

Page | 740

2024, 21(2 Special Issue): 0740-0754

https://doi.org/10.21123/bsj.2024.10084

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Efficient Task Scheduling Approach in Edge-Cloud Continuum

based on Flower Pollination and Improved Shuffled Frog Leaping

Algorithm

Nasiru Muhammad Dankolo*
1,2

, Nor Haizan Mohamed Radzi
1

, Noorfa Haszlinna

Mustaffa
1

, Mohd Shukor Talib
1

, Zuriahati Mohd Yunos
1

, Danlami Gabi
2

1
Department of Computer Science, Faculty of computing, Universiti Teknologi Malaysia, Johor, Malaysia.

2
Department of Computer Science, Faculty of Physical Sciences, Kebbi State University, Aliero, Nigeria.

*Corresponding Author.

ICAC2023: The 4th International Conference on Applied Computing 2023.

Received 31/10/2023, Revised 10/02/2024, Accepted 12/02/2024, Published 25/02/2024

 © 2022 The Author(s). Published by College of Science for Women, University of Baghdad.

This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Introduction

In edge-cloud continuum, the goal of task

scheduling is to create a cohesive computing

environment that incorporates a significant number

of readily available computing resources
1
. This is

necessary in order to successfully fulfil the

requirements of end-users regarding the quality of

the service. Mobile devices are capitalizing on the

benefits that continuum computing has to offer in

order to access the diverse range of experiences that

the environment offered
2
. The task scheduling in

edge-cloud continuum is a strategic process that

makes it easier to provide consistent service

delivery to the customers of a network
3
. Regardless

of whatever strategies adopted in the task

scheduling, it must achieve the desired QoS for

either customer service provider via facilitating the

Abstract

The rise of edge-cloud continuum computing is a result of the growing significance of edge

computing, which has become a complementary or substitute option for traditional cloud services. The

convergence of networking and computers presents a notable challenge due to their distinct historical

development. Task scheduling is a major challenge in the context of edge-cloud continuum computing.

The selection of the execution location of tasks, is crucial in meeting the quality-of-service (QoS)

requirements of applications. An efficient scheduling strategy for distributing workloads among virtual

machines in the edge-cloud continuum data center is mandatory to ensure the fulfilment of QoS

requirements for both customer and service provider. Existing research used metaheuristic algorithm to

solve tak scheduling problem, however, must of the existing metaheuristics used suffers from falling into

local mina due to their inefficiency to avoid unfeasible region in the solution search space. Therefore,

there is a dire need for an efficient metaheuristic algorithm for task scheduling. This study proposed an

FPA-ISFLA task scheduling model using hybrid flower pollination and improved shuffled frog leaping

algorithms. The simulation results indicate that the FPA-ISFLA algorithm is superior to the PSO

algorithm in terms of makespan time, resource utilization, and execution cost reduction, especially with

an increasing number of tasks.

Keywords: Cloud, Continuum, Edge, Metaheuristics Optimization , Task Scheduling,.

https://doi.org/10.21123/bsj.2024.10084
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0008-0154-7880
mailto:nasirdankolo@gmail.com
https://orcid.org/0000-0001-8183-6464
mailto:haizan@utm.my
https://orcid.org/0000-0002-1896-4591
mailto:noorfa@utm.my
https://orcid.org/0009-0005-1802-9367
mailto:shukor@utm.my
https://orcid.org/0000-0002-8827-9418
mailto:zuriahati@utm.my
https://orcid.org/0000-0001-6159-9588
mailto:gabsonley@gmail.com

Page | 741

2024, 21(2 Special Issue): 0740-0754

https://doi.org/10.21123/bsj.2024.10084

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

appropriate distribution of resources to tasks. The

problem of task scheduling in such environment is

referred to as NP-hard
4
. This is as a result of the fact

that the amount of computational time required to

solve a specific instance of tasks or applications

increases in polynomial time
5
.

Dynamic scheduling is an approach used to

make resource allocation to task dynamically in

heterogeneous environment like edge-cloud

continuum
6
. This approach is effective as it can

adapt the frequent changes that occur in the

availability of various resources
7
. It will allocate

resources based on the current knowledge of the

scheduler, which allows for more expedient

decision-making regarding resource allocation. The

dynamic scheduling method has the potential to

assign tasks to a variety of computing resources

without having prior knowledge of when those

resources will become available
8
. The ability of

dynamic task scheduling to reassign an active job to

another resource is what allows it to demonstrate

scalability
9
. However, some task might not be

finished within the allotted amount of time
10

 due to

either delays brought on by non-essential operations

or an excessive number of essential operations
11

using the existing dynamic scheduling algorithms.

Several algorithms were developed in the literature

to handle dynamic task scheduling in heterogenous

environment. For example, Gabi et. al, (2020)

proposed Cloud customers service selection scheme

based on improved conventional cat swarm

optimization
12

, Abdullahi et. al, (2019) proposed An

efficient symbiotic organisms search algorithm with

chaotic optimization strategy for multi-objective

task scheduling problems in cloud computing

environment
13

, Jayasena and Thisarasinghe (2019)

proposed an Optimized task scheduling on fog

computing environment using meta heuristic

algorithms
5
. Generally the existing dynamic task

scheduling algorithms are based on metaheuristics

algorithms such as Firefly Algorithm (FA)
6
, Cat

Swam algorithm (CA)
12

, symbiosis organism

search (SOS)
13

, however, the existing task

scheduling techniques experience an undefeatable

trap into local mina due to the in efficiency of the

algorithms to avoid unfeasible region in the solution

search space thereby making them inefficient for

task scheduling in the edge-cloud continuum.

Furthermore, the optimization of QoS for

task scheduling in the edge-cloud continuum

necessitates the careful consideration and balancing

of various factors, such as makespan, cost, and

resource utilization through efficient constraints

handling
14

. The metaheuristics algorithms are

designed to handle unconstrained optimization

problems while task scheduling is a constrained

optimization where the service user will imposed

some constrained that need not to be violated such

as deadline and budget
13

. For example, when a

deadline constrained task is submitted for

execution, it’s expected that the cloud server

executes the task in a time not more than the

deadline otherwise the deadline is violated and can

lead to unfavorable outcome. Hence, there is a need

to develop an efficient task scheduling algorithm in

edge-cloud continuum that can efficiently handle

dynamic resource allocation for efficient task

execution.

To solve the problem of efficient task

scheduling, in this study, Flower Pollination

Algorithm and improved Shuffled Frog Leaping

algorithm for task scheduling in edge-cloud

continuum is proposed. The contributions of this

research are summarized as follows:

 Modelling and formulation of task

scheduling problem in edge-cloud

continuum.

 Development of an improved version of

shuffled frog leaping algorithm used to

improve the FPA algorithm local search

strategy for efficient task scheduling.

 Evaluation of the proposed FPA-ISFLA

algorithm using makespan, cost and

resource evaluation metrics.

Review of Related Work

This section provides a review of works

conduct by previous researcher in task scheduling in

relation to quality of service (QoS), with a specific

focus on the makespan time, execution cost and

resource utilization using task scheduling

algorithms in the cloud environment.

In the work conducted by
15

, a task

scheduling scheme called ORFO-TSS, which is

https://doi.org/10.21123/bsj.2024.10084

Page | 742

2024, 21(2 Special Issue): 0740-0754

https://doi.org/10.21123/bsj.2024.10084

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

based on CloudSim and incorporates IoT

capabilities, utilizing the oppositional red fox

optimization algorithm is developed. The allocation

of cloud-based Internet of Things (IoT) resources

posed a significant challenge, which was effectively

addressed through the implementation of the

ORFO-TSS paradigm. The implementation of

optimal Task Scheduling (TS) techniques,

considering various features of incoming tasks,

enables the achievement of the makespan. The

incorporation of oppositional based learning (OBL)

into the design of ORFO-TSS serves as an

alternative to the conventional RFO technique.

Nevertheless, this particular methodology is

exclusively applicable in a cloud environment and

solely focuses on mitigating the makespan issue. In

a recent publication by Attiya et al. (2022), a novel

dynamic Jellyfish Search algorithm, DJSD, is

developed
16

. In this work simulated annealing

operators are integrated into the conventional

Jellyfish Search Algorithm during the exploration

phase in a competitive manner to improve diversity

of the search. to enhance the diversity of candidate

solutions, thereby mitigating the risk of converging

towards a local optimum. The findings indicated

that the DJSD approach exhibited potential,

revealed unexplored search domains, and identified

previously undiscovered optimal solutions.

However, the algorithm's effectiveness in a hybrid

edge-cloud environment remains unverified, as its

application has been limited to cloud-based

scenarios.

In another effort, a hybrid approach for task

scheduling in IoT applications by integrating the

chimp optimization algorithm (ChOA) with the

marine predators algorithm (MPA) and a disruption

operator was proposed
17

. The proposed CHMPAD

approach is demonstrated through experiments

using both synthetic and real workloads sourced

from the Parallel Workload Archive. The simulation

results indicate that CHMPAD exhibits superior

performance compared to other scheduling

techniques for HPC2N workloads, with an average

improvement ranging from 2.75% to 42.53%.

Similarly, for NASA iPSC workloads, CHMPAD

demonstrates an average improvement ranging from

1.00% to 43.43%. Additionally, for synthetic

workloads, CHMPAD shows an average

improvement ranging from 1.12% to 43.20%.

Furthermore, there is a lack of empirical evidence

demonstrating the feasibility of implementing cloud

technology, and it should be noted that the

algorithm's processing speed is limited to a

maximum of mekspan time.

Another research presented a bi-level multi-

follower algorithm that utilizes hybrid

metaheuristics to address the multi-objective

budget-constrained dynamic Bag-of-Tasks

scheduling problem in a heterogeneous multi-cloud

environment
18

. The objective function of the model

varies based on the level of detail in the scheduling

problem being addressed. Each sublevel aims to

minimize the execution time and cost of its

respective task, taking into consideration the overall

budget of the Bag-of-Tasks. On the other hand, the

top level endeavors to minimize the makespan of

the entire Bag. At a more foundational level,

introduced an Efficient NSGA-II (E-NSGA-II),

which is an improved variant of the Non-dominated

Sorting Genetic Algorithm II (NSGA-II). The

algorithm demonstrates exceptional performance in

terms of both makespan and execution cost, while

adhering to budget constraints, as evidenced by the

results obtained from conducting tests on synthetic

datasets provided. Nevertheless, it is worth noting

that the aforementioned technique lacks memory

management capabilities, which poses a significant

challenge considering the extensive memory

requirements associated with genetic algorithms'

computational processes. In addition, the primary

objectives being considered, namely makespan time

and execution cost, pertain specifically to cloud

computing.

The authors of this study
19

 proposed a

paradigm that aims to enable the deployment of

multi-component Internet of Things applications on

Fog infrastructures while considering quality of

service requirements. The model provides a

description of the operational system attributes,

such as latency and bandwidth, of the available

infrastructure. Additionally, it outlines the

interactions between software components, Things,

and business policies. Our organization offers

algorithms that facilitate the decision-making

process regarding the successful deployment of

applications in a Fog computing environment. A

prototype of FogTorch, a Java tool developed based

on the suggested paradigm, has already been

created.

The management of the complete life cycle of

continuum applications is addressed through the

proposition of an alternative architecture grounded

https://doi.org/10.21123/bsj.2024.10084

Page | 743

2024, 21(2 Special Issue): 0740-0754

https://doi.org/10.21123/bsj.2024.10084

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

in the A3-E paradigm
20

. The methodology utilizes

the Functions-as-a-Service paradigm for the

deployment of computational resources in the form

of microservices across the entire continuum.

Furthermore, A3-E determines the appropriate

location for executing a specific operation by

conducting an analysis of the prevailing

circumstances and taking into account the user's

requirements. This article also presents a prototype

framework for implementing the ideas proposed by

A3-E. The findings indicate that the utilization of

A3-E enables the dynamic deployment of

microservices and the effective routing of

application requests. This leads to a significant

decrease in latency, up to 90%, when utilizing edge

resources instead of cloud resources. Additionally,

there is a notable reduction of 74% in battery

consumption when offloading computation.

The FSAOS task scheduling algorithm was

introduced by Gabi et al. (2022)
6
 for application in

the mobile edge-cloud continuum, drawing

inspiration from the Fruit fly algorithm (FA) and the

simulated annealing method (SA). The SA

algorithm is incorporated by the authors into the

local search of FA in order to mitigate premature

convergence and avoid getting trapped in local

optima solutions. This integration enables a more

effective utilization of resources and reduces task

completion times. The simulation results of

EdgeCloudSim exhibit a notable enhancement of

95% in resource utilization and a reduction in

mekspan when compared to benchmark methods.

However, in the standard fruit fly, the distribution

of distance values within a global search zone

results in an extremely low scent value, denoted as

Si. This phenomenon results in the premature

convergence of the fitness value, thereby confining

it within a local optimum.

 Additionally, according to research
7
, there is a

proposed architecture that enables the flexible

coordination of applications throughout the Cloud-

Edge continuum. To effectively handle

environments with a substantial number of nodes

and complex scheduling algorithms, the architecture

utilizes a distributed scheduling technique that can

be customized for each individual application. In

order to ascertain the feasibility of implementing

more sophisticated scheduling algorithms that

consider application quality of service, the

architecture has been deployed on the Kubernetes

platform and evaluated.

In order to improve the quality of service

(QoS) provided to users in Industrial Internet of

Things (IIoT) applications, a study
21

 introduces an

energy-conscious metaheuristic algorithm known as

the Harris Hawks Optimization Algorithm with

Local Search Strategy (HHOLS). This algorithm is

specifically designed for task scheduling in Fog

computing (TSFC). The optimization of HHOLS

can be enhanced by incorporating a local search

technique. The proposed methodology demonstrates

superior performance compared to alternative

algorithms in terms of both energy efficiency and

mekspan. Nevertheless, the absence of empirical

evidence regarding cloud performance is a notable

limitation of the study, which exclusively

concentrates on edge computing.

Materials and Methods

System Model

This research makes use of a theoretical

framework that incorporates a remote cloud

environment (RC) with a centralized cloud resource

provider to manage distributed cloud resources,

mobile edge cloud (MEC) with edge resource

provider that works with a centralized cloud

resource provider to allocate resources to mobile

device (MD) users on the edge. Fig. 1 depicts the

overall system architecture.

https://doi.org/10.21123/bsj.2024.10084

Page | 744

2024, 21(2 Special Issue): 0740-0754

https://doi.org/10.21123/bsj.2024.10084

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Figure 1. Edge-cloud continuum system model.

An edge resource provider, a distributed

cloud resource provider, and a group of mobile

device users are the three main players in this

scenario. The edge orchestrator uses the FPA-

ISFLA algorithm to carry out resource optimization

and job allocation. The FPA-ISFLA algorithm will

move task to the centralized cloud, which has

abundant resources, if an MD needs a large number

of computation-intensive resources at the edge. The

presence of edge service providers allows for many

resource use scenarios to coexist. The efficient

distribution of resources is a result of the FPA-

ISFLA mechanism, which guarantees that

applications are executed efficiently without

violating deadlines. It does this by making

intelligent allocation of available computational

resources to client tasks.

Each flower pollen gamete is initially set up

by the swarm as a collection of tasks that have been

submitted to the edge resources by MD. Flowers'

relative network positions are indicated by the

pollen gametes, which can be thought of as a

collection of tasks originating from the network's

edge. The edge network's resources are essential

because they feed the pollinators and make it easier

for them to find nectar. Once the service location is

established, FPA-ISFLA approach begins the

scheduling process. This process is designed to find

the optimum trade-offs between virtual resources

and other factors like makespan and cost in order to

improve service quality. This algorithm guarantees

that the selected resource can handle the necessary

computations. Each task that uses the allocated

computing resources undergoes a series of iterations

of the aforementioned method until the desired

Quality of Service (QoS) is reached.

Problem Description

This section formulates the edge-cloud

continuum task scheduling problem. In edge-cloud

computing, task scheduling assigns a set of tasks to

edge resources, cloud resources, or both to satisfy

customers' QoS needs while minimizing task

execution and transmission time. Each application

has k tasks T = {T1, T2, …, Tk} with different QoS.

(eg, cost, deadline, availability, throughput, etc).

Each task Ti may be allocated to an edge VM,

remote cloud VM, or both. The jobs are performed

by n edge-cloud VM= {VM1, VM2, ..., VMn} with

varied processing capabilities (eg, processing

power, memory usage, network, etc). Task

scheduling optimizes tasks and resources using a

fitness function. This study determines the fitness

function according to minimized task execution

(Mekspan) time, Task Execution cost and optimized

resource usage. Eq.1 represents Makespan time

(MT).

𝑀𝑇 = max(𝑒𝑥𝑇𝑖𝑗) , 1 ≤ 𝑗

≤ 𝑚 1

where MT is the maximum execution time of all

edge and cloud server virtual machines;

𝑒𝑥𝑒𝑐𝑇𝑖𝑚𝑒𝑖𝑗 is the execution time of task I on

virtual machine 𝑉𝑗; hence the execution time

(𝑒𝑥𝑇𝑖𝑗) of individual virtual machines 𝑉𝑗 is

computed in Eq.2.

 𝑒𝑥𝑇𝑖𝑗 = 𝑥𝑖𝑗 .
𝑡𝑎𝑠𝑘 𝑠𝑖𝑧𝑒𝑖

𝑣𝑛𝑝𝑒𝑗
, 1 ≤ 𝑖 ≤ 𝑛; 1 ≤ 𝑗

≤ 𝑚 2

𝑋𝑖𝑗 is 1 if 𝑉𝑗 is assigned to execute task 𝑡𝑖 and 0

otherwise; n is the number of tasks 𝑡𝑖 and m is the

https://doi.org/10.21123/bsj.2024.10084

Page | 745

2024, 21(2 Special Issue): 0740-0754

https://doi.org/10.21123/bsj.2024.10084

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

number of virtual machines 𝑉𝑗; and 𝑉𝑛𝑝𝑒𝑗 is the

computing capacity of 𝑉𝑗.

In this study, the cost associated with executing a

task 𝑡𝑖 on a virtual machine 𝑣𝑘is measured in US

dollars ($). This cost is calculated on an hourly

basis (/hr). Eq.3 calculates the overall cost of

executing task 𝑖 on all virtual machines 𝑉𝑗.

𝑇𝑐𝑜𝑠𝑡 = ∑ 𝐶𝑒𝑥𝑒𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑛 3

𝑛

𝑖

Where 𝑇𝑐𝑜𝑠𝑡 is the total execution cost of task

processing across the continuum and 𝐶𝑒𝑥𝑒𝑖𝑗 is the

total cost of using a virtual machine 𝑉𝑗 by an

assigned task 𝑡𝑖 and the price of a resource is

represented by 𝐶𝑗. Hence the total cost (𝐶𝑒𝑥𝑒𝑖𝑗) of

using individual virtual machine 𝑉𝑗 is given in Eq.4

 𝐶𝑒𝑥𝑒𝑖𝑗 = ∑ 𝑋𝑖𝑗 .
𝑡𝑎𝑠𝑘 𝑠𝑖𝑧𝑒𝑖

𝑛𝑝𝑒 × 𝑣𝑗𝑠𝑝𝑒𝑒𝑑
 . 𝐶𝑗, 1 ≤ 𝑖

𝑛

𝑖

≤ 𝑛 4

Where 𝐶𝑒𝑥𝑒𝑖𝑗 denotes the cost associated with the

execution of a resource when a task ti is assigned to

virtual machine vj. Meanwhile, Cj represents the

unit cost of a resource per second, as specified by

the provider of said resource. 𝑣𝑗𝑠𝑝𝑒𝑒𝑑 is the

performance speed of the virtual machine 𝑣𝑗.

Hence, the objective function is to find an optimal

trades-offs between the makespan time and

execution cost given as follows:

𝑓 = 𝑚𝑖𝑛(𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛, 𝐶𝑜𝑠𝑡) 5

Eq. 6 is employed for the calculation of resource

utilisation in both the edge and cloud environments.

𝑅𝑢 = (∑
𝑇𝑒𝑖𝑗

𝑒𝑥𝑒𝑇𝑖𝑚𝑒𝑖𝑗
)/𝑚

𝑗=1 𝑚 6

The variable 𝑇𝑒𝑖𝑗 represents the total execution time

of all virtual machines. The variable 𝑒𝑥𝑒𝑇𝑖𝑚𝑒𝑖𝑗

represents the execution time of task 𝑡𝑖 on virtual

machine 𝑣𝑗. The variable 𝑚 represents the total

number of VMs.

Flower Pollination Algorithm

The Flower Pollination Algorithm (FPA)

was recently anticipated by yang in (2013)
22

, to

handle optimization problem. The algorithm was

idealized based on the inspiration of the natural

biological pollination process of flowering plants.

Pollination is characterized by self or cross

pollination. The Cross pollination is done when

some vectors fuses pollen gamete from one plant of

the same type to another or different flowers of the

same plant, while self-pollination is done without

intervention of any pollen vector, usually the

process is aided by some natural process such as

wind and diffusion. This is due to the absence of

reliable pollen vector that will facilitate the process.

Because in cross pollination process the pollen

vectors carries the pollen gamete over a long

distance with jumps or fly, the distance covered by

the vectors agrees to obey the Levey distributions
23

,

therefore, flower firmness can be used as an

increment step using the similarity or uniqueness of

two flowers.

The above characteristics of flower pollination

process, flower constancy and pollinator behavior

was idealized and transform into Flower Pollination

Algorithm with the following four updating rules
22,20

:

1. The distance covered by pollinators to perform

global pollination is defined as levy distance L and

is computed as:

𝐿 ~
ʎЃ(ʎ)sin (

𝜋ʎ
2)

𝜋

1

𝑆1+ʎ
, (𝑠 ≫ 𝑠0 > 0) 7

2.

3. The global pollination is summarized as:

 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛼𝐿(ʎ)(𝑔∗ − 𝑥𝑖
𝑡) 8

Where 𝑥𝑖
𝑡+1 is the i

th
 gamete during the t

th
 iteration

and L and g* are the levy distance and global best

during the current iteration respectively.

4. A switch probability function p is required to switch

between the global and the local pollination phase.

5. The local pollination is represented as follows:

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + £(𝑥𝑗
𝑡 − 𝑥𝑘

𝑡) 9

Where 𝑥𝑖
𝑡+1 is the i

th
 gamete during the t

th
 iteration,

e is the probability function for switching from

global to local pollination drawn from normal

probability distribution p[0,1] and xj and xk are any

random flowers.

These updating rules are summarized to form the

flower pollination algorithm as shown in

algorithm1.

https://doi.org/10.21123/bsj.2024.10084

Page | 746

2024, 21(2 Special Issue): 0740-0754

https://doi.org/10.21123/bsj.2024.10084

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Algorithm 1: Flower Pollination Algorithm.

Although the FPA is often considered an

efficient optimization technique due to its limited

control parameters and computational load, it is

worth noting that the FPA's local search strategy, as

demonstrated in Eq.8, does not promote the

exchange of information among the superior

solutions during the local search process.

Consequently, this hinders the convergence speed

of the FPA. Hence, this research introduce an

information exchange strategy within the local

search procedure of FPA in order to enhance the

variety of the exploitation capabilities of the FPA

using the concept of shuffled Frog Leaping

algorithm (SFLA) which incorporates the notion of

information exchange among the frogs within a

memeplex.

Shuffled Frog Leaping Algorithm (SFLA)

The shuffled frog leaping algorithm (SFLA)

is a biological evolutionary algorithm that was

introduced by Eusuff and Lansey in 2003
24

. It is

founded on the concept of collective intelligence.

The algorithm integrates the benefits of a memetic

algorithm that utilizes memetic evolution and a

particle swarm optimization technique that

leverages group behavior. The algorithm exhibits

several key attributes, including a reduced number

of parameters, a straightforward conceptual

framework, efficient computational performance,

robust global optimization capabilities, and

straightforward implementation
25

. This approach is

well-suited for addressing a wide range of

combination optimization challenges. The SFLA

algorithm consists of four key components namely,

population initialization, sub-population

partitioning, local search strategy, and sub-

population mixing
26

.

The first step which is the initial population is

formed by randomly generating a set of 𝐾 solutions

within the solution space. The solutions under

consideration exhibit a range of characteristics and

properties. The dimension of the frog is denoted by

𝑆, which is defined as the 𝑖𝑡ℎ solution of the n-

dimensional space 𝑥𝑖 = (𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑠
𝑖) where

𝑖 = (1,2, … , 𝐾).

In the second stage, within the population, the

objective function values of each solution should be

computed as 𝑓(𝑥𝑖) 𝑤ℎ𝑒𝑟𝑒 𝑖 = (1,2, … , 𝐾), and

thereafter organized in a descending order. The

most favorable solution throughout the population is

updated as 𝑋𝑏𝑒𝑠𝑡. The frog population as a whole is

categorized into distinct memetic groups, with each

group consisting of a specific number of frogs.

Within this set, the initial frog is allocated to the

initial meme group, while the 𝑛𝑡ℎ frog is assigned

https://doi.org/10.21123/bsj.2024.10084

Page | 747

2024, 21(2 Special Issue): 0740-0754

https://doi.org/10.21123/bsj.2024.10084

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

to the 𝑛𝑡ℎ meme group. Additionally, the (𝑛 + 1)𝑡ℎ

frog is subsequently reassigned to the initial meme

group, and this pattern continues iteratively. Until

all of the frogs are allocated. The frogs exhibiting

the highest and lowest levels of fitness within each

memetic group are referred to as 𝑋𝑏 and 𝑋𝑤,

respectively.

The local search strategy, which is the third stage of

the algorithm used in optimization the algorithm to

find the best solution inside a given neighborhood

of a current solution. It involves iteratively

exploring neighboring solutions and selecting the

one that improves the objective function. The local

search component is of paramount importance

within the overall algorithm. The conventional

SFLA algorithm is designed to improve the solution

of the least optimal internal frog individual during

the entire iterative procedure
25

 as presented in Eq.

10 and Eq. 11.

𝐷𝑖 = 𝑟𝑎𝑛𝑑() ∗ (𝑋𝑏 − 𝑋𝑤), 𝑖 = 1,2, … , 𝑚 10

𝑋𝑤 = 𝑋𝑤 + 𝐷𝑖 − 𝐷𝑚𝑎𝑥,
𝐷𝑖 ≤ 𝐷𝑚𝑎𝑥, 𝑖
= 1,2, … , 𝑚 11

Where 𝐷𝑖 represents the leaping step size of the

frog, 𝑟𝑎𝑛𝑑()is a random number within the range

(0,1), and 𝐷𝑚𝑎𝑥 represents the maximum allowed

step size for the frog. In Eq.10an update is

performed on the frog denoted as 𝑋𝑤, which has the

poorest objective function value. If the updated

solution is obtained, it is used to replace the worst

solution 𝑋𝑤. Alternatively, if the updated solution is

not obtained, Eq.10 is used to replace 𝑋𝑏 with

𝑋𝑏𝑒𝑠𝑡, and the updated solution is recalculated using

Eq.10 and Eq.11. If the updated solution is superior

to 𝑋𝑤, it replaces the worst solution 𝑋𝑤. However,

if the updated solution is not superior, a new

solution is randomly generated to replace the

current worst solution 𝑋𝑤. Perform the procedure

for the designated number of iterations, therefore

accomplishing a partial search of the population.

Finally, the sub-populations are merged to form a

population consisting of a certain number of

solutions. Subsequently, the sub-populations are

redistributed using the approach, and the subsequent

iteration of local search is executed
27

. Continue

iterating the procedure until the desired solution is

attained or the termination condition is satisfied.

These four principles are summarized to form a

SFLA algorithm as shown in algorithm2
28

.

Algorithm 2. Shuffled Frog Leaping Algorithm.

Nevertheless, the method has certain drawbacks

such as sluggish convergence, susceptibility to local

optima, and premature convergence. Consequently,

drawing from an extensive examination of the

Shuffled Frog Leaping technique (SFLA), this

research paper presents an improved version of the

technique to address its limitations.

https://doi.org/10.21123/bsj.2024.10084

Page | 748

2024, 21(2 Special Issue): 0740-0754

https://doi.org/10.21123/bsj.2024.10084

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Improved SFLA algorithm.

The initial version of the SFLA fails to

account for the impact of evolutionary algebra on

the magnitude of the frog's leaping step size
25

. The

adaptive step factor is incorporated into the local

search algorithm in order to modify the magnitude

of the leaping step. The utilization of this approach

serves to enhance the rate of convergence and the

accuracy of optimization in the algorithm. In the

context of the algorithm's local search, only the

least optimal individuals within each sub-population

of frogs undergo updates, while the remaining frogs

do not undergo synchronization
28

. In this particular

scenario, it is intended that each individual frog

inside the sub-population undergoes an updating

process. The sub-population of frogs will exhibit

enhanced capabilities, resulting in an increased

search range and greater search accuracy.

The adaptive step factor.

In the local search procedure of the

classical SFLA, as stated in Eq.1, the movement

step length is determined by randomly resolving the

components in each dimension. Given that 𝑟𝑎𝑛𝑑()

is a stochastic variable within the range of (0,1) it is

likely that it will either converge to a local optimum

throughout the process of evolution or bypass the

global optimum altogether. The diminishment of the

frog population's evolutionary algebra is resulting in

a reduction in the frog's range of movement.

However, the conventional step taken in the

classical SFLA fails to account for this

phenomenon. In this particular situation, an

adaptive movement factor was devised to regulate

the leaping step size of the frog. The adaptive

leaping step size is given in Eq. 12.

𝛽 = sin (
𝜋

2
 .

𝑖

𝑛
) , 𝑖 = 1,2, … , 𝑛 12

where 𝑖 denotes the current count of local searches

conducted within a certain subpopulation, whereas

𝑛 represents the maximum count of local searches

permissible for each subpopulation. Hence, for each

frog 𝑖 in the population, the adaptive leaping step

size factor will be computed as follows:

𝛽𝑖

= sin (
𝜋

2
 .

𝑖

𝑛 − 1 + 1
) , 𝑖

= 1,2, … , 𝑛 13

Therefore, the leaping step size 𝐷𝑖 of frog 𝑖 in the

population will now be recalculated as follows:

𝐷𝑖 = 𝛽𝑖 ∗ (𝑋𝑏 − 𝑋𝑤), 𝑖
= 1,2, … , 𝑚 14

Memeplex updating strategy.

In the local search approach employed by

the SFLA, only the individuals with the lowest

fitness values in a memeplex undergo updates,

while the remaining individuals are not updated

simultaneously
26

. Hence, our research introduces a

new information updating strategy among the frogs

in a memeplex as follows:

𝐷𝑘 = 𝛽 ∗ (𝑋𝑗−1 − 𝑋𝑗), 𝑗 = 1,2, … 𝑛 15

Where 𝑗 represents the 𝑗𝑡ℎ frog in the memeplex

and 𝑛 represents the number of frogs in the

memeplex.

Therefore, the updating strategy for each solution in

the population is now recalculated as:

𝐷𝑘𝑖 = 𝛽 ∗ (𝑋𝑗−1 − 𝑋𝑗), 𝑖 = 1,2, … 𝑛 16

𝑋𝑘𝑖 = 𝑋𝑘𝑖 + 𝐷𝑘𝑖 − 𝐷𝑚𝑎𝑥, 𝐷𝑘𝑖 ≤ 𝐷𝑚𝑎𝑥,
𝑖 = 1,2, … 𝑛 17

Hence, the Improved SFLA algorithm is

summarized in algorithm 3.

https://doi.org/10.21123/bsj.2024.10084

Page | 749

2024, 21(2 Special Issue): 0740-0754

https://doi.org/10.21123/bsj.2024.10084

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Algorithm 3. Improved Shuffled Frog Leaping Algorithm.

Flower Pollination based Improved Shuffled

Frog Leaping algorithm (FPA-ISFLA)

The Flower Pollination-Based Improved

Shuffled Frog Leaping Algorithm for task

scheduling (FPA-ISFLA) is to solve task scheduling

problem in edge-cloud continuum environment.

This algorithm combines two different nature-

inspired optimization techniques, namely the

Improved version of the Shuffled Frog Leaping

Algorithm (ISFLA) and the Flower Pollination

Algorithm (FPA), to address the problem of

optimizing task scheduling. The FPA-ISFLA for

task scheduling takes advantage of both SFLA's

shuffling mechanism and FPA's pollination concept

to tackle the task scheduling problem.

The algorithm aims to find an optimal or

near-optimal task schedule by leveraging the

combined strengths of ISFLA and FPA. In the local

search of FPA, ISFLA is used to improve the

solution exploitation with the aid of enhanced

information sharing of the ISFLA withing the local

solution thereby enhancing the FPA’s convergence

rate while avoiding trapping into local optima. The

FPA-ISFLA pseudocode is shown in algorithm 4.

Algorithm 4: FPA-ISFLA algorithm

 Initialise: Pop Size n, Switch probity p, t, max iteration maxIter.

1. Initialize a population of n pollen gametes at random.

2. Identify the global best solution as g*

3. 𝒘𝒉𝒊𝒍𝒆 (𝒕 < 𝒎𝒂𝒙𝑰𝒕𝒆𝒓)

4. 𝒇𝒐𝒓 (𝒊 = 𝟏: 𝒏)

5. 𝒊𝒇 𝒓𝒂𝒏𝒅 < 𝒑:
6. Global Pollination via:

 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑙(𝑥𝑖
𝑡 − 𝑔∗)

7. 𝒆𝒍𝒔𝒆 𝑑𝑟𝑎𝑤 𝑄 𝑓𝑟𝑜𝑚 𝑎 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 [0,1]
8. 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐ℎ𝑜𝑜𝑠𝑒 𝑗 𝑎𝑛𝑑 𝑘 𝑎𝑚𝑜𝑛𝑔 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
9. Local pollination via:

10. 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑄(𝑥𝑘
𝑡 − 𝑥𝑗

𝑡)

11. 𝒆𝒏𝒅 𝒊𝒇
12. Evaluate the new solution.

13. If new solution is better, update global best g*

14. 𝒆𝒏𝒅 𝒇𝒐𝒓

https://doi.org/10.21123/bsj.2024.10084

Page | 750

2024, 21(2 Special Issue): 0740-0754

https://doi.org/10.21123/bsj.2024.10084

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

15. // apply ISFLA algorithm

16. Generate random population of K solutions (frogs)

17. for each solution 𝑖 ∈ 𝐾 do

18. calculate 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑖)

19. End for

20. Sort the population K in descending order of fitness.

21. Divide K into m memeplex.

22. for each memeplex do

23. Determine the best and worst frogs.

24. Improve the worst frog position using Eq. (16)

25. Repeat

26. End for

27. Combine the evolved memeplex.

28. Sort the population K in descending order of their fitness.

29. If Max iterations reached

30. Return best solution 𝑋𝑏𝑒𝑠𝑡

31. End if
32. Record the current global best g*

33. 𝑡 = 𝑡 + 1

34. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

Algorithm 4. FPA-ISFLA algorithm

Experimental Setup and Results Discussion

This section will provide a detailed

description of the experiment, including the specific

parameter settings that were used as well as the

results that were obtained.

Experiment

As was mentioned earlier in the previous

section, the FPA-ISFLA is currently being utilised

to address the task scheduling problem in edge-

cloud continuum environments in order to maximise

the use of available resources and reduce task

execution time and cost. The experiment was

conducted using edgecloudsim simulator with

eclipse java IDE environment. The edge-cloudsim

was configured with edge data center, one cloud

data center, 10 VM on edge and 20 VM on cloud

and 10 mobile devices that will transmit task

execution request to the edge orchestrator. The task

manager in the orchestrator will evaluate the task’s

requests based on QoS constraints which will serve

as the basis for the task scheduler to decide

computing resources to allocate to the task. To

evaluate the proposed algorithm is effectiveness, a

comparison study is carried out between the result

of the experiment and the results obtained using the

Particle Swarm Optimisation Algorithm (PSO), as

described in reference
29

. Re-implementation of the

PSO task scheduling algorithm took place in

accordance with the parameter settings that were

outlined in the research.

During the experiment, a set of ten (10)

different task sizes was utilised in the evaluation

process. The algorithm is run ten times for each task

size, and the results of those runs are recorded for

the average makespan time to execute the task on

both edge and cloud, the average resource

utilization across the edge and cloud data center and

the average task execution cost on both edge and

cloud for each algorithm.

Results and Discussion

 Following the extensive experimental

simulation conducted, the result obtained for both

makespan time, resource utilization and execution

cost were plotted on a graph against each workload

size to present the performance of each algorithm

against different workload. so that a visual

https://doi.org/10.21123/bsj.2024.10084

Page | 751

2024, 21(2 Special Issue): 0740-0754

https://doi.org/10.21123/bsj.2024.10084

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

representation of the correlation between the

magnitude of the workload and the makespan time,

in seconds, required by each algorithm to complete

the task execution, the total cost of task execution

and the average resource utilisation can be created.

Fig. 2 shows the graphic representation of the

Makespan time, a graph illustrating how the

resources were utilised can be seen in Fig. 3, while

the average cost of task execution is presented in

Fig. 4.

Figure 2. Avaerage Makespan time.

Figure 3. Average Resource Utilisation.

Figure 4. Average Execution Cost.

Discussion

The findings of the experiments show that

the FPA-ISFLA algorithm is efficient in task

scheduling within the edge-cloud continuum

environment, which is comparable to the

algorithm's successful performance in other spheres.

When dealing with various workload sizes, the

algorithm demonstrates a notable improvement in

performance in comparison to the PSO algorithm, in

terms of the Makespan time. The findings that is

presented Fig. 2 lend credence to this observation.

Furthermore, the research reveals that the proposed

FPA-ISFLA task scheduling algorithm consistently

attains the most optimal global solution. This is

believed to be due to the incooperation of the

shuffled frog leaping algorithm in the FPA local

search strategy that improved the FPA exploration

capacity. This leads to optimal utilisation of

resources and minimises the amount of time

required for searching in 20 simulation iterations.

This finding is based on the data presented in Fig. 3.

Moreover, the FPA-ISFLA algorithm also

demonstrates a good performance against the PSO

in terms of reducing the task execution cost as

presented in Fig. 4.

Conclusion

In general, the FPA-ISFLA task scheduling

algorithm is efficient in handling task scheduling

problem in edge-cloud environment with significant

improvement against the particle swam

optimization algorithm using makespan time,

resource utilization and task execution cost

evaluation metrics.

However, it’s recommended that further

improvement to me is made in the FPA global

search strategy to improve its’ exploitation

effectiveness.

https://doi.org/10.21123/bsj.2024.10084

Page | 752

2024, 21(2 Special Issue): 0740-0754

https://doi.org/10.21123/bsj.2024.10084

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Acknowledgement

This research was supported by the Minister of

Higher Education under the Fundamental Research

Grant Scheme (FRGS/1/2021/ICT02/UTM/02/13).

Authors’ Declaration

- Conflicts of Interest: None.

- We hereby confirm that all the Figures and

Tables in the manuscript are ours. Furthermore,

any Figures and images, that are not ours, have

been included with the necessary permission for

re-publication, which is attached to the

manuscript.

- Ethical Clearance: The project was approved by

the local ethical committee in University of

Universiti Teknologi Malaysia.

Authors’ Contribution Statement

N.M D. contributed to the Literature review and

problem formulation and developed the model.

N.H.M R. contributed to Problem formulation and

review experimental results. N.H M. contributed to

the design of the proposed approach and

mathematical modelling of makespan and cost

equations. T. contributed to the design of the

proposed approach and mathematical modelling of

resource utilization equation. Z.M. Y. contributed to

the report writing and formatting. D .G. contributed

to research simulation and result analysis.

References

1. 1. Park J, Chung K. Resource prediction‐based edge

collaboration scheme for improving qoe. Sensors.

2021;21(24):1–15.

https://doi.org/10.3390/s21248500.

2. Mayyahi MAAL, Seno SAH. A Security and Privacy

Aware Computing Approach on Data Sharing in

Cloud Environment. Baghdad Sci J.

2022;19(6):1572–1580.
https://doi.org/10.21123/bsj.2022.7077.

3. Goel G, Tiwari R, Koundal D, Upadhyay S. Analysis

ofResource Scheduling algorithms for optimization in

IoTFog- Cloud System. CEUR Workshop Proc.

2021;305(8):1–8.

4. Abo-Alsabeh R, Daham HA, Salhi A. A Heuristic

Approach to the Consecutive Ones Submatrix

Problem. Baghdad Sci J. 2023;20(1):189–95.

https://doi.org/10.21123/bsj.2022.6373.

5. Jayasena KPN, Thisarasinghe BS. Optimized task

scheduling on fog computing environment using meta

heuristic algorithms. In: Proceedings - 4th IEEE

International Conference on Smart Cloud,

SmartCloud 2019 and 3rd International Symposium

on Reinforcement Learning, ISRL 2019. Institute of

Electrical and Electronics Engineers Inc.; 2019.23(2):

53–8.

https://doi.org/10.1109/SmartCloud.2019.00019.

6. Gabi D, Dankolo NM, Muslim AA, Abraham A, Joda

MU, Zainal A, et al. Dynamic scheduling of

heterogeneous resources across mobile edge-cloud

continuum using fruit fly-based simulated annealing

optimization scheme. Neural Comput Appl . 2022;

12(3): 1-21. https://doi.org/10.1007/s00521-022-

07260-y

7. Orive A, Agirre A, Truong HL, Sarachaga I, Marcos

M. Quality of Service Aware Orchestration for

Cloud-Edge Continuum Applications. Sensors. 2022;

23(1): 1-21. https://doi.org/10.3390/s22051755

8. Jiang X, Sha T, Liu D, Chen J, Chen C, Huang K.

Flexible and Dynamic Scheduling of Mixed-

Criticality Systems. Sensors. 2022; 18(4): 1-18.

https://doi.org/10.3390/s22197528

9. Kaur N, Kumar A, Kumar R. A systematic review on

task scheduling in Fog computing: Taxonomy, tools,

challenges, and future directions. Concurr Comput

Pract Exp. 2021;33(21): 1-18.

https://doi.org/10.1002/cpe.6432

10. Swarup S, Shakshuki EM, Yasar A. Task scheduling

in cloud using deep reinforcement learning. Procedia

Comput Sci. 2021;18(4): 42–51.

https://doi.org/10.1016/j.procs.2021.03.016

11. Yang X, Rahmani N. Task scheduling mechanisms in

fog computing: review, trends, and perspectives.

Kybernetes. 2021;50(1):22–38.

https://doi.org/10.1108/K-10-2019-0666.

12. Gabi D, Ismail AS, Zainal A, Zakaria Z, Abraham A,

Dankolo NM. Cloud customers service selection

scheme based on improved conventional cat swarm

optimization. Neural Comput Appl. 2020;32(18):17–

38. https://doi.org/10.1007/s00521-020-04834-6

13. Abdullahi M, Ngadi MA, Dishing SI, Abdulhamid

SM, Ahmad BI eel. An efficient symbiotic organisms

search algorithm with chaotic optimization strategy

https://doi.org/10.21123/bsj.2024.10084
https://doi.org/10.1109/SmartCloud.2019.00019

Page | 753

2024, 21(2 Special Issue): 0740-0754

https://doi.org/10.21123/bsj.2024.10084

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

for multi-objective task scheduling problems in cloud

computing environment. J Netw Comput Appl.

2019;133(July 2018):60–74.

https://doi.org/10.1016/j.jnca.2019.02.005

14. R SK, Lakshmi J. QoS aware FaaS for Heterogeneous

Edge-Cloud continuum; QoS aware FaaS for

Heterogeneous Edge-Cloud continuum. 2022 IEEE

15th Int Conf Cloud Comput. 2022; 70-80.

https://doi.org/10.1109/CLOUD55607.2022.00023

15. Chellapraba B, Manohari D, Periyakaruppan K,

Kavitha MS. Oppositional Red Fox Optimization

Based Task Scheduling Scheme for Cloud

Environment. CSSE.2023; 45(1): 483-495.

https://doi.org/10.32604/csse.2023.029854

16. Attiya I, Abualigah L, Alshathri S, Elsadek D, Elaziz

MA. Dynamic Jellyfish Search Algorithm Based on

Simulated Annealing and Disruption Operators for

Global Optimization with Applications to Cloud Task

Scheduling. Mathematics. 2022;10(11): 18-94.

https://doi.org/10.3390/math10111894

17. Attiya I, Abualigah L, Elsadek D, Chelloug SA, Abd

Elaziz M. An Intelligent Chimp Optimizer for

Scheduling of IoT Application Tasks in Fog

Computing. Mathematics. 2022;10(7):1–18.

https://doi.org/10.3390/math10071100

18. Karaja M, Chaabani A, Azzouz A, Ben Said L.

Efficient bi-level multi objective approach for

budget-constrained dynamic Bag-of-Tasks scheduling

problem in heterogeneous multi-cloud environment.

Appl Intell. 2022; 53: 9009–9037.

https://doi.org/10.1007/s10489-022-03942-1

19. Brogi A, Forti S. QoS-aware deployment of IoT

applications through the fog. IEEE Internet Things J.

2017;4(5):85–92.

https://doi.org/10.1109/JIOT.2017.2701408

20. Baresi L, Mendonça DF, Garriga M, Guinea S,

Quattrocchi G. A unified model for the mobile-edge-

cloud continuum. ACM Trans Internet Technol.

2019;19(2): 1–21.https://doi.org/10.1145/3226644

21. Abdel-Basset M, El-Shahat D, Elhoseny M, Song H.

Energy-Aware Metaheuristic Algorithm for

Industrial-Internet-of-Things Task Scheduling

Problems in Fog Computing Applications. IEEE

Internet Things J. 2021;8(16):12638–49.

https://doi.org/10.1109/JIOT.2020.3012617

22. Yang XS. Flower Pollination Algorithm for Global

Optimization. 2013; 74(45): 240-249..

23. Pavlyukevich I. Levy flights, non-local search and

simulated annealing. J Comput Phys.

2007;226(2):30–44.

https://doi.org/10.1016/j.jcp.2007.06.008

24. Tang D, Zhao J, Yang J, Liu Z, Cai Y. An

Evolutionary Frog Leaping Algorithm for Global

Optimization Problems and Applications. Comput

Intell Neurosci. 2021;202(1): 1-21.

https://doi.org/10.1155/2021/8928182

25. Bhattacharjee KK, Sarmah SP. Shuffled frog leaping

algorithm and its application to 0/1 knapsack

problem. Appl Soft Comput J. 2014;19(2):52–63.

http://dx.doi.org/10.1016/j.asoc.2014.02.010

26. Wang Z, Zhang D, Wang B, Chen W. Research on

improved strategy of shuffled frog leaping algorithm.

Proc - 2019 34rd Youth Acad Annu Conf Chinese

Assoc Autom YAC 2019. 2019;2(6): 1–8.

https://doi.org/10.1109/YAC.2019.8787721

27. Jaballah S, Rouis K, Abdallah F Ben, Tahar JBH. An

improved Shuffled Frog Leaping Algorithm with a

fast search strategy for optimization problems. Proc -

2014 IEEE 10th Int Conf Intell Comput Commun

Process ICCP 2014. 2014;23(7): 23-27.

http://dx.doi.org/10.1109/ICCP.2014.6936975

28. Liping Z, Weiwei W, Yi H, Yefeng X, Yixian C.

Application of Shuffled Frog Leaping Algorithm to

an Uncapacitated SLLS Problem. AASRI Procedia .

2012;1(2): 26–31.

http://dx.doi.org/10.1016/j.aasri.2012.06.035

29. Nabi S, Ahmad M, Ibrahim M, Hamam H. AdPSO:

Adaptive PSO-Based Task Scheduling Approach for

Cloud Computing. Sensors. 2022;22(3):1–22.

https://doi.org/10.3390/s22030920

https://doi.org/10.21123/bsj.2024.10084

Page | 754

2024, 21(2 Special Issue): 0740-0754

https://doi.org/10.21123/bsj.2024.10084

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

نهج فعال لجدولة المهام في استمرارية السحابة الحافة بناءً على تلقيح الزهور وتحسين

 خوارزمية قفز الضفدع المختلط

نصيرو محمد دنكولو
1،2

، نور حيزان محمد رادزي
1

مصطفى، نورفا حصليننا
1

، محمد شكر طالب
1

، زريهاتي محمد يونس
1

 ،

دانلمي غابي
2

1
 الحاسبات، الجامعة التكنولوجية الماليزية، جوهور، ماليزيا.قسم علوم الحاسب، كلية

2
 قسم علوم الحاسب، كلية العلوم الفيزيائية، جامعة ولاية كيبي، أليرو، نيجيريا.

 ةالخلاص

ات إن ظهور الحوسبة المستمرة السحابية الحافة هو نتيجة للأهمية المتزايدة للحوسبة الحافة، والتي أصبحت خيارًا مكملاً أو بديلاً للخدم

السحابية التقليدية. يمثل التقارب بين الشبكات وأجهزة الكمبيوتر تحدياً ملحوظًا بسبب تطورها التاريخي المتميز. تمثل جدولة المهام

(QoSياً كبيرًا في سياق الحوسبة المستمرة السحابية. يعد اختيار موقع تنفيذ المهام أمرًا بالغ الأهمية لتلبية متطلبات جودة الخدمة)تحد

رًا للتطبيقات. تعد استراتيجية الجدولة الفعالة لتوزيع أحمال العمل بين الأجهزة الافتراضية في مركز البيانات المستمر لسحابة الحافة أم

 metaheuristicإلزامياً لضمان استيفاء متطلبات جودة الخدمة لكل من العميل وموفر الخدمة. استخدمت الأبحاث الحالية خوارزمية

المستخدمة من الوقوع في مينا المحلية بسبب عدم metaheuristic، ومع ذلك، يجب أن تعاني خوارزميات takلحل مشكلة جدولة

المجدية في مساحة بحث الحل. لذلك، هناك حاجة ماسة إلى خوارزمية ميتايورستية فعالة لجدولة المهام. كفاءتها لتجنب المنطقة غير

باستخدام تلقيح الزهور الهجينة وتحسين خوارزميات قفز الضفدع المختلط. FPA-ISFLAاقترحت هذه الدراسة نموذج جدولة المهام

من حيث زمن التنفيذ، واستخدام الموارد، وتقليل PSOتفوق على خوارزمية ت FPA-ISFLAتشير نتائج المحاكاة إلى أن خوارزمية

 تكلفة التنفيذ، خاصة مع زيادة عدد المهام.

 .، جدولة المهامMetaheuristics السحابة، الاستمرارية، الحافة، تحسين الكلمات المفتاحية:

https://doi.org/10.21123/bsj.2024.10084

