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Abstract

Chemical graph theory plays an important role in modelling molecules, especially examining physico-
chemical properties of the chemical compounds. Alkanes are one of the chemical compounds which are
made up of hydrogen and carbon atoms, generally known as hydrocarbons. These alkanes having empirical
formula G, Hy(n44). Structural/constitutional isomers are the collection of chemical compounds having
same empirical formula but different structural arrangements, this lead to the diversity in the physico-
chemical properties. Graph descriptors are the essential tools in the graph theory to study about these
physico-chemical properties. Some of these graph descriptors are graph spectrum, graph energy and graph
entropy which contribute significantly to understand molecular properties. Spectral parameters, like
spectral radius, second largest eigenvalue, spectral gap and graph energy aid in estimating energy levels
and stability of the molecule, while graph entropy, such as eigenvalue-based modulus entropy derived from
the adjacency matrix, measure heterogeneity. This paper explores a specific type of alkanes and their
isomers, examining their spectral parameters and graph entropy. Through comparative graph plots, the
nature of these parameters are observed, which sheds light on the molecular behaviours. This study shows
the importance of graph theory in quantum chemistry, particularly the spectral characteristics and structural
intricacies of alkanes and their isomers, contributing to a comprehensive understanding of molecular
properties and behaviour at the quantum level.

Keywords: Alkane Isomers, Caterpillar Graph, Eigenvalue-based Modulus Entropy, Graph Energy,
Graph Spectrum.

Introduction

Chemical graph theory is a branch in graph theory
which deals with the application of the concept of
graph theory in the field of chemistry, which depict
the  structural arrangement of  molecules.
Cheminformatics employs various approaches to
analyse and represent molecular structures. One
widely used method is the utilization of graph-
theoretical descriptors or indices to depict the
physical characteristics of molecules. Among these
descriptors, the spectrum of the graph plays a crucial
role in estimating the highest energy levels of
molecules in quantum chemistry. Additionally,

graph entropies? are fundamental thermophysical
quantities used to measure the heterogeneity and
relative stabilities of molecules and are defined for
various graph invariants. Eigenvalue-based modulus
entropy, a kind of graph entropy that depends on the
adjacency matrix of the graph, has been extensively
studied.

Physico-chemical characteristics of a
chemical compound are related to the compound’s
geometric structure. This is particularly true for
chemical substances known as alkanes. Alkanes are
a type of hydrocarbons (i.e. contain only carbon and
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hydrogen atoms) with the relation between their
elements as n carbon atoms and 2n + 2 hydrogen
atoms. Methane, ethane, propane and butane are a
few of these alkanes that are widely known.
Chemical trees are molecular graphs in which the
bonds between the carbon atoms are considered as
edges and the carbon atoms alone are taken as
vertices. For example, isomers of alkanes like 2,2-
dimetylpropane (2,2m-3) and 2,2,3,3-
tetramethylbutane (2,2,3,3m-4) exhibit molecular
graph in such a way that each internal vertex of the
central path (called the spine) is adjacent with two
pendant vertices, forming a special kind of caterpillar
graph CP,. In this study, the spectral parameters and
graph entropy of the caterpillar graph CPB, were
determined and represented in graphical form for
easy analysis.

Preliminaries

A collection of two sets: a nonempty set of
vertices V, a set of edges E and a relation y;: E —
V xV called incidence relation arranged as an
ordered triplet (V,E,y) is called as a graph and is
notated as G = (V,E,). The adjacency matrix
A(G), also referred to as the connection matrix, is a
square matrix that indicates whether or not the two
vertices v;, v; are adjacent neighbours. All the ij-
elements of A(G) are marked as 1 in the matrix if
their corresponding vertices are neighbours.
Otherwise, mark it as 0. P(4; 1) = det(A — Al,)
yields the characteristic polynomial of A(G), where
I, is the identity matrix. The eigenvalues of the
adjacency matrix A(G) are determined by solving the
characteristic equation P(A4; A) = 0. The spectrum of
the graph G is the configuration of the eigenvalues
and their algebraic multiplicities. The highest among
all the eigenvalues is known as spectral radius. The
sum of absolute eigenvalues is termed as graph
energy®. The difference between spectral radius and
the second largest eigenvalue is known as the
spectral gap. If 14, 4,, ..., 4,, denote the eigenvalues
of A(G) and £(G) denote the energy of G, then the
eigenvalue-based modulus entropy* of G is defined

A A
as 1(4) = -%"%, %log % Closed
neighbourhood N;[e] of an edge e refers to a set of
all edges which are adjacent to a particular edge e
including the edge itself. An independent set of edges
is a set of edges such that no two edges share a
common vertex. Matching is an independent set of
edges. A k-matching comprises k edges in its
matching and the matching with the highest

cardinality is known as a maximum matching M of
G.

Literature survey

In the book Spectra of Graphs, A. E.
Brouwer and W. H. Haemers® explore a wide range
of subjects in spectral graph theory and show how
crucial a role linear algebra plays in graph theory. F.
Celik and I.N. Cangul® have shown that one may
derive the spectra of C,, and P,,,; without
performing intricate computations only in terms of
the spectra of C,, and P,. They did this by obtaining
the polynomials and recurrence relations for the
spectral polynomials of cycles and routes. N. A.
Alwan and N. M. G. Al-Saidi’ have provided a
general formula for the characteristic equation of
various well-known graphs, such as cycle, path, star
and complete graphs. Ivan Gutman et al® have
proposed a novel approach for approximating the
total pi-electron energy of a conjugated hydrocarbon
using spectral moments. Anwar S° et al has
investigated the extreme value of the first
reformulated Zagreb index with a given order and
degree of a graph. Further, they have presented the
regression models to predict acentric factor and
entropy of octane isomers. Mitesh JP et al*® has
derived the relation between the second Zagreb
matrix and the adjacency matrix of graph G and
derive the new upper bound for the second Zagreb
energy in the context of trace. Similar interesting
studies regarding various indices are addressed in't
13 H. Al-Janabi and G. Bacsé** have found Sanskruti
Index for the caterpillar tree, cycle-caterpillar,
starlike tree, sunlike graph and molecular graphs of
hydrocarbons. Zhen L*® has focused on how to use
fewer topological indices to predict the
physicochemical properties of compounds through
the QSPR analysis of connectivity indices of benzene
hydrocarbons. Z Ahmadet. al*®* computed some
eccentric connectivity indices of the V-Phenylenic
nanotube VPHX[p;q]- N. J. M. M. Raja and A.
Anuradha'’ have computed the Sombor index,
reduced Sombor index and average Sombor index of
armchair and zigzag carbon nanotubes. N. J. M. M.
Raja and A. Anuradha'® have established the Sombor
indices of tensor product and 2-tensor product of
certain families of graphs. Devaragudi V,
Chaluvaraju'® has obtained some bounds and
characterizations of Block Somber Index and its
Block Sombor energy. M. K. Jamil et al? reveals a
strong correlation (r > 0.99) between a novel
topological index in multiple linear regression and
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the prediction of n-electron energy and boiling points
in benzenoid hydrocarbons. Additionally, the index
shows promising results in analyzing face indices of
planar molecular structures like 2-dimensional
graphene and circumcoronene series, indicating its
potential as a valuable parameter in QSPR/QSAR
with excellent correlation ability and structural
selectivity. X. Zhang et.al 2, has investigated the
degree-based entropies: geometric  arithmetic
entropy, atom bond connectivity entropy, general
Randic’ entropy, and general sum connectivity
entropy for metal-organic network. M.S. Sardar et
al?? has calculated certain well-known topological
indices of the middle graph of alkane based on vertex
degree and presented a numerical and graphical
comparison of computed topological indices. M. S.
Sardar et al?® has computed many topological indices
for the double and strong double graph of alkane. M.
P. Nayaki et al** has studied the diagrammatic
representation between Topological indices and 67
Alkanes. K.V. Lakshmi, N. Parvathi?® has computed
the sombor index, harmonic index, inverse sum
index and symmetric division degree index of a thorn
graph family. M. Javaid et al®® has established the
numerical relationship between the Gutman
connection (GC) index of a graph and its thorn graph.
K. Chithra, J. Mayamma?®’ has calculated the total
global dominator chromatic number of trees and
unicyclic graphs are explored. A. M. Ali?® has found
the polynomials detour and detour indices for n-
graphs, which are connected to themselves and
separated from each other with respect to the vertices
for m >3, having important applications in
Chemistry.

Molecular Graph of Alkane Isomer

In organic chemistry, alkanes are acyclic
saturated hydrocarbons?. It is made up of carbon and
hydrogen atoms that are arranged in a tree structure
with only single carbon-carbon bonds. It has the
chemical formula C,H,,4, With n > 1. The first
four alkane are methane, ethane, propane, and
butane. After that, the alkanes are named based on
Greek numbers. For example, CsH,, is pentane,
CeH,4 is hexane, C;H,¢ is heptane and CgH,g is
octane etc. According to the branching of the carbon
atoms, each alkane may have many isomers. As these
isomers vary in their basic structure, they exhibit
different properties though belonging to the same
alkane group. Depending on the context, a particular
isomer of an alkane will be chosen for use. The
compound pentane CgH;, has three isomers: n-

pentane, isopentane and neopentane. The first two
are liquids while the third is a gas. Neopentane is a
double-branched chain alkane with five carbon
atoms, commonly known as 2,2-dimethylpropane
(2,2m-3) (Fig 1)%2. It is a flammable gas at room
temperature which condense into a highly volatile
liquid when it is compressed to a higher pressure.
The molecular graph of neopentane (2,2m-3) can be
drawn in the form of caterpillar graph CP5 in such a
way that the central path (spine) contains three
vertices, and its single internal vertex has 2 pendant
vertices adjacent with it.

CHy ury

(a) 2,2-dimetylpropane (b) Caterpillar graph (CP3)

Figure 1. Molecular graph of (2,2m-3)

When a similar structure is seeked in the
alkane octane, 2,2,3,3-tetramethylbutane (2,2,3,3m-
4) is there with similar structure and chemical
formula CgH,; . Among the several octane isomers, it
has the most branches with chemical formula CgH;g.
It is also the only one with a butane (C,) backbone.
It is the smallest saturated acyclic hydrocarbon that
solidifies at 25°C due to its highly symmetrical
structure, which also gives it a very high melting
point and a small liquid range. The molecular graph
of (2,2,3,3m-4) is the caterpillar graph CP, (see Fig
2)%.

CH, CH uy

(c)2,2,3,3-tetramethylbutane  (d) Caterpillar graph (CP,)

Figure 2. Molecular graph of (2,2,3,3m-4)

On generalizing the structure of the
caterpillar graph CB,, the spine of CP, contains n
vertices, and 2(n — 2) pendant vertices adjacent to
the internal vertices of the spine. As a result, the
Caterpillar graph CP, contains (3n — 4) vertices and
(3n — 5) edges. The caterpillar graph CB, for 3 <
n < 10 and their corresponding alkane isomer is
listed in Table 1.
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Table 1. Caterpillar graph CP,,, 3< n < 10, and its corresponding Alkanes

cP, Alkanes

CP; 2,2-dimethylpropane (2,2m-3)

CP, 2,2,3,3-tetramethylbutane (2,2,3,3m-4)

CPs 2,2,3,3,4,4-hexamethylpentane (2,2,3,3,4,4m-5)

CP, 2,2,3,3,4,4,5,5-octamethylhexane (2,2,3,3,4,4,5,5m6)

CP, 2,2,3,3,4,4,5,5,6,6-decamethylheptane (2,2,3,3,4,4,5,5,6,6m?7)

CPg 2,2,3,3,4,45,5,6,6,7,7-dodecmethyloctane (2,2,3,3,4,4,5,5,6,6,7,7m8)

CP, 2,2,3,3,4,4,55,6,6,7,7,8,8-tetradecmethylnonane (2,2,3,3,4,4,5,5,6,6,7,7,8,8m9)
CP;o 2,2,3,3,4,4,55,6,6,7,7,8,8,9,9-hexadecmethyldecane (2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9m10)

Materials and Methods

Algebraic Properties of CP,,
Consider the Caterpillar graph CP, (n = 3)

(Fig 3) ™ Let V(CB)={u,1<i<n}u
{vi ,w; ,1<i<n-—2 } be the vertex set. Here u;
are the vertices of the spine, v; and w; are pendant
vertices. The vertices v; and w; are adjacent with
each 1w, ,1<i<n-2. Let E(CRH)=
{winiyr = ey, 1 <i<n—1} U {uqv; =
ey, Uip1 Wi = ey, 1 <1 <n— 2} be the edge set.
With respect to the labellings of edges, partition
E(CB,) into Q1 ={ey ey, ey, €y, } Q2=
{ev, v, v, 1€y} and Q3 =

{ew,, ew,, ew,, -, ew, ,}. Clearly both @, and Qs
are independant sets.

Figure 3. Caterpillar graph (CP,,)

Lemma 1%. Let G be a labelled simple graph on n
vertices. If L; denotes the collection of i-vertex
graphs whose components are edges or cycles, and
a; denotes the coefficient of A"~ in the characteristic
polynomial of G, then

where c¢(L) is the number of components of
L and y(L) is the number of components which are
cycles.

Lemma 27 The coefficients of the characteristic
polynomial of path graph (B,) based on A(R,) is
given by

Pp,(A,2) = (:ll) At — (?n_—ll) _ 1)/1n_2 +

P e I E
1.

Theorem 1 The Adjacency matrix A = A(CP,) is
given by

A(CP)
[Ozxz Ei1om-2) O2xm-2) 02x(n-2) 1
_ Ell,(n—2)2 Pn—2 In—2 In—2
" O0-yxz In—2 On-2yx(m-2) Om-2)x(n-2)[
Om-2)x2  In—2 On-2)x(n-2) Om-2)x(n-2)

where 0y, and 0,_z)x(n—2) are null matrices;
E11,2(n-2) and E11 (n_7), are the matrices with order
2X (n—2)and (n—2) X 2 respectively in which
the entries aqq ,azm-2) Of Ej1,m—2) are 1, the
entries a1 ,am-2)2 Of Eiym-2. are 1 and
otherwise 0; P,_, is the adjacency matrix of the
path graph having (n —2) vertices; I,_, is the
identity matrix.

Proof. As the pendant vertices in the spine are not
adjacent, the main diagonal’s first block null matrix
of order 2 x 2 is formed. A path adjacency matrix
P,,_, is formed from the spine’s subsequent vertices
from u; and u,,. Due to the fact that the vertices v;_,
and w;_, are pendant and adjacent with the vertices
of the spine, two consecutive null block matrices of
order n—2 are formed in the main diagonal.
Additionally, the adjacent pairs (u;, u3z) and (uy,
uy) create the block matrix E7q ,,_5), to the left of
P,_, with order (n —2) X 2, where the elements
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ay1 ,Am—z2), Of the matrix are 1. Due to their
pendant nature and proximity to the spine’s vertices,
v;_, and w;_, produce two successive identical
block matrices just below P,,_,. The blocks above
the diagonal follows because of the symmetry of the
adjacency matrix.

Theorem 2 Let B, where (n > 1) be the path graph

then the number of k- matching is given by

(n —k
n— 2k

Proof. By using Lemma 2,

) for any positive integer k.

Pp,(A,2) = (Z) At — (?n_—ll) _ 1) A2+

(G 2y 2)2 = (G gy ) 4

1

_ (M yn _(N— 1\ ;n—2

=) -2
n—2\,m-4_ (M—3)m-6_ ..
(n_4)/1 (n_6)/1 +oet 1,
Since, the path graph is acyclic then by Lemma 2 the
coefficients of its characteristic polynomial will be
k - matching of path graph and thus the theorem
follows.

Theorem 3 A maximum matching M of a path
graph B, will always have the following number of

edges init |M| = EJ .

Proof. An alternate selection of edges, starting from
the first edge of the path B,, will form a maximum

matching with EJ edges.

Theorem 4 If CPB, is the caterpillar graph with n >

2_
3, then the number of 2-matchings is In7—4sm+s4

Proof. For each internal edge of the spine B,
Ng [eui] = {eui’ Cu;yr Cugyyr Cigr Cvp Cwiyo eWi} and
hence |Ng[ey,]| =7 for 2 <i <n—2. Omitting
these 7 closed neighbourhood edges from the
E(CPB,), (3n — 12) edges will be obtained, each of
which will form a 2-matching with e,, . Since there
are (n — 3) internal edges e, (n — 3)(3n — 12) 2-
matchings will be formed. Each of the remaining
edges in the collection X = {e, ey, _ ey, ey, 1<
i <n—2} will have four edges in its closed
neighbourhood set. By omitting these corresponding
closed neighbourhood edges from E(CPB,), (3n —9)

edges will be obtained, which forms a 2-matching.
There are (2n — 2) such edges in collection X. Thus
(2n — 2)(3n — 9) 2-matchings will be fromed from
collection X. By summing up, will get 9n? — 45n +

54 2-matchings. The result is then halved to avoid

.. 9n2-45n+54
repetition. Thus ~— ——>-

obtained.

2-matchings is

Theorem 5 The Caterpillar graph CP, has a
maximum matching M with exactly (n — 2) edges.

Proof. Consider the partition Q, c E(CPB,)
with|Q,] = (n—2). It is observed that
N;[Q2]= E(CP,). Additionally, when introducing
any spine edge to Q,, it necessitates the removal of
at least two Q, edges to form a matching.
Consequently, defining a matching larger than Q, is
unfeasible. Hence, CP, possesses a maximum
matching of cardinality (n — 2). As [Q,| = |Qs], Q3
also qualifies as a maximum matching of CB,,
thereby establishing the theorem.

Algorithm to Enumerate k-matchings of CP,,

Proceeding to calculate the number of k-matchings
in CP,, where 3 <k <n— 3 is the focus. This is
done by the following manner. The partitions are
paired in the following ways: (Q4,Q2), (Q1,Q53),
(Q4,Q3) and (Q4, Q,, Q3). Then k-matchings of each
pair are computed and added to form the whole k-
matching collection.

Step 1: The first step is to compute all k-matchings
that lie in one partition itself. By using Theorem 2 the
k-matching from the partition Q, can be found. As
previously mentioned, Q, and Q5 are independant
edge sets, thus the k-matching can be found by
collecting all k combinations.

Step 2: The selection of matching edges depends on
the number of coupled partitions. For instance, to
pair two partitions, i edges are chosen from one
partition and k — i edges from another. Similarly, for
pairing three partitions, i edges from the first
partition, j edges from the second, and k —i—
j edges from the third are selected. The identification
of each partition's suitable matching is determined by
the properties of the edges within that partition.
When searching for matches in a partition, edges
adjacent to those in the preceding partitions are
excluded.

Step 3: Let M be a maximum matching of CP, with
|[M| edges and M, be a k-matching with |M;| =k
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edges. The internal edges e,,2<i<n-—2 in
partition Q, are all adjacent with two edges in
partitions Q, and Q3, but the remaining two edges
€y, ey, , IN Q are adjacent with one edge in
Q, and Q5 (refer Fig 3)°. Thus obtain four cases
while coupling the other partition with Q;.

(@ Ife, e, , €M (b)Ife, €Mye, &M
(c)Ife, &€ My,e,, €M (d)Ife, e, , €M
Partition of i edges

1) Partition (Q4, Q2)

Case (i) Ife, e, , & M;.

(@ If 3<k< M2

then it (P22 L) (" 2T

(b) If k<|M|—1r, where r =
123, M,
2

. om—2—i —2-2i
then Zi:l(n—Z—Zi)( k—i )
(©)If k= |M| then (Q,Qz) =0.

Case (ii) If e, €My, e, , &My or e, ¢
Ml! eun_l € Ml'

(@ If 3sks<|™M2],

e 2252 (123 22 ) )

(b) If k=|M|—1r, where r=
01,23, .., "=, then

(Q4, Qz
- zZ(Z:i:é‘(;ﬂ))(”‘z:?“-“)-

Case (iii) Ife,,, e, , € My.

() If 35k

M| + 2 < n—4—(i-2)
=172 ]'then ;(2—4—21(1'—2))
—4—2(i-2)
(n k_il )

(b) If k<|M|—1r, where r =
01,23,..., ||, then

4 (i-2) ((Qp)Qz):
riz (NM—4— (- n—4—2(—2
i=12(n—4—2(i—2)>( k—i )
2) Partition (Ql,Qz,Qg)
Case (i) Ife, e, & M;.
@ 1f 32k [ denzt (17370
&' 2 — 2i 2—(2i+))
n—2-2i\mn—2— Qi+
2 (0TS
j=1
(b) If k=|M|—r, where r =

12 (22 ahon 31 (137

k-i-1

Z (n - 3 - 21’) (n —k2 —](_le+]))

j=1

(©) If k=|M| then (Q1,Q2)= 0.

Case (ii) If e, €My, e, &My, e, &M,

eun_l € Ml'

(@) If 3<k< l%J ,then

(23 aoD)

2 < Hl(n 3—]2(1—1)>(n—3;£2j(i_—il)+j)))

(b) If k=|M|—1r , where r =
01,23,..., |22 then

T+1<n—3—(i—1))

2( 3L=12(n1$_2(i;1)(2(' D+ w
— — — i—

\(Zkll(n ] l )( ])>/

k—j—i
Case (iii) Ife,, e, , € M.

(@) If 3<k< l|M|+4J ,then
= (n - i - gl(i N )2))

Z (n—4;2(i—2))<n—4k (2](1_—12)4']))

j=2
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(b) If k<|M|—1r, where r =

In the Table 2 below, every possible combination of

0123 llMl—SJ h 42 (n —4—-(i—2) ) partitions, partition pairings and k-matchings are
pfS e [Ty | M L= (g 2(i—2) listed. It can be observed that when edges in the
partitions are paired, more than one set of pairings
k_i_ - - -
Zl n—4—20—2)0\(n—4—Q2>-2)+)) can result in the same number of k-matchings, since
( j )( k—j—i ) : it creates a similar structure in the graph. For this
j=2 reason, both partitions are labelled in the Table 2.
Table 2. k-matchings of Caterpillar graph CP,,
Partitions Cases k-matchings
Q - n—k
! (n — sz)
Q,orQ — n-—
2 3 ( K )
(Q2,0Q3) - k-1 (M—2y(n—2-1
23 l=1(i)(k—i)
(Q,Q,) or (i) ey, eu, , &M k-1 (M—2—1 n—2-—2i
@Lé) e l“(n—z—ZJ ( k—i )
(i) ey, € My, ey, & M; 2y (n -3-( - 1) )(n -3 2.(i - 1))
(or) n—3-2@-1) k—i
(i) ey, & My, ey, €M,
(i) ew,r €u,_, € My k4<n—4—%i—2))(n—4—2a—zn
=2 \n—-4-2(-2) k—i
(le QZ' Q3) (I) €uyr Cup_q € Ml k-1 (n —-2-1i ) k—i—1 (In —-2- 21) (Tl —2- (Zl +]))
=t \n—2-20/\7F \j k—j—i

(l) eu1 € Ml'eun_l ¢ Ml

(or)

ey, & Mye, €My 2| B

(I) eul' eun_1 € Ml

n—4—(-2)

n—

n—3—2a—1Q &ﬂ(n—3—@U—1TU»

. (n -3 - 2(i — 1)) y

3—-(i—1) j

k—j—i
Zk4_1<n——4—j20——2))x

Jj=2 j

P <n —4—2(i - 2)) (n —4—-(2@1-2) +j)>

k—j—i

Results and Discussion

An example for finding a caterpillar graph CPg (Fig
4)1 has been illustrated below.

Determination of Spectra of CPg using results
obtained in algebraic Properties of CP,,

uwy 'y Wy wy

Figure 4. Caterpillar graph (CPg)**

By Theorem 5, the maximum matching |[M| = 4.

Let us find all k-matching for CPg where k < 4.
Heren = 6.

1) If k= 1.The total number of edges E(G) =
(3n —5) = 13.

2) If k= 2. By using Theorem 4, 2- matchings
_ 9n?-45n+54 _
= —— = 54

2
3) If k = 3. All the 3-matchings of Caterpillar graph
CPg is given in Table 3.
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Table 3. 3-matchings of Caterpillar graph CPg

Partitions 3- matchings Number of 3-matchings
Q1 (6 ) 1
Q2 (3 ) 4
Qs (6 ; 2) 2
(Q1,Q2) Case (i) YL (;} l) ( ) 3
Case (ii) 257, ( gl(l _1)1 )) (g - lZ(i - 1)) 10
Case (iii) Y2, ( zo—zﬁ ;:30‘2) 2
(Q1,Q3) Case (i) YL ( l) ( ) 3
Case (i) 252, ( 20—D> ngo—n 10
Case (iii) 212= ( gl(l )) (; : 12(1 B 2)) g
(Q2,Q3) 2 . 24
” > (D)
(01, Q2 Q) ~ Case (i) 6
4—j \(4—2(0+]j
v (5 21)(2, ; (4_12j)(3_j(_li 1)))
Case(ii) 12
3-2(i—1))
3-(i-1) (' )X
2 E“QLQ%—D)Zﬁlé—@U—D+D)
3—i—j /
Case (iii) 0
(o G252 (2 G2 )
Total number of 3- matchings 81

4) If k = 4. All the 4-matchings of Caterpillar graph CPg is given in Table 4.

Table 4. 4-matchings of Caterpillar graph CPg

Partitions 4-matchings Number of 3-matchings
6
. L :
2 - 1
° Ce)
6—2 1
Qs ( . )
(Q1,Q2) Case (i) 2 <4 0
- 1 (3-0—=-1 \(3-23-1 2
Case (ii) 2X; (3 —2(i — 1)) ( 4 _l i ))
ey (2—(—2) \(2—2(i—2 1
Case (iii) 2i-, (2 —2(i - 2)) ( 4(1 i ))
(Q1,Q3) Case (i) 2 <4 0
g1 (30 =1) \3-2(3-1) 2
Case (ii) Xi—q (3 —2(i- 1))( 4 _l ; )
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Case (iii) Y2, (; gl(l _2)2)> 72477 1
Q2 05) i a
(Q1,Q2,Q3) Case (i) X1, ( l) <Z] 1 <4 2]> (4 g E(Jl i_{))) ’
| 3-2(-1)), \ 12
Case(ii) 2| Tk, (3 _ g(l-__l)l)> Zj- (3 N (ZZi - 1)>+ /|
ey
Case (iii) ( 21 (; : gi(i__l)l)) <Z?=1 (,) (2 B (24(1__1 2_)]+])))> 2
Total number of 4- matchings 36

Thus, all k-matchings of Caterpillar graph CPg is
calculated. From the above list of computations and
by using Lemma 1, the following spectral parameters
of C P, are found.

P(A; ) =AY —13112 +
54210 — 8118 + 361°.

P(A;1) =2°(1-2) A+
2)(A3 =322+ 3)(23 + 312 - 3).

Sp(CPg) =

{+2.531®, +2M), +1.3473M, +0.8794W), 09},

Similarly, the following characteristic polynomials
of Caterpillar graph CPB,, 3 < n < 10 are derived.

Ifn=3 P(4; 1) =21>—423.
Ifn=4 P(4; 1) =28 —72°+92%
If n=5 P(4; 1) =21 —102°+ 2717 — 182°.

If n=6 P(4; 1) =AY — 13112 + 5410 —

8148 + 36.1°.

If n=7 P(4; A) =AY — 1615 + 9013 —
2161 + 21622 — 7217.

If n=8 P(4; 1) =2%%—192'8 4+ 135216 —
4500 + 729212 — 540110 4+ 14428.

Ifn=9 P(4; 1) =2%3—-222%1+189118 —
810117 + 1845115 — 2214213 + 1296111 —
2882°.

If n =10 P(4; 1) = A26 — 25124 4 252422 —
1323120 + 3915118 — 6633116 + 6264114

—302411% + 576710,

By solving the above polynomials and arranging the
eigenvalues along with its algebraic multiplicities
the following spectrum of CP,, ,3 <n < 10 has
been obtained.

Sp(CP3) = {2,003},
Sp(CP,) = {+2.3028W, +£1.3028W, 0™},
Sp(CPs) = {£2.4495M, +1.7321W, £1M o)},

Sp(CPg) =
{£2.531M, +2M +1.3473W, +0.8794W), 0O},

+1.3663W, +1(M +0.7948M o®

Sp(CPy) =
{i2.6404(1), +2.38100, 421 4157351
+1.1931W, +0.92461), +0.7775D, 0

Sp(CPyp) =

+2.6574W, +2.4439M, +2.1227M),
+1.7451M,+1.3769W, +1.0782D,

The spectral parameters calculated from the above

result are listed in the following Table 5.

Sp(CPy) =
{12.5832(1),12.1753(1), +1.6273W
+1.1260, 4+0.8241D, 07

Sp(CPg) =
{i2.6170(1>,iz.2954(1), +1.8396M

+0.8767D + 0.76651), 0(10)
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Table 5. Spectral parameters of CP,,

cp, Spectral Second largest Spectral gap Graph energy Eigenvalue-
radius eigenvalues based entropy
CPs 2 0 2 4 0.3010
CP, 2.3028 1.3028 1 7.2111 0.5851
CPy 2.4495 1.7321 0.7174 10.3631 0.7518
CP, 2531 2 0.531 13.5175 0.8721
cp; 2.5832 2.1753 0.4079 16.6718 0.9662
CPg 2.6170 2.2954 0.3216 19.8216 1.0436
Cp, 2.6404 2.3810 0.2594 22.9804 1.1092
CPio 2.6574 2.4439 0.2135 26.1347 1.1662
CPy; 2.6701 2.4915 0.1786 29.2890 1.2166
CP;, 2.6798 2.5282 0.1516 32.4433 1.2617
CPi;5 2.6874 2.5572 0.1302 35.5976 1.3026
CPy, 2.6934 2.5805 0.1129 38.7519 1.3400
CP;s 2.6983 2.5994 0.0989 41.9026 1.3744
CPig 2.7024 2.6151 0.0873 45.0605 1.4063
CP,, 2.7057 2.6281 0.0776 48.2148 1.4360
CPig 2.7085 2.6391 0.0694 51.3691 1.4638
CPy 2.7109 2.6484 0.0625 54.5234 1.4899
CP,, 2.7129 2.6564 0.0565 57.6777 1.5145
CPy, 2.7147 2.6633 0.0514 60.8302 1.5379
CP,, 2.7168 2.6693 0.0475 63.9863 1.5600
CP,, 2.7176 2.6745 0.0431 67.1406 1.5810
CP,, 2.7181 2.6792 0.0389 70.2949 1.6011
CP,g 2.7198 2.6833 0.0365 73.4492 1.6203
CPyq 2.7207 2.6869 0.0338 76.6035 1.6387
CP,, 2.7215 2.6901 0.0314 79.7578 1.6563
CP,g 2.7222 2.6930 0.0292 82.9121 1.6733
CP,q 2.7229 2.6957 0.0272 86.0663 1.6896
CPs, 2.7235 2.6980 0.0255 89.2206 1.7053
CP;, 2.7240 2.7002 0.0238 92.3749 1.7205
CP;, 2.7245 2.7021 0.0224 95.5292 1.7352
CPy, 2.7250 2.7039 0.0211 98.6835 1.7493
CPs, 2.7254 2.7055 0.0199 101.8378 1.7631
CPye 2.7258 2.7070 0.0188 104.9921 1.7764

From the above parameters the following graphs (Fig
5) have been obtained using MATLAB to have a
comparative view among the results obtained.
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Figure 5. Graphical representation of spectral parameters in Table 3

Observations
1. For any positive integer n > 3, CP, has

eigenvalue zero with algebraic multiplicity

n, whereas other

eigenvalues are simple.

3. Since the maximum degree of the graph is 4
the spectral radius p(CPB,) < 4.

4. Whenn =0 (mod 3), 2 is an eigenvalue
of C B, with multiplicity 1.

N

Conclusion

This study determines the spectral
parameters and graph entropies of special caterpillar
graphs that occur in Chemistry and their graph
families. The results were represented graphically for

5. Whenn =2 (mod 3), 1 occurs as an
eigenvalue of CPB,.

6. The spectral radius and the second largest
eigenvalue converges between 2.5 to 3 and
spectral gap
converges to zero.

7. The maximum spectral gap of caterpillar
graph is atmost 2.

quick and easy analysis. This research enhances our
understanding of the spectral characteristics and
graph entropies for the aforementioned graph
families.
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