
b7l b7
1-2m; — e p—— ] - et S 0
(1 + by7i)?2(1 + b3fiy) (1 + byfiy)(1 + b3fiy)?
bais bafs W, b .
(1 + byfiy)2(1 + bsiiy) (14 bpfi)(1 + b3iy)2 ' 1+ behi3 B
b, 73
0 0 — = —d, -
1 + bghi5

The corresponding eigenvalues are A,,1,and A5.

-2
%2 _ g then the

One of the root is A3 =T
672

remaining roots can be found from the following
characteristic equation 22 + B;A + B, = 0 where
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byfiy
(14byA1)(1+b37,)?

_ _ b7,
By =d, (1+b,71)2(1+b3f,) +

Zﬁl - 1,

_ b7y

T (1+by7y)(1+b3fiy)?
bydq 7, 2b,Ai2

(1+by711)2(14b3fiy)  (1+byiy)(1+bsfiz)?’

The Eigenvalues of the above characteristic equation

have negative real roots if and only if B; > 0,B, >

B, —d, + 2A,d, +

0 by using Routh Hurwitz criterion. Thus the system
is locally asymptotically stable at E, only if B; > 0,
B, > 0 and b,73 < d,(1 + bgh3).

At this point, E5(ni,n3,n3) in Eq. 4, the Jacobian
matrix is given as
J(E3) =

- bln* bln* -
1-2nj - e r— - e 0
(1 + byn})?(1 + b3ny) (1 + byn})(A + b3nj)?
b,n; b,ni p 2bsnyng —b5n§2
* * * * - 1 - *
(14 byny)?(1 + bsny) (14 bong)(1 + b3nj)? (1+ b6n;2)2 1+ bgni®
0 2b;nyng b,ns° 3
+2)?2 1+bgny? -
| (1 + b6n2 ) 6n2
Thus, the characteristic equation of the above matrix
is given as follows
. bin, _ _ biny
E R ) I Ty T+ b, (A + byn)? 0
byn; byn; —d - 2bsniyng B —b5n§2
(1 4 byn7)?(1 + bgny) (1+bn)(1+b3ny)?> ! (1+ b6n§2)2 1+ bgnj® =0
0 2b,nns 2 b7n§2*2 4,2
(1 + bgny?) 1+ ben,
The Corresponding Characteristic Equation is as 2bydyn}” byn}d, _
follows A3 + L;A%2 + L,A + L; = 0 where (1+byn))(1+b3n3)2 ~ (1+byn;)(1+b3n3)?
2bsnynj byn} o %2
Li=d; +—23-— 2T g, — byb,nin}
1 . P (apeny?)’ (bandtbsnp)? T (1+b;n)(1+b3n3)?(1+ben3?) [
b7n2*2 + Zn; + *blznz o~ 1 ’ . —_ .
1+bgns (1+byn%)2(1+b3n}) The Eigenvalues of the above characteristic equation
L = babynins® —did, + have negative real roots if and only if L; > 0,L; >
27 |(atban))(a+b3n3)2 (14beny?) L 0 and L;L,—Ls; > 0by using Routh Hurwitz

2bsnynid, byn’d, _ byn3’dy
2 * * *2
(1+b6n*2‘2) (1+b2n1)(1+b3n2)2 1+b6n2

b1n§ *
((1+b2n;)2(1+b3n;) +2m 1) <d1 td; +

2bsnin b,ni” + byn’

(1+4bgn3?)"  1+beny” | (1+bani)(1+b3n3)?
2b4n’{2

(1+byn3)(1+b3n3)2 |’

byn;

Ly = [((1+b2n;)2(1+b3n;)

2bsninid
+2ni—1) —
(1+b6n§
2b4b7n;n§2

byn}*d, _
(1+byn%)(1+b3n3)2 (1+bgns?

1+b6n;2

- d1d2> +

criterion. Thus the system is locally asymptotically
stable at E5.

Global Stability Analysis:

Here the global stability is done for the
positive inner equilibrium point and not for the
boundary points. The global stability exists for
coexistence equilibrium point. The global stability
around  the interior  equilibrium point
E;(ni, n3,n3) for the system of Eq. 2 is determined
by constructing a suitable Lyapunov function. The
function is given as  V(nz, ny, ny) = V3(ng, ny,ny)
+V,(ng,ny,ny)+ Vi(ng,ny,ny) where Vi3 =ng —
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n; —n3ln— Vo, =mn, —n; —nzln o Vi=n; —
3 n;

nj —nlln

This |mpI|es Lyapunov function (V) is continuous in
R3. Let us take the derivative of the V along with the

time given as
V= dv _ nzg-nzdnsz  np-n;dn, n n;—nj dng
Tdat ng dt  n, adt n,  dt
1 dn bin
ekt R (1 — nl) -1z
ng dt (1+b2n1)(1+b3n2)
1dn, _ banq bsn,ng
ny dt (1+b2n1)(1+b3n2) 1 1+b6n%
1dnz _ bsm3
ns3 dt 1+b6n% 2
3 b;n%
V (n3,n,n = -n [ 72 ] +
( 3,12y 1) 3) 1+bg nz
* byny bsnazns
(nz —le) [—_dl -t
(1+byn1)(1+b3ny) 1+bgns
bin,

(ny —ni) [(1 — ) — (1 + byny)(1 + b3ny)

_ * b7(n2_n;)2 _
(n3 n3) [1+b6(n2—n§)2] * (nz

_ bs(np—n3)(n3—n3)
1+b6(n2—n§)2

. [ bs(ny—n})
2 (1+b2(nl—ni))(1+b3(n2—n§))
+

(n —my) [—(nl —nj)

bi(ny —n3)

) - (1 + by(n, — ni))(l + b3 (n,
v x
Pl _(nl_n1)2 -

)

bi(n;—n3)(n1—ni) _
(1+b2 (nl—n’{))(1+b3 (n —n;))

by(ny—n3j)(n;—n3)
(14b2(ny - )(1+b3(np—n3) )
bs(nz —n3)
— — * 2
(nz = m2) 1+ bg(n, —n3)?

_ b;(n3 —n3)
1+ bg(n, —n3)?

av bs(n3—n§)
Y =y - )P (ng — ) [

bs(n3—n3) ]
1+b6(n2—n§)2

y 2
4 (n3»n21n1) < - (nl - n;) _(nz -
*)2[ bs(nz—n3) b;(nz—n3) ]

27 14bs(ny—n3)2  1+bg(ny—nj)2

Therefore, V is a negative definite function. This
shows that the inner equilibrium point E5 (n, n3, n3)
of the system is globally asymptotically stable .Thus,
E;(ni,n3,n3) is globally asymptotically stable,
according to the Lyapunov theorem.

Permanence

The Average Lyapunov function is used to
demonstrate the system's of Eq. 2 permanence (Gard
and Hallam) %,

Theorem:
The system of Eq. 2 is said to be permanent when

it satisfies the following conditions as

1+b

b) b7n2

1+bg n2 > d;.

Proof:

The typical Lyapunov function is represented by the
following form o(ny,ny,ng) = ni'nh?*nk® where

p1, poand ps are positive in the interior R3 . Then

a
lp(nlr n21n3) = ; = <(1 - nl) -

_ binp _ bymy d. —
(1+b2n1)(1+b3n2) (1+b2n1)(1+b3n2) 1
b5n2n3)
1+b6n%

b;n3
—d, ).
tPs (1+b6n§ 2

The Permanence of the system is validated when
Y(ny,ny,n3) > 0. The values Y(ny,n,,ng) at the
equilibrium point Ey, E4, E,, are as follows

— p3d;

Eo:p1 — p2dy

b,
Ei:p, (1 + b,

. by 73
B2 s (s —2)
For certain p,, > 0 (n =1, 2, 3), this¥(0,0,0) > 0 is
satisfied. Additionally, ¥ is positive at E; and E,
whenever the inequalities a) and b) hold. As a result,
the system of Eq. 2 is permanent.

- dl) — p3d;

Note:
The conditions
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b s
7 14p, !
b,n3
E, = —d, >0
2T 1+ bgnd 7

Results and Discussion

Analytical findings are justified by the numerical
simulation. Here the dynamical behavior of the three
species model has been studied analytically with
mixed functional response such as Crowley martin
functional response and Holling type Il functional
response. The numerical simulations are done for the
stability of the system. The Figs. 1-6 shows the
stable, oscillatory behavior and phase portrait of the
model. A numerical simulation has been done with
the following set of parameters to show the dynamic
behavior of the system of Eg. 2. The system's of Eq.
2 phase portraits are obtained, together with the
associated time series graph. In the ecology the
parameters value cannot be predicted exactly it
varies. Therefore, the values are taken randomly for
the simulation. The phase potraits are obtained by
considering different initial points only. Let us
consider the value of the parameter as b; = 0.2, by =
0.3, b3 =0.17, bs = 0.4, d1 = 0.38, bs = 1.9, bg = 1.5,
by = 0.09 and d, = 0.4 for the Fig. 1 which depicts
that the system variations of ns, n,, and nzalong time
t converge to an equilibrium state. For the same set
of values, Fig. 2 is obtained which shows the
system's phase portrait, which is locally
asymptotically stable at point E(0.9212, 0.3629, and
0.6837). The other set of values is b7 = 0.3,bs = 0.2,
bs =0.2, bs=0.45,b3=0.05b,=0.1,b;=0.2,d1 =
0.25 and d, = 0.2 for the Fig. 3 which depicts the
stable behavior of the system concerning time t. Fig.
4 shows the system's phase portrait for the values of
b7 = 0.3, be = 0.2, b5 = 0.2, b4 = 0.45, b3 = 0.05, bz =
0.1, by = 0.2, dy = 0.25, and d, = 0.2 and the
equilibrium point is asymptotically stable at
E(0.8327, 0.6967, and 1.777). Fig. 5 depicts the
oscillations of the populations concerning time t with
the following values of parameters as by = 0.2, b, =
0.3, b3 =0.17, b4 = 0.4, d; = 0.25, bs = 0.2, bg = 0.2,
b; =0.3and dz2 = 0.2. Fig. 6 depicts the phase diagram
of the system with the same values of parameters
which is asymptotically stable at E (0.8415, 0.676,
and 1.322).

assured that the boundary equilibrium points E; and
E, are Unstable. At these conditions the system
becomes unstable. Since in the Stability Analysis the
system becomes stable at the equilibrium point E; at

b b, 73
- —d, <0and E; at —/—=%5—d, < 0.
1+b, 1+bgf5
1
o e e = o —— = =]
0.9 f ’
i — =,
0.8 I n,(t)
;’ N,
07F
- !
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o
o ]
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Figure 1. Variations of ni, nz, and nz along time t
converge to an equilibrium state.

Figure 2. The phase diagram of the system around
point E (0.9212, 0.3629, and 0.6837).
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Figure 3. The stable behavior of the system with
time t.
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Figure 4. The System is asymptotically stable at E
(0.8327, 0.6967, and 1.777)

Conclusion

The mathematical framework of three species
models in the ecosystem with the densities of Prey
(N1), Predator (N2) and Top Predator (N3) has been
studied in this present paper. The interaction between
these species with a mixed functional response is
examined. The system’s positivity and boundedness
are studied. The system’s feasible equilibrium points
are all determined. The implicit premise in
deterministic scenarios is the models which are
created have been justified by their stability around
the interior equilibrium. The local stability is

Population
N

0 5 10 1I5 20 25 3I0 1;5 40 4‘5 50
Time
Figure 5. Oscillatory behavior of the given system
concerning time t.

Figure 6. The system is asymptotically stable at
the point E (0.8415, 0.676, and 1.322)

examined using Routh-Hurwitz criteria and global
stability by the Lyapunov function around the
interior equilibrium point E5 (ni, n3, n3). Further, the
conditions for permanence are analyzed.
Computational simulations are done using
MATLAB software. The paper can be further
extended by adding any kind of delay in the model or
other functional responses such as debeddington
functional response, non-monotone functional
response, and Holling type IV functional response.
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