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Introduction 

In edge-cloud continuum, the goal of task 

scheduling is to create a cohesive computing 

environment that incorporates a significant number 

of readily available computing resources
1
. This is 

necessary in order to successfully fulfil the 

requirements of end-users regarding the quality of 

the service. Mobile devices are capitalizing on the 

benefits that continuum computing has to offer in 

order to access the diverse range of experiences that 

the environment offered 
2
. The task scheduling in 

edge-cloud continuum is a strategic process that 

makes it easier to provide consistent service 

delivery to the customers of a network
3
. Regardless 

of whatever strategies adopted in the task 

scheduling, it must achieve the desired QoS for 

either customer service provider via facilitating the 
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appropriate distribution of resources to tasks. The 

problem of task scheduling in such environment is 

referred to as NP-hard
4
. This is as a result of the fact 

that the amount of computational time required to 

solve a specific instance of tasks or applications 

increases  in polynomial time
5
. 

Dynamic scheduling  is an approach used to 

make resource allocation to task dynamically in 

heterogeneous environment like edge-cloud 

continuum
6
. This approach is effective as it can 

adapt the frequent changes that occur in the 

availability of various resources
7
. It will allocate 

resources based on the current knowledge of the 

scheduler, which allows for more expedient 

decision-making regarding resource allocation. The 

dynamic scheduling method has the potential to 

assign tasks to a variety of computing resources 

without having prior knowledge of when those 

resources will become available
8
. The ability of 

dynamic task scheduling to reassign an active job to 

another resource is what allows it to demonstrate 

scalability
9
. However, some task might not be 

finished within the allotted amount of time
10

 due to  

either delays brought on by non-essential operations 

or an excessive number of essential operations
11

 

using the existing dynamic scheduling algorithms. 

Several algorithms were developed in the literature 

to handle dynamic task scheduling in heterogenous 

environment. For example, Gabi et. al, (2020) 

proposed Cloud customers service selection scheme 

based on improved conventional cat swarm 

optimization
12

, Abdullahi et. al, (2019) proposed An 

efficient symbiotic organisms search algorithm with 

chaotic optimization strategy for multi-objective 

task scheduling problems in cloud computing 

environment
13

, Jayasena and Thisarasinghe (2019) 

proposed an Optimized task scheduling on fog 

computing environment using meta heuristic 

algorithms
5
. Generally the  existing dynamic task 

scheduling algorithms are based on metaheuristics 

algorithms such as Firefly Algorithm (FA)
6
, Cat 

Swam algorithm (CA) 
12

, symbiosis organism 

search (SOS)
13

, however, the existing task 

scheduling techniques experience an undefeatable 

trap into local mina due to the in efficiency of the 

algorithms to avoid unfeasible region in the solution 

search space thereby making them inefficient for 

task scheduling in the edge-cloud continuum. 

Furthermore, the optimization of QoS for 

task scheduling in the edge-cloud continuum 

necessitates the careful consideration and balancing 

of various factors, such as makespan, cost, and 

resource utilization through efficient constraints 

handling
14

. The metaheuristics algorithms are 

designed to handle unconstrained optimization 

problems while task scheduling is a constrained 

optimization where the service user will imposed 

some constrained that need not to be violated such 

as deadline and budget 
13

. For example, when a 

deadline constrained task is submitted for 

execution, it’s expected that the cloud server 

executes the task in a time not more than the 

deadline otherwise the deadline is violated and can 

lead to unfavorable outcome. Hence, there is a need 

to develop an efficient task scheduling algorithm in 

edge-cloud continuum that can efficiently handle 

dynamic resource allocation for efficient task 

execution. 

To solve the problem of efficient task 

scheduling, in this study, Flower Pollination 

Algorithm and improved Shuffled Frog Leaping 

algorithm for task scheduling in edge-cloud 

continuum is proposed. The contributions of this 

research are summarized as follows: 

 Modelling and formulation of task 

scheduling problem in edge-cloud 

continuum. 

 Development of an improved version of 

shuffled frog leaping algorithm used to 

improve the FPA algorithm local search 

strategy for efficient task scheduling. 

 Evaluation of the proposed FPA-ISFLA 

algorithm using makespan, cost and 

resource evaluation metrics. 

 

Review of Related Work 

This section provides a review of works 

conduct by previous researcher in task scheduling in 

relation to quality of service (QoS), with a specific 

focus on the makespan time, execution cost and 

resource utilization using task scheduling 

algorithms in the cloud environment.  

In the work conducted by
15

, a task 

scheduling scheme called ORFO-TSS, which is 

https://doi.org/10.21123/bsj.2024.10084
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based on CloudSim and incorporates IoT 

capabilities, utilizing the oppositional red fox 

optimization algorithm is developed. The allocation 

of cloud-based Internet of Things (IoT) resources 

posed a significant challenge, which was effectively 

addressed through the implementation of the 

ORFO-TSS paradigm. The implementation of 

optimal Task Scheduling (TS) techniques, 

considering various features of incoming tasks, 

enables the achievement of the makespan. The 

incorporation of oppositional based learning (OBL) 

into the design of ORFO-TSS serves as an 

alternative to the conventional RFO technique. 

Nevertheless, this particular methodology is 

exclusively applicable in a cloud environment and 

solely focuses on mitigating the makespan issue. In 

a recent publication by Attiya et al. (2022), a novel 

dynamic Jellyfish Search algorithm, DJSD, is 

developed 
16

. In this work simulated annealing 

operators   are integrated into the conventional 

Jellyfish Search Algorithm during the exploration 

phase in a competitive manner to improve diversity 

of the search.  to enhance the diversity of candidate 

solutions, thereby mitigating the risk of converging 

towards a local optimum. The findings indicated 

that the DJSD approach exhibited potential, 

revealed unexplored search domains, and identified 

previously undiscovered optimal solutions. 

However, the algorithm's effectiveness in a hybrid 

edge-cloud environment remains unverified, as its 

application has been limited to cloud-based 

scenarios. 

In another effort, a hybrid approach for task 

scheduling in IoT applications by integrating the 

chimp optimization algorithm (ChOA) with the 

marine predators algorithm (MPA) and a disruption 

operator was proposed
17

. The proposed CHMPAD 

approach is demonstrated through experiments 

using both synthetic and real workloads sourced 

from the Parallel Workload Archive. The simulation 

results indicate that CHMPAD exhibits superior 

performance compared to other scheduling 

techniques for HPC2N workloads, with an average 

improvement ranging from 2.75% to 42.53%. 

Similarly, for NASA iPSC workloads, CHMPAD 

demonstrates an average improvement ranging from 

1.00% to 43.43%. Additionally, for synthetic 

workloads, CHMPAD shows an average 

improvement ranging from 1.12% to 43.20%. 

Furthermore, there is a lack of empirical evidence 

demonstrating the feasibility of implementing cloud 

technology, and it should be noted that the 

algorithm's processing speed is limited to a 

maximum of mekspan time. 

Another research presented a bi-level multi-

follower algorithm that utilizes hybrid 

metaheuristics to address the multi-objective 

budget-constrained dynamic Bag-of-Tasks 

scheduling problem in a heterogeneous multi-cloud 

environment
18

. The objective function of the model 

varies based on the level of detail in the scheduling 

problem being addressed. Each sublevel aims to 

minimize the execution time and cost of its 

respective task, taking into consideration the overall 

budget of the Bag-of-Tasks. On the other hand, the 

top level endeavors to minimize the makespan of 

the entire Bag. At a more foundational level, 

introduced an Efficient NSGA-II (E-NSGA-II), 

which is an improved variant of the Non-dominated 

Sorting Genetic Algorithm II (NSGA-II). The 

algorithm demonstrates exceptional performance in 

terms of both makespan and execution cost, while 

adhering to budget constraints, as evidenced by the 

results obtained from conducting tests on synthetic 

datasets provided. Nevertheless, it is worth noting 

that the aforementioned technique lacks memory 

management capabilities, which poses a significant 

challenge considering the extensive memory 

requirements associated with genetic algorithms' 

computational processes. In addition, the primary 

objectives being considered, namely makespan time 

and execution cost, pertain specifically to cloud 

computing. 

The authors of this study
19

 proposed a 

paradigm that aims to enable the deployment of 

multi-component Internet of Things applications on 

Fog infrastructures while considering quality of 

service requirements. The model provides a 

description of the operational system attributes, 

such as latency and bandwidth, of the available 

infrastructure. Additionally, it outlines the 

interactions between software components, Things, 

and business policies. Our organization offers 

algorithms that facilitate the decision-making 

process regarding the successful deployment of 

applications in a Fog computing environment. A 

prototype of FogTorch, a Java tool developed based 

on the suggested paradigm, has already been 

created. 

The management of the complete life cycle of 

continuum applications is addressed through the 

proposition of an alternative architecture grounded 

https://doi.org/10.21123/bsj.2024.10084


 

Page | 743  

2024, 21(2 Special Issue): 0740-0754 

https://doi.org/10.21123/bsj.2024.10084 

P-ISSN: 2078-8665 - E-ISSN: 2411-7986 
 

Baghdad Science Journal 

in the A3-E paradigm
20

. The methodology utilizes 

the Functions-as-a-Service paradigm for the 

deployment of computational resources in the form 

of microservices across the entire continuum. 

Furthermore, A3-E determines the appropriate 

location for executing a specific operation by 

conducting an analysis of the prevailing 

circumstances and taking into account the user's 

requirements. This article also presents a prototype 

framework for implementing the ideas proposed by 

A3-E. The findings indicate that the utilization of 

A3-E enables the dynamic deployment of 

microservices and the effective routing of 

application requests. This leads to a significant 

decrease in latency, up to 90%, when utilizing edge 

resources instead of cloud resources. Additionally, 

there is a notable reduction of 74% in battery 

consumption when offloading computation. 

The FSAOS task scheduling algorithm was 

introduced by Gabi et al. (2022)
6
 for application in 

the mobile edge-cloud continuum, drawing 

inspiration from the Fruit fly algorithm (FA) and the 

simulated annealing method (SA).  The SA 

algorithm is incorporated by the authors into the 

local search of FA in order to mitigate premature 

convergence and avoid getting trapped in local 

optima solutions. This integration enables a more 

effective utilization of resources and reduces task 

completion times. The simulation results of 

EdgeCloudSim exhibit a notable enhancement of 

95% in resource utilization and a reduction in 

mekspan when compared to benchmark methods. 

However, in the standard fruit fly, the distribution 

of distance values within a global search zone 

results in an extremely low scent value, denoted as 

Si. This phenomenon results in the premature 

convergence of the fitness value, thereby confining 

it within a local optimum. 

 Additionally, according to research
7
, there is a 

proposed architecture that enables the flexible 

coordination of applications throughout the Cloud-

Edge continuum. To effectively handle 

environments with a substantial number of nodes 

and complex scheduling algorithms, the architecture 

utilizes a distributed scheduling technique that can 

be customized for each individual application. In 

order to ascertain the feasibility of implementing 

more sophisticated scheduling algorithms that 

consider application quality of service, the 

architecture has been deployed on the Kubernetes 

platform and evaluated.  

In order to improve the quality of service 

(QoS) provided to users in Industrial Internet of 

Things (IIoT) applications, a study
21

 introduces an 

energy-conscious metaheuristic algorithm known as 

the Harris Hawks Optimization Algorithm with 

Local Search Strategy (HHOLS). This algorithm is 

specifically designed for task scheduling in Fog 

computing (TSFC). The optimization of HHOLS 

can be enhanced by incorporating a local search 

technique. The proposed methodology demonstrates 

superior performance compared to alternative 

algorithms in terms of both energy efficiency and 

mekspan. Nevertheless, the absence of empirical 

evidence regarding cloud performance is a notable 

limitation of the study, which exclusively 

concentrates on edge computing. 

 

Materials and Methods 

System Model 

This research makes use of a theoretical 

framework that incorporates a remote cloud 

environment (RC) with a centralized cloud resource 

provider to manage distributed cloud resources, 

mobile edge cloud (MEC) with edge resource 

provider that works with a centralized cloud 

resource provider to allocate resources to mobile 

device (MD) users on the edge. Fig. 1 depicts the 

overall system architecture. 

https://doi.org/10.21123/bsj.2024.10084
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Figure 1. Edge-cloud continuum system model. 

An edge resource provider, a distributed 

cloud resource provider, and a group of mobile 

device users are the three main players in this 

scenario. The edge orchestrator uses the FPA-

ISFLA algorithm to carry out resource optimization 

and job allocation. The FPA-ISFLA algorithm will 

move task to the centralized cloud, which has 

abundant resources, if an MD needs a large number 

of computation-intensive resources at the edge. The 

presence of edge service providers allows for many 

resource use scenarios to coexist. The efficient 

distribution of resources is a result of the FPA-

ISFLA mechanism, which guarantees that 

applications are executed efficiently without 

violating deadlines. It does this by making 

intelligent allocation of available computational 

resources to client tasks. 

Each flower pollen gamete is initially set up 

by the swarm as a collection of tasks that have been 

submitted to the edge resources by MD. Flowers' 

relative network positions are indicated by the 

pollen gametes, which can be thought of as a 

collection of tasks originating from the network's 

edge. The edge network's resources are essential 

because they feed the pollinators and make it easier 

for them to find nectar. Once the service location is 

established, FPA-ISFLA approach begins the 

scheduling process. This process is designed to find 

the optimum trade-offs between virtual resources 

and other factors like makespan and cost in order to 

improve service quality. This algorithm guarantees 

that the selected resource can handle the necessary 

computations. Each task that uses the allocated 

computing resources undergoes a series of iterations 

of the aforementioned method until the desired 

Quality of Service (QoS) is reached. 

Problem Description 

This section formulates the edge-cloud 

continuum task scheduling problem. In edge-cloud 

computing, task scheduling assigns a set of tasks to 

edge resources, cloud resources, or both to satisfy 

customers' QoS needs while minimizing task 

execution and transmission time. Each application 

has k tasks T = {T1, T2, …, Tk} with different QoS. 

(eg, cost, deadline, availability, throughput, etc). 

Each task Ti may be allocated to an edge VM, 

remote cloud VM, or both. The jobs are performed 

by n edge-cloud VM= {VM1, VM2, ..., VMn} with 

varied processing capabilities (eg, processing 

power, memory usage, network, etc). Task 

scheduling optimizes tasks and resources using a 

fitness function. This study determines the fitness 

function according to minimized task execution 

(Mekspan) time, Task Execution cost and optimized 

resource usage. Eq.1 represents Makespan time 

(MT). 

𝑀𝑇 = max(𝑒𝑥𝑇𝑖𝑗) ,    1 ≤ 𝑗

≤ 𝑚                                                                               1 

where MT is the maximum execution time of all 

edge and cloud server virtual machines; 

𝑒𝑥𝑒𝑐𝑇𝑖𝑚𝑒𝑖𝑗 is the execution time of task I on 

virtual machine 𝑉𝑗; hence the execution time 

(𝑒𝑥𝑇𝑖𝑗) of individual virtual machines 𝑉𝑗 is 

computed in Eq.2. 

 𝑒𝑥𝑇𝑖𝑗 = 𝑥𝑖𝑗 .
𝑡𝑎𝑠𝑘 𝑠𝑖𝑧𝑒𝑖

𝑣𝑛𝑝𝑒𝑗
,    1 ≤ 𝑖 ≤ 𝑛; 1 ≤ 𝑗

≤ 𝑚                                                     2 

𝑋𝑖𝑗 is 1 if 𝑉𝑗 is assigned to execute task 𝑡𝑖 and 0 

otherwise; n is the number of tasks 𝑡𝑖  and m is the 

https://doi.org/10.21123/bsj.2024.10084
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number of virtual machines 𝑉𝑗; and 𝑉𝑛𝑝𝑒𝑗 is the 

computing capacity of 𝑉𝑗. 

In this study, the cost associated with executing a 

task 𝑡𝑖 on a virtual machine 𝑣𝑘is measured in US 

dollars ($). This cost is calculated on an hourly 

basis (/hr). Eq.3 calculates the overall cost of 

executing task 𝑖   on all virtual machines 𝑉𝑗. 

𝑇𝑐𝑜𝑠𝑡 = ∑ 𝐶𝑒𝑥𝑒𝑖𝑗 ,     1 ≤ 𝑖 ≤ 𝑛                              3

𝑛

𝑖

 

Where 𝑇𝑐𝑜𝑠𝑡 is the total execution cost of task 

processing across the continuum and 𝐶𝑒𝑥𝑒𝑖𝑗 is the 

total cost of using a virtual machine 𝑉𝑗 by an 

assigned task 𝑡𝑖 and the price of a resource is 

represented by 𝐶𝑗. Hence the total cost (𝐶𝑒𝑥𝑒𝑖𝑗) of 

using individual virtual machine 𝑉𝑗 is given in Eq.4 

 𝐶𝑒𝑥𝑒𝑖𝑗 = ∑ 𝑋𝑖𝑗  .
𝑡𝑎𝑠𝑘 𝑠𝑖𝑧𝑒𝑖

𝑛𝑝𝑒 × 𝑣𝑗𝑠𝑝𝑒𝑒𝑑
 . 𝐶𝑗,   1 ≤ 𝑖

𝑛

𝑖

≤ 𝑛                                                       4 

Where 𝐶𝑒𝑥𝑒𝑖𝑗 denotes the cost associated with the 

execution of a resource when a task ti is assigned to 

virtual machine vj. Meanwhile, Cj represents the 

unit cost of a resource per second, as specified by 

the provider of said resource. 𝑣𝑗𝑠𝑝𝑒𝑒𝑑 is the 

performance speed of the virtual machine 𝑣𝑗. 

Hence, the objective function is to find an optimal 

trades-offs between the makespan time and 

execution cost given as follows: 

𝑓 = 𝑚𝑖𝑛(𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛, 𝐶𝑜𝑠𝑡)                                        5  

Eq. 6 is employed for the calculation of resource 

utilisation in both the edge and cloud environments. 

𝑅𝑢 = ( ∑
𝑇𝑒𝑖𝑗

𝑒𝑥𝑒𝑇𝑖𝑚𝑒𝑖𝑗
 )/𝑚

𝑗=1 𝑚                                   6 

The variable 𝑇𝑒𝑖𝑗 represents the total execution time 

of all virtual machines. The variable 𝑒𝑥𝑒𝑇𝑖𝑚𝑒𝑖𝑗 

represents the execution time of task 𝑡𝑖 on virtual 

machine 𝑣𝑗. The variable 𝑚  represents the total 

number of VMs. 

Flower Pollination Algorithm  

The Flower Pollination Algorithm (FPA) 

was recently anticipated by yang in (2013)
22

, to 

handle optimization problem. The algorithm was 

idealized based on the inspiration of the natural 

biological pollination process of flowering plants. 

Pollination is characterized by self or cross 

pollination. The Cross pollination is done when 

some vectors fuses pollen gamete from one plant of 

the same type to another or different flowers of the 

same plant, while self-pollination is done without 

intervention of any pollen vector, usually the 

process is aided by some natural process such as 

wind and diffusion. This is due to the absence of 

reliable pollen vector that will facilitate the process. 

Because in cross pollination process the pollen 

vectors carries the pollen gamete over a long 

distance with jumps or fly, the distance covered by 

the vectors agrees to obey the Levey distributions
23

, 

therefore, flower firmness can be used as an 

increment step using the similarity or  uniqueness of 

two flowers. 

The above characteristics of flower pollination 

process, flower constancy and pollinator behavior 

was idealized and transform into Flower Pollination 

Algorithm with the following four updating rules 
22,20

: 

1. The distance covered by pollinators to perform 

global pollination is defined as levy distance L and 

is computed as:   

𝐿 ~
ʎЃ(ʎ)sin (

𝜋ʎ
2 )

𝜋
 

1

𝑆1+ʎ
, (𝑠 ≫ 𝑠0 > 0)             7 

2.  

3. The global pollination is summarized as: 

 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 +  𝛼𝐿(ʎ)(𝑔∗ − 𝑥𝑖
𝑡)                      8 

 

Where 𝑥𝑖
𝑡+1 is the i

th
 gamete during the t

th
 iteration 

and L and g* are the levy distance and global best 

during the current iteration respectively. 

4. A switch probability function p is required to switch 

between the global and the local pollination phase. 

5. The local pollination is represented as follows: 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 +  £(𝑥𝑗
𝑡 − 𝑥𝑘

𝑡 )                                    9 

   

Where  𝑥𝑖
𝑡+1 is the i

th
 gamete during the t

th
 iteration, 

e is the probability function for switching from 

global to local pollination drawn from normal 

probability distribution p[0,1] and xj and xk are any 

random flowers. 

These updating rules are summarized to form the 

flower pollination algorithm as shown in 

algorithm1. 

https://doi.org/10.21123/bsj.2024.10084


 

Page | 746  

2024, 21(2 Special Issue): 0740-0754 

https://doi.org/10.21123/bsj.2024.10084 

P-ISSN: 2078-8665 - E-ISSN: 2411-7986 
 

Baghdad Science Journal 

 
Algorithm 1: Flower Pollination Algorithm. 

Although the FPA is often considered an 

efficient optimization technique due to its limited 

control parameters and computational load, it is 

worth noting that the FPA's local search strategy, as 

demonstrated in Eq.8, does not promote the 

exchange of information among the superior 

solutions during the local search process. 

Consequently, this hinders the convergence speed 

of the FPA. Hence, this research introduce an 

information exchange strategy within the local 

search procedure of FPA in order to enhance the 

variety of the exploitation capabilities of the FPA 

using the concept of shuffled Frog Leaping 

algorithm (SFLA) which incorporates the notion of 

information exchange among the frogs within a 

memeplex. 

Shuffled Frog Leaping Algorithm (SFLA) 

The shuffled frog leaping algorithm (SFLA) 

is a biological evolutionary algorithm that was 

introduced by Eusuff and Lansey in 2003
24

. It is 

founded on the concept of collective intelligence. 

The algorithm integrates the benefits of a memetic 

algorithm that utilizes memetic evolution and a 

particle swarm optimization technique that 

leverages group behavior. The algorithm exhibits 

several key attributes, including a reduced number 

of parameters, a straightforward conceptual 

framework, efficient computational performance, 

robust global optimization capabilities, and 

straightforward implementation 
25

. This approach is 

well-suited for addressing a wide range of 

combination optimization challenges. The SFLA 

algorithm consists of four key components namely, 

population initialization, sub-population 

partitioning, local search strategy, and sub-

population mixing 
26

. 

The first step which is the initial population is 

formed by randomly generating a set of 𝐾  solutions 

within the solution space. The solutions under 

consideration exhibit a range of characteristics and 

properties. The dimension of the frog is denoted by 

𝑆, which is defined as the 𝑖𝑡ℎ solution of the n-

dimensional space 𝑥𝑖 = (𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑠
𝑖) where 

𝑖 = (1,2, … , 𝐾). 

In the second stage, within the population, the 

objective function values of each solution should be 

computed as 𝑓(𝑥𝑖) 𝑤ℎ𝑒𝑟𝑒 𝑖 = (1,2, … , 𝐾), and 

thereafter organized in a descending order. The 

most favorable solution throughout the population is 

updated as 𝑋𝑏𝑒𝑠𝑡. The frog population as a whole is 

categorized into distinct memetic groups, with each 

group consisting of a specific number of frogs. 

Within this set, the initial frog is allocated to the 

initial meme group, while the 𝑛𝑡ℎ frog is assigned 
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to the 𝑛𝑡ℎ meme group. Additionally, the (𝑛 + 1)𝑡ℎ 

frog is subsequently reassigned to the initial meme 

group, and this pattern continues iteratively. Until 

all of the frogs are allocated. The frogs exhibiting 

the highest and lowest levels of fitness within each 

memetic group are referred to as 𝑋𝑏 and 𝑋𝑤, 

respectively.  

The local search strategy, which is the third stage of 

the algorithm used in optimization the algorithm to 

find the best solution inside a given neighborhood 

of a current solution. It involves iteratively 

exploring neighboring solutions and selecting the 

one that improves the objective function. The local 

search component is of paramount importance 

within the overall algorithm. The conventional 

SFLA algorithm is designed to improve the solution 

of the least optimal internal frog individual during 

the entire iterative procedure
25

 as presented in Eq. 

10 and Eq. 11.  

𝐷𝑖 = 𝑟𝑎𝑛𝑑( ) ∗ (𝑋𝑏 − 𝑋𝑤),   𝑖 = 1,2, … , 𝑚        10 

𝑋𝑤 = 𝑋𝑤 + 𝐷𝑖 − 𝐷𝑚𝑎𝑥,
𝐷𝑖 ≤ 𝐷𝑚𝑎𝑥,    𝑖
= 1,2, … , 𝑚          11 

Where 𝐷𝑖 represents the leaping step size of the 

frog, 𝑟𝑎𝑛𝑑( )is a random number within the range 

(0,1), and 𝐷𝑚𝑎𝑥 represents the maximum allowed 

step size for the frog. In Eq.10an update is 

performed on the frog denoted as 𝑋𝑤, which has the 

poorest objective function value. If the updated 

solution is obtained, it is used to replace the worst 

solution 𝑋𝑤. Alternatively, if the updated solution is 

not obtained, Eq.10 is used to replace 𝑋𝑏 with 

𝑋𝑏𝑒𝑠𝑡, and the updated solution is recalculated using 

Eq.10 and Eq.11. If the updated solution is superior 

to 𝑋𝑤, it replaces the worst solution 𝑋𝑤. However, 

if the updated solution is not superior, a new 

solution is randomly generated to replace the 

current worst solution 𝑋𝑤. Perform the procedure 

for the designated number of iterations, therefore 

accomplishing a partial search of the population. 

Finally, the sub-populations are merged to form a 

population consisting of a certain number of 

solutions. Subsequently, the sub-populations are 

redistributed using the approach, and the subsequent 

iteration of local search is executed
27

. Continue 

iterating the procedure until the desired solution is 

attained or the termination condition is satisfied. 

These four principles are summarized to form a 

SFLA algorithm as shown in algorithm2
28

. 

 
Algorithm 2. Shuffled Frog Leaping Algorithm. 

Nevertheless, the method has certain drawbacks 

such as sluggish convergence, susceptibility to local 

optima, and premature convergence. Consequently, 

drawing from an extensive examination of the 

Shuffled Frog Leaping technique (SFLA), this 

research paper presents an improved version of the 

technique to address its limitations. 
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Improved SFLA algorithm. 

The initial version of the SFLA fails to 

account for the impact of evolutionary algebra on 

the magnitude of the frog's leaping step size
25

. The 

adaptive step factor is incorporated into the local 

search algorithm in order to modify the magnitude 

of the leaping step. The utilization of this approach 

serves to enhance the rate of convergence and the 

accuracy of optimization in the algorithm. In the 

context of the algorithm's local search, only the 

least optimal individuals within each sub-population 

of frogs undergo updates, while the remaining frogs 

do not undergo synchronization
28

. In this particular 

scenario, it is intended that each individual frog 

inside the sub-population undergoes an updating 

process. The sub-population of frogs will exhibit 

enhanced capabilities, resulting in an increased 

search range and greater search accuracy. 

The adaptive step factor. 

In the local search procedure of the 

classical SFLA, as stated in Eq.1, the movement 

step length is determined by randomly resolving the 

components in each dimension. Given that 𝑟𝑎𝑛𝑑() 

is a stochastic variable within the range of (0,1) it is 

likely that it will either converge to a local optimum 

throughout the process of evolution or bypass the 

global optimum altogether. The diminishment of the 

frog population's evolutionary algebra is resulting in 

a reduction in the frog's range of movement. 

However, the conventional step taken in the 

classical SFLA fails to account for this 

phenomenon. In this particular situation, an 

adaptive movement factor was devised to regulate 

the leaping step size of the frog. The adaptive 

leaping step size is given in Eq. 12. 

𝛽 = sin ( 
𝜋

2
 .  

𝑖

𝑛
) , 𝑖 = 1,2, … , 𝑛                   12 

where 𝑖 denotes the current count of local searches 

conducted within a certain subpopulation, whereas 

𝑛 represents the maximum count of local searches 

permissible for each subpopulation. Hence, for each 

frog 𝑖 in the population, the adaptive leaping step 

size factor will be computed as follows: 

𝛽𝑖

= sin ( 
𝜋

2
 .  

𝑖

𝑛 − 1 + 1
) , 𝑖

= 1,2, … , 𝑛                                                      13 

Therefore, the leaping step size 𝐷𝑖 of frog 𝑖 in the 

population will now be recalculated as follows: 

𝐷𝑖 = 𝛽𝑖 ∗ (𝑋𝑏 − 𝑋𝑤),   𝑖
= 1,2, … , 𝑚                                                                14 

Memeplex updating strategy. 

In the local search approach employed by 

the SFLA, only the individuals with the lowest 

fitness values in a memeplex undergo updates, 

while the remaining individuals are not updated 

simultaneously
26

. Hence, our research introduces a 

new information updating strategy among the frogs 

in a memeplex as follows: 

𝐷𝑘 = 𝛽 ∗ (𝑋𝑗−1 − 𝑋𝑗), 𝑗 = 1,2, …   𝑛                       15 

Where 𝑗 represents the 𝑗𝑡ℎ frog in the memeplex 

and 𝑛 represents the number of frogs in the 

memeplex. 

Therefore, the updating strategy for each solution in 

the population is now recalculated as: 

𝐷𝑘𝑖 = 𝛽 ∗ (𝑋𝑗−1 − 𝑋𝑗), 𝑖 = 1,2, …   𝑛            16 

𝑋𝑘𝑖 = 𝑋𝑘𝑖 + 𝐷𝑘𝑖 − 𝐷𝑚𝑎𝑥, 𝐷𝑘𝑖 ≤ 𝐷𝑚𝑎𝑥,
𝑖 = 1,2, …   𝑛                    17 

Hence, the Improved SFLA algorithm is 

summarized in algorithm 3. 
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Algorithm 3. Improved Shuffled Frog Leaping Algorithm. 

 

Flower Pollination based Improved Shuffled 

Frog Leaping algorithm (FPA-ISFLA) 

The Flower Pollination-Based Improved 

Shuffled Frog Leaping Algorithm for task 

scheduling (FPA-ISFLA) is to solve task scheduling 

problem in edge-cloud continuum environment. 

This algorithm combines two different nature-

inspired optimization techniques, namely the 

Improved version of the Shuffled Frog Leaping 

Algorithm (ISFLA) and the Flower Pollination 

Algorithm (FPA), to address the problem of 

optimizing task scheduling. The FPA-ISFLA for 

task scheduling takes advantage of both SFLA's 

shuffling mechanism and FPA's pollination concept 

to tackle the task scheduling problem. 

The algorithm aims to find an optimal or 

near-optimal task schedule by leveraging the 

combined strengths of ISFLA and FPA. In the local 

search of FPA, ISFLA is used to improve the 

solution exploitation with the aid of enhanced 

information sharing of the ISFLA withing the local 

solution thereby enhancing the FPA’s convergence 

rate while avoiding trapping into local optima. The 

FPA-ISFLA pseudocode is shown in algorithm 4. 

 

Algorithm 4: FPA-ISFLA algorithm 

 Initialise: Pop Size n, Switch probity p, t, max iteration maxIter. 

1. Initialize a population of n pollen gametes at random. 

2. Identify the global best solution as g* 

3. 𝒘𝒉𝒊𝒍𝒆 (𝒕 < 𝒎𝒂𝒙𝑰𝒕𝒆𝒓) 

4.        𝒇𝒐𝒓 (𝒊 = 𝟏: 𝒏) 

5.         𝒊𝒇 𝒓𝒂𝒏𝒅 < 𝒑: 
6.        Global Pollination via:   

       𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑙(𝑥𝑖
𝑡 − 𝑔∗) 

7.        𝒆𝒍𝒔𝒆  𝑑𝑟𝑎𝑤 𝑄 𝑓𝑟𝑜𝑚 𝑎 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 [0,1] 
8.          𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐ℎ𝑜𝑜𝑠𝑒 𝑗 𝑎𝑛𝑑 𝑘 𝑎𝑚𝑜𝑛𝑔 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 
9.        Local pollination via: 

10.          𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑄(𝑥𝑘
𝑡 − 𝑥𝑗

𝑡) 

11.        𝒆𝒏𝒅 𝒊𝒇 
12.    Evaluate the new solution. 

13.    If new solution is better, update global best g* 

14.    𝒆𝒏𝒅 𝒇𝒐𝒓 
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15.    // apply ISFLA algorithm 

16.        Generate random population of K solutions (frogs) 

17.             for each solution  𝑖 ∈ 𝐾 do 

18.                   calculate  𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑖)  

19.              End for 

20.         Sort the population K in descending order of fitness. 

21.         Divide K into m memeplex. 

22.              for each memeplex do 

23.                     Determine the best and worst frogs. 

24.                     Improve the worst frog position using Eq. (16) 

25.                     Repeat 

26.               End for 

27.        Combine the evolved memeplex. 

28.        Sort the population K in descending order of their fitness. 

29.               If Max iterations reached 

30.                   Return best solution 𝑋𝑏𝑒𝑠𝑡 

31.              End if 
32.       Record the current global best g* 

33.      𝑡 = 𝑡 + 1 

34.     𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

Algorithm 4. FPA-ISFLA algorithm

Experimental Setup and Results Discussion 

This section will provide a detailed 

description of the experiment, including the specific 

parameter settings that were used as well as the 

results that were obtained.  

Experiment 

As was mentioned earlier in the previous 

section, the FPA-ISFLA is currently being utilised 

to address the task scheduling problem in edge-

cloud continuum environments in order to maximise 

the use of available resources and reduce task 

execution time and cost. The experiment was 

conducted using edgecloudsim simulator with 

eclipse java IDE environment. The edge-cloudsim 

was configured with edge data center, one cloud 

data center, 10 VM on edge and 20 VM on cloud 

and 10 mobile devices that will transmit task 

execution request to the edge orchestrator. The task 

manager in the orchestrator will evaluate the task’s 

requests based on QoS constraints which will serve 

as the basis for the task scheduler to decide 

computing resources to allocate to the task. To 

evaluate the proposed algorithm is effectiveness, a 

comparison study is carried out between the result 

of the experiment and the results obtained using the 

Particle Swarm Optimisation Algorithm (PSO), as 

described in reference
29

. Re-implementation of the 

PSO task scheduling algorithm took place in 

accordance with the parameter settings that were 

outlined in the research.  

During the experiment, a set of ten (10) 

different task sizes was utilised in the evaluation 

process. The algorithm is run ten times for each task 

size, and the results of those runs are recorded for 

the average makespan time to execute the task on 

both edge and cloud, the average resource 

utilization across the edge and cloud data center and 

the average task execution cost on both edge and 

cloud for each algorithm. 

 

Results and Discussion 

 Following the extensive experimental 

simulation conducted, the result obtained for both 

makespan time, resource utilization and execution 

cost were plotted on a graph against each workload 

size to present the performance of each algorithm 

against different workload. so that a visual 
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representation of the correlation between the 

magnitude of the workload and the makespan time, 

in seconds, required by each algorithm to complete 

the task execution, the total cost of task execution 

and the average resource utilisation can be created. 

Fig. 2 shows the graphic representation of the 

Makespan time, a graph illustrating how the 

resources were utilised can be seen in Fig. 3, while 

the average cost of task execution is presented in 

Fig. 4. 

 
Figure 2. Avaerage Makespan time. 

 
Figure 3. Average Resource Utilisation. 

 
Figure 4. Average Execution Cost. 

Discussion 

The findings of the experiments show that 

the FPA-ISFLA algorithm is efficient in task 

scheduling within the edge-cloud continuum 

environment, which is comparable to the 

algorithm's successful performance in other spheres. 

When dealing with various workload sizes, the 

algorithm demonstrates a notable improvement in 

performance in comparison to the PSO algorithm, in 

terms of the Makespan time. The findings that is 

presented Fig. 2 lend credence to this observation. 

Furthermore, the research reveals that the proposed 

FPA-ISFLA task scheduling algorithm consistently 

attains the most optimal global solution. This is 

believed to be due to the incooperation of the 

shuffled frog leaping algorithm in the FPA local 

search strategy that improved the FPA exploration 

capacity. This leads to optimal utilisation of 

resources and minimises the amount of time 

required for searching in 20 simulation iterations. 

This finding is based on the data presented in Fig. 3. 

Moreover, the FPA-ISFLA algorithm also 

demonstrates a good performance against the PSO 

in terms of reducing the task execution cost as 

presented in Fig. 4. 

Conclusion 

In general, the FPA-ISFLA task scheduling 

algorithm is efficient in handling task scheduling 

problem in edge-cloud environment with significant 

improvement against the particle swam 

optimization algorithm using makespan time, 

resource utilization and task execution cost 

evaluation metrics. 

However, it’s recommended that further 

improvement to me is made in the FPA global 

search strategy to improve its’ exploitation 

effectiveness. 
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 ةالخلاص

ات إن ظهور الحوسبة المستمرة السحابية الحافة هو نتيجة للأهمية المتزايدة للحوسبة الحافة، والتي أصبحت خيارًا مكملاً أو بديلاً للخدم

السحابية التقليدية. يمثل التقارب بين الشبكات وأجهزة الكمبيوتر تحدياً ملحوظًا بسبب تطورها التاريخي المتميز. تمثل جدولة المهام 

( QoSياً كبيرًا في سياق الحوسبة المستمرة السحابية. يعد اختيار موقع تنفيذ المهام أمرًا بالغ الأهمية لتلبية متطلبات جودة الخدمة )تحد

رًا للتطبيقات. تعد استراتيجية الجدولة الفعالة لتوزيع أحمال العمل بين الأجهزة الافتراضية في مركز البيانات المستمر لسحابة الحافة أم

 metaheuristicإلزامياً لضمان استيفاء متطلبات جودة الخدمة لكل من العميل وموفر الخدمة. استخدمت الأبحاث الحالية خوارزمية 

المستخدمة من الوقوع في مينا المحلية بسبب عدم  metaheuristic، ومع ذلك، يجب أن تعاني خوارزميات takلحل مشكلة جدولة 

المجدية في مساحة بحث الحل. لذلك، هناك حاجة ماسة إلى خوارزمية ميتايورستية فعالة لجدولة المهام. كفاءتها لتجنب المنطقة غير 

باستخدام تلقيح الزهور الهجينة وتحسين خوارزميات قفز الضفدع المختلط.  FPA-ISFLAاقترحت هذه الدراسة نموذج جدولة المهام 

من حيث زمن التنفيذ، واستخدام الموارد، وتقليل  PSOتفوق على خوارزمية ت FPA-ISFLAتشير نتائج المحاكاة إلى أن خوارزمية 

 تكلفة التنفيذ، خاصة مع زيادة عدد المهام.

 .، جدولة المهامMetaheuristics  السحابة، الاستمرارية، الحافة، تحسين الكلمات المفتاحية:

https://doi.org/10.21123/bsj.2024.10084

