Algebraic Coincidence Periods Of Self - Maps Of A Rational Exterior Space Of Rank 2

Ban Jaffar AL-Ta'iy*

Date of acceptance 28/5/2009

Abstract

: Let f and g be a self - maps of a rational exterior space. A natural number m is called a minimal coincidence period of maps f and g if f^{m} and g^{m} have a coincidence point which is not coincidence by any earlier iterates. This paper presents a complete description of the set of algebraic coincidence periods for self - maps of a rational exterior space which has rank 2 .

Key word: coincidence point, lefschets, Coincidence number.

Introduction:

Let f and g be a self maps of a rational exterior space X

A point $x \in X$ is called a coincidence point for f and g iff $f(x)$ $=g(x)$ [1]. If f^{m} and g^{m} have a coincidence point which is not coincidence by any earlier iterates then a natural number m is called a minimal coincidence period of maps f and g. The integers $i_{m}(f, g)=$ $\sum_{k / m} \mu(m / k) L_{f^{k}, g^{k}}$, where $L_{f^{k}, g^{k}}$ denote the Lefschetz coincidence number of f^{k} and g^{k} and μ is the classical Mobius function are one of the important device to study minimal coincidence points .If $i_{m}(f, g) \neq 0$, then we say that m is an algebraic coincidence periods of f and $g \quad[2,3]$. Which provides information about the existence of minimal coincidence periods that less than or equal to m .
This paper provide a full characterization of algebraic coincidence periods in the case when homology spaces of X are small dimensional, namely when X is of rank 2. The work is based on [4, 5, 6], where the description of the so - called " homotopical minimal coincidence periods " of self maps
dimensional tours are given using Nielsen numbers . We follow the algebraically framework of [6] , the final description is similar to the one obtained in [4] .The differences results from the fact that the coefficients $i_{m}(f, g)$ are a sum of Lefschetz coincidence numbers , which unlike Nielsen numbers, do not have to be positive .

Rational exterior spaces :

For a given space X and an integer $r \geq 0$ let $H^{r}(X ; \mathbb{Q})$ be the r th singular cohomology space with rational coefficients. Let $H^{*}(X ; \mathbb{Q})=$ $\oplus_{r=0}^{S} H^{r}(X ; \mathbb{Q})$ be the cohomology algebra with multiplication given by the cup product .An element $x \in$ $H^{r}(X ; \mathbb{Q})$ is decomposable if there are pairs $\left(x_{i}, y_{i}\right) \in H^{p_{i}}(X ; \mathbb{Q}) \times H^{q_{i}}(X ; \mathbb{Q})$ with $p_{i}, q_{i}>0, p_{i}+q_{i}=r>0$ so that $x=\sum x_{i} \cup y_{i} . \quad$ Let $A^{r}(X)=$ $H^{r}(X) / D^{r}(X)$, where D^{r} is the linear subspace of all decomposable elements (cf. [5]).

Definition (1):-

By $A(f, g)$ we denote the induced

$\oplus_{r=0}^{S} A^{r}(X)$. Zeros of the characteristic polynomial of $A(f, g)$ on $A(X)$ will be called quotient eigenvalues of f and g. By rank X we will denote the dimension of $A(X)$ over \mathbb{Q}.

Definition(2) :-

A connected topological space X is called a rational exterior space if there are some homogeneous elements $\quad x_{i} \in H^{\text {odd }}(X ; \mathbb{Q}), i=1, \ldots, k$, such that the inclusions $x_{i} \hookrightarrow H^{*}(X ; \mathbb{Q})$ give rise to a ring isomorphism $\wedge_{Q}\left(x_{1}, \ldots, x_{k}\right)=H^{*}(X ; \mathbb{Q})$.
Finite H - spaces including all finite dimensional Lie groups and some real Stiefel manifolds are the most common examples of rational exterior spaces . The two dimensional tours T^{2}, a product of two n - dimensional sphere $S^{n} \times S^{n}$, and the Unitary group $U(2)$ are examples of rational exterior spaces of rank 2 .
The Lefschetz coincidence number of self - maps of a rational exterior space can be expressed in terms of quotient eigenvalues.
Theorem (3) (cf. $[7,8]:-$
Let f and g be a self -maps of a rational exterior space , and let $\lambda_{1}, \ldots, \lambda_{k}$ be the quotient eigenvalues of f and g. Let A denote the matrix of $A(f, g)$. Then $L_{f^{m}, g^{m}}=\operatorname{det}\left(I-A^{m}\right)=\prod_{i=1}^{k}\left(1-\lambda_{i}^{m}\right)$

Remark (4) :-

Abases of the space $A(X)$ may be chosen in such a way that the matrix A is integral (cf. [5]).

Results and Dissection:-

Let μ denote the Mobius function defined by the following: μ (1) $=1, \mu$ $(k)=(-1)^{r}$ if k is a product of r different primes and $\mu(k)=0$
otherwise . Let APer $(f, g)=\{$ $\left.m \in \mathbb{N}: i_{m}(f, g) \neq 0 \quad\right\} \quad$,where $i_{m}(f, g)=\sum_{k \mid m}(m \mid k) L_{f^{k} \cdot g^{k}}$. In this paper we will study the form of APer (f, g) for $f, g: X \rightarrow X$ and X a rational exterior space of rank 2 . We will assume that X is not simple which means that there exists $r \geq 1$ such that $\operatorname{dim} A^{r}=2$.
By theorem (3) we see that A is a 3×3 matrix and that the Lefschetz coincidence numbers $L_{f}{ }^{m} \cdot g^{m}$ are expressed by its three quotient eigenvalues (in short we will call then eigenvalues) : $\lambda_{1}, \lambda_{2}, \lambda_{3}$: $L_{f}^{m}, g^{m}=\left(1-\lambda_{1}^{m}\right)\left(1-\lambda_{2}^{m}\right)\left(1-\lambda_{3}^{m}\right)$.
The characteristic polynomial of A has integer coefficients by remark (4) and is given by the formula : $W_{A}(x)=x^{3}-t x^{2}+s x-d$, where $t=\lambda_{1}+\lambda_{2}+\lambda_{3}$ is the trace of A, $s=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}$ and $d=\lambda_{1} \lambda_{2} \lambda_{3}$ is its determinant .The characteristic of the set $\operatorname{APer}(f, g)$ will be given in terms of these three parameters : t, s and d. Let us define the set $R=\{$ (1,1,0),(0,0,0),(0,1,0),(-1,0,0),(-$1,1,0),(-2,1,0),(-3,3,-1)\}$.

Table (1) : The set of algebraic coincidence periods Aper (f, g) for the set R.

No.	$(\mathbf{t}, \mathbf{s}, \mathbf{d})$	Aper $(\boldsymbol{f}, \boldsymbol{g})$
1.	$(1,1,0)$	$\{1,3\}$
2.	$(0,0,0)$	$\{1\}$
3.	$(0,1,0)$	$\{1,2,4\}$
4.	$(-1,0,0)$	$\{1,2\}$
5.	$(-1,1,0)$	$\{1,2,3,6\}$
6.	$(-2,1,0)$	$\{1,2\}$
7.	$(-3,3,-1)$	$\{1,2\}$

Theorem (5) :-

Let f and g be a self maps of a rational exterior space X of rank 2 , which is not simple .Then Aper (f, g) is one of the three mutually exclusive types :-
(1) Aper (f, g) is empty if and only if 1 is an eigenvalue of A, where is equivalent to $t+d-s=0$.
(2) Aper (f, g) is non empty but finite if and only if all the eigenvalues of A are either zero or roots of unity not equal to 1 , which is equivalent to $(t, s$, d) $\boldsymbol{\epsilon} R$. The Algebraic coincidence periods for the set R are given in Table (1).
(3) Aper (f, g) is infinite . Assume that (t, s, d) is not covered by the types (1) and (2) then,
(1) for $(t, s, d)=(-2,2,0), \operatorname{Aper}(f, g$ $)=\mathbb{N} \backslash\{2,3\}$.
(2) for $(t, s, d)=(-1,2,0), \operatorname{Aper}(f, g$) $=\mathbb{N} \backslash\{3\}$.
(3) for $(t, s, d)=(0,2,0)$, Aper $(f, g$) $=\mathbb{N} \backslash\{4\}$.
(4) for $t+s=-d$ and ($-2,2,0$), Aper ($f, g)=\mathbb{N} \backslash\{2\}$.
(5) for $t+d+s=-1$, Aper (f, g) $=\mathbb{N} \backslash\{n \in \mathbb{N}: n \equiv 0(\bmod 8)\}$.
(6) if (t, s, d) is not covered by any of the cases $1-5$, then Aper (f, g) $=\mathbb{N}$.

The rest of the paper consists of the proof of theorem (5) and the organized in the following way : in the first part we describe the conditions equivalent to the fact that $m \in\{1,2,3\}$ is not an algebraic coincidence periods. In the second part we analyze the situation when $m>3$ and non of eigenvalues is a root of unity. This is done by considering two cases : we will study the behavior of $i_{m}(f, g)$ separately for real and complex eigenvalues . In the third stage we consider the case
when $m>3$ and one of eigenvalues is a root of unity.
The results in this paper is general and similar to [9] when g equal to the identity map and A is a 2×2 matrix and the Lefschetz numbers expressed by its two eigenvalues: $L_{f^{m} g^{m}}=\left(1-\lambda_{1}^{m}\right)\left(1-\lambda_{2}^{m}\right)$

Algebraic Coincidence Periods

 in $\{1,2,3\}$:-(A) Conditions for $1 \notin \operatorname{APer}(f, g)$. We have $i_{1}(\mathrm{fg}, \mathrm{g})=\mathrm{L}_{f_{g}}=\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)\left(1-\lambda_{3}\right)=0$. This may happen if and only if one of the eigenvalues is equal to 1 that is $t+$ $d-s=1$.
(B) Conditions for $2 \notin \operatorname{APer}(f, g)$. We have $i_{2}(\mathrm{f}, \mathrm{g})=\mathrm{L}_{\mathrm{f}_{\mathrm{p}, \mathrm{g}^{\mathrm{z}}}}-\mathrm{L}_{\mathrm{f}, \mathrm{g}}=0$, which is equivalent to :

$$
\left(1-\lambda_{1}^{2}\right)\left(1-\lambda_{2}^{2}\right)\left(1-\lambda_{3}^{2}\right)-\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)\left(1-\lambda_{3}\right)=0 .
$$

$\underset{\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)\left(1-\lambda_{3}\right)\left[\left(1+\lambda_{1}\right)\left(1+\lambda_{2}\right)\left(1+\lambda_{3}\right)-1\right]=0}{\text { Givis: }}$
, so again $t+d-s=1$ or : $\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}+\lambda_{1} \lambda_{2} \lambda_{3}=0$.
(1)
which gives $t+d+s=0$. This conditions for $2 \notin \operatorname{APer}(f, g)$ are : $t+d-s=1$ or $t+s=-d$.
(C) Conditions for $3 \notin \operatorname{APer}(f, g)$
. We have $i_{3}(\mathrm{f}, \mathrm{g})=\mathrm{L}_{\mathrm{f}_{\mathrm{s}}, \mathrm{g}^{\mathrm{s}}}-\mathrm{L}_{\mathrm{f}, \mathrm{g}}=0$
Which is equivalent to :

$$
\left(1-\lambda_{1}^{3}\right)\left(1-\lambda_{2}^{3}\right)\left(1-\lambda_{3}^{3}\right)-\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)\left(1-\lambda_{3}\right)=0
$$

. We obtain the following equation : $\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)\left(1-\lambda_{3}\right)\left[\left(1+\lambda_{1}+\lambda_{1}^{2}\right)\left(1+\lambda_{2}+\lambda_{2}^{2}\right)\left(1+\lambda_{3}+\lambda_{3}^{2}\right)-1\right]=0$
, Again $t+d-s=1$
if one of the eigenvalues is equal to 1 , otherwise
$\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}+\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{1}^{2} \lambda_{2}+\lambda_{1}^{2} \lambda_{3}+\lambda_{2}^{2} \lambda_{1}+\lambda_{2}^{2} \lambda_{3}+\lambda_{3}^{2} \lambda_{1}+\lambda_{3}^{2} \lambda_{2}+$ $\lambda_{1} \lambda_{2} \lambda_{3}+\lambda_{1}^{2} \lambda_{2}^{2}+\lambda_{1}^{2} \lambda_{3}^{2}+\lambda_{2}^{2} \lambda_{3}^{2}+\lambda_{1}^{2} \lambda_{2} \lambda_{3}+\lambda_{2}^{2} \lambda_{1} \lambda_{3}+\lambda_{3}^{2} \lambda_{1} \lambda_{2}+\lambda_{1}^{2} \lambda_{2}^{2} \lambda_{3}+\lambda_{1}^{2} \lambda_{3}^{2} \lambda_{2}+\lambda_{3}^{2} \lambda_{2}^{2} \lambda_{1}+$ $\left(\lambda_{1} \lambda_{2} \lambda_{3}\right)^{2}=0$.

$$
\begin{equation*}
t+t^{2}-s+t s-2 d+s^{2}-d t+s d+d^{2}=0 . \tag{3}
\end{equation*}
$$

In parameters $t, \mathrm{~s}$ and d this gives:

Which leads to the following alternatives .
If $t=0$ and $d=0$ then $s \in\{0,1\}$, which corresponds to characteristic polynomials $x^{3}=0$
$\left(\lambda_{1}=\lambda_{2}=\lambda_{3}=0\right)$ and $x^{3}+x=0($ $\left.\lambda_{1}=0, \lambda_{2}, \lambda_{3} \varepsilon\{i,-i\}\right)$.
If $t=-1$ and $d=0$ then $s \in\{0,2\}$, which corresponds to characteristic polynomials
$x^{3}+x^{2}=0\left(\lambda_{1}=\lambda_{2}=0, \lambda_{3}=-1\right)$
and $\quad x^{3}+x^{2}+2 x=0$
$\lambda_{1}=0, \lambda_{2}, \lambda_{3} \varepsilon\left\{-\frac{1}{2}+\frac{\sqrt{7}}{2} i,-\frac{1}{2}-\frac{\sqrt{7}}{2} i\right\}$).

If $t=-2$ and $d=0$ then $s \in\{1,2\}$, which corresponds to characteristic polynomials $x^{3}+2 x^{2}+x=0\left(\lambda_{1}=0, \lambda_{2}, \lambda_{3} \varepsilon\{-1\}\right)$ and $\quad x^{3}+2 x^{2}+2 x=0 \quad$ ($\left.\lambda_{1}=0, \lambda_{2}, \lambda_{3} \varepsilon\{-1+i,-1-i\}\right)$.
The conditions for $3 \notin \operatorname{APer}(f, g)$ are : $t+d-s=1$ or $(t, s, d) \varepsilon\{$ $(0,0,0),(0,0,1),(-1,0,0),(-1,0,2),(-$ $2,0,1),(-2,0,2)\}$.
Algebraic coincidence periods
in the set $m>3$ in the case when none of the three eigenvalues is a root of unity :-

Let for the rest of the paper $\left|\lambda_{1}\right|=\max \left\{\left|\lambda_{1}\right|,\left|\lambda_{2}\right|,\left|\lambda_{3}\right|\right\}$.
We will need the Lemma. following
Lemma (6) : -
If for some \boldsymbol{m} and each $\boldsymbol{n} \mid \boldsymbol{m}, \boldsymbol{n} \neq \boldsymbol{m}$ we have
$\left|\mathbf{L}_{f^{m}, g^{m}} / \mathbf{L}_{f^{n} \cdot g^{n}}\right|>2 \sqrt{m}-\mathbf{1}$, then m is an algebraic coincidence period.
Proof :-
Let $\left|L_{f^{s}, g^{s}}\right|=\max \left\{\left|L_{f^{I}, g^{l}}\right|: l \mid m, l \neq m\right\}$.
We have

$\geq\left|L_{f}^{m} \cdot g^{m}\right|-(2 \sqrt{m}-1)\left|L_{f^{s}, g^{s}}\right|$.
The last inequality is a consequence of the fact that the number of different divisors of m is
not greater than $2 \sqrt{m}$ (cf. [10]), by the assumption we get $\left|i_{m}(f, g)\right|>0$, which is the desired assertion. -

Now, using algebraic arguments of [6] in a case of three eigenvalues, we find the bound for the ratio $\left|\mathrm{L}_{f^{m}}, g^{m} / \mathrm{L}_{f^{n}}, g^{n}\right|$. We have

(5)

Let us consider two cases.
Case 1: λ_{1} real and λ_{2}, λ_{3} are complex conjugates then $\left|\lambda_{2}\right|=\left|\lambda_{3}\right|$. Notice that if $\lambda_{1} \neq 0$ then $\left|\lambda_{2}\right|=\frac{\sqrt{d}}{\sqrt{\lambda_{1}}}$, so if we exclude the pairs $(t, s, d) \in$ $\{(1,1,1), \quad(0,0,1),(2,2,1)\} \quad$ which correspond to some roots of unity, we obtain: $\left|\lambda_{1}\right|>1.4$.
Let $n \| m$, for Lefschetz coincidence numbers in this case we obtain .
$\frac{\left|L_{L_{m} m} m^{m}\right|}{\left|L_{f_{g_{g}} m^{n}}\right|} \geq\left(\left|\lambda_{1}\right|^{m / 2}-1\right)\left(\left|\lambda_{2}\right|^{m / 2}-1\right)\left(\left|\lambda_{3}\right|^{m / 2}-1\right) \geq\left(\left|\lambda_{1}\right|^{m / 2}-1\right)^{3}$.
(6)

Case 2: λ_{1}, λ_{2} and λ_{3} are real. If $(\mathrm{t}, \mathrm{s}, \mathrm{d})=(0,0,0)$ then we immediately have $\operatorname{APer}(f, g)=\{1\}$.
cases $(\mathrm{t}, \mathrm{s}, \mathrm{d}) \in\{(-1,0,0),(1,0,0)$, $(2,1,0),(-2,1,0),(3,3,1),(1,-1,1),(-1,-$ $1,1),(-3,3,1)\}$ give some roots of unity . In the rest of the cases: $\left|\lambda_{1}\right| \geq 1.4$.
In order to obtain the estimation for Lefschetz coincidence numbers we use the following inequality for the module of eigenvalues (cf. [6 , Lemma 5.2]).

Lemma (7):-

Let $\lambda_{i} \neq \pm 1, i=1,2,3$, then

$$
\begin{equation*}
\left|1-\left|\lambda_{1}\right|\right| \geq \frac{1}{\left(1+\left|\lambda_{2}\right|\right)\left(1+\left|\lambda_{1}\right|\right)} \tag{7}
\end{equation*}
$$

Proof :-

$\left|\Pi_{i=1}^{3}\left(\pm 1-\lambda_{i}\right)\right| \geq\left|W_{A}(\pm 1)\right| \geq 1$,
because the three eigenvalues are different from ± 1.
Hence
$\left|1 \pm \lambda_{1}\right| \geq\left|1 \pm \lambda_{2}\right|^{-1}\left|1 \pm \lambda_{3}\right|^{-1} \geq\left(1+\left|\lambda_{2}\right|\right)^{-1}\left(1+\left|\lambda_{3}\right|\right)^{-1}$,which gives the needed inequality.

We have by Lemma (7) , for $\lambda_{2}, \lambda_{3} \neq \pm 1, i=2,3$ we have $\left|\lambda_{i}\right|-1 \geq\left(\left|\lambda_{1}\right|+1\right)^{-2}$ for $\left|\lambda_{i}\right|>1$ and $1-\left|\lambda_{i}\right| \geq\left(\left|\lambda_{1}\right|+1\right)^{-2}$ for $\left|\lambda_{i}\right|<1$.
Let $h(x)=\left(x^{m}-1\right) /\left(x^{n}+1\right)$ notice that $h(x)$ in an increasing and $-h(x)$
is decreasing function for $m>n>0$ and $x>0$.
Taking into account the two facts mentioned above we obtain for $i=2$, 3 :

As $n \mid m \quad$ we get
$\frac{\left|\mathrm{L}_{f^{m}} g^{m}\right|}{\left|\mathrm{L}_{f^{n}} g^{n}\right|}=\prod_{i=1}^{3} \frac{\| 1-\lambda_{i}^{m} \mid}{\left|1-\lambda_{i}^{m}\right|}$
$\frac{\left|\Lambda_{f m} g^{m}\right|}{\left|\Lambda_{f^{m}} g^{n}\right|} \geq\left(\left|\lambda_{1}\right|^{m / 2}-1\right) \min \left\{\left\{\left[1+\left(\left|\lambda_{1}\right|+1\right)^{-2}\right]^{\frac{m}{2}}-1\right\}^{2}, \frac{1}{4}\left\{1-\left[1-\left(\left|\lambda_{1}\right|+1\right)^{-2}\right]^{m}\right\}^{2}\right\}$.

Let
$(f, g)_{C}\left(\left|\lambda_{1}\right|, m\right),(f, g)_{R}\left(\left|\lambda_{1}\right|, m\right)$ be the functions equal to the right - hand side of
the formulas (6) and (9) , respectively .
We define
functions

$$
\begin{aligned}
& (f, g)_{c}\left(\left|\lambda_{1}\right|, m\right)=(f, g)_{c}\left(\left|\lambda_{1}\right|, m\right) \\
& -(2 \sqrt{m}-1)
\end{aligned}
$$

and

$$
(f, g)_{R}\left(\left|\lambda_{1}\right|, m\right)={\overline{(f, g)_{R}}}_{R}\left(\left|\lambda_{1}\right|, m\right)-(2 \sqrt{m}-1)
$$

. Notice that the
inequalities:

$$
(f, g)_{c}\left(\left|\lambda_{1}\right|, m\right)>0,
$$

(10)

$$
\begin{equation*}
(f, g)_{R}\left(\left|\lambda_{1}\right|, m\right)>0, \tag{11}
\end{equation*}
$$

imply that $\left|\mathrm{L}_{f^{m}}, g^{m}\right| /\left|\mathrm{L}_{f^{n}} \cdot g^{n}\right| \quad>$ $2 \sqrt{m}-1$ for $n \| m$.
It is not difficult to verify the following statement by calculation and estimation of appropriate partial derivatives
Remark (8) :-
$(f, g)_{C}(., m)$ and $(f, g)_{C}\left(\left|\lambda_{1}\right|,.\right)$ are increasing functions for $\left|\lambda_{1}\right|>1.4, m \geq 4$.
$(f, g)_{R}(., m)$ and $(f, g)_{R}\left(\left|\lambda_{1}\right|,.\right)$ are increasing functions for $\left|\lambda_{1}\right|>1.4, m \geq 6$ and for $\left|\lambda_{1}\right|>3, m \geq 4$.
If one of the inequalities (10), (11) is satisfied for given values $\left|\lambda_{1}^{0}\right|$ and m_{0}, then by
Remark (8) , it is valid for each $\left|\lambda_{1}\right|>\left|\lambda_{1}^{0}\right| \quad$ and $\mathrm{m}>m_{0}$ and by lemma (6) all such $\mathrm{m}>m_{0}$ are algebraic coincidence periods.

Algebraic coincidence periods in the set $m>3$ in the case one of the three eigenvalues is a root of Unity :-

If the three eigenvalues are real , then one of them is equal ± 1. If two of the three eigenvalues are complex conjugates , then $\lambda_{2} \lambda_{3}=\lambda_{2} \bar{\lambda}_{2}=1$ and by Lemma $5.1 \quad$ in $[6], \quad \lambda_{2}, \lambda_{3} \in$ $\{ \pm 1, \pm i,(1 / 2) \pm(\sqrt{3} / 2) i,-(1 / 2) \pm(\sqrt{3} / 2) i\}$.
($\mathbf{1}$) 1 is one of eigenvalues $(t+d-s$ $=1$).Then $\mathrm{L}_{f} \mathrm{~m}_{\mathrm{m}} g^{m}=0$ for all m and consequently $i_{m}(f, g)=0$
for all m. Thus $\operatorname{APer}(f, g)=\varphi$.
(2) - 1 is one of eigenvalues $(t+d+s$ $=-1$). We have to consider the subcases.
(2a) If $t \in\{-1,0,1\}, s=-1$ then $d \in\{1,0,-1\}$, so we are in case 1 .
(2b) If $t=-1, s=0$ then $d=0$, so $W_{A}(x)=x^{3}+x^{2}$ and the second and third eigenvalues
are equal to 0 . $\mathrm{L}_{f^{m}, g^{m}}=\left(1-(-1)^{m}\right)$
thus $\mathrm{L}_{f}{ }^{m}, g^{m}=0$ for m even and $\mathrm{L}_{f^{m}, g^{m}}=2$
for m odd. We get :

$$
\begin{aligned}
& i_{m}(f, g)=\sum_{k: 2|k| m^{\prime} k}(m / k) L_{f^{k} g^{k}}+\sum_{k: 2 k \mid m} \mu(m / k) L_{f^{k}} g^{k}= \\
& 2 \sum_{k: 2 r k \mid m} \mu(m / k) . \quad i_{1}(f, g)=2, \\
& i_{2}(f, g)=L_{f^{2}, g^{2}}-L_{f, g}=0-2=-2, \\
& i_{m}(f, g)=0
\end{aligned}
$$

for $m \geq 3$. As consequence : APer $(f, g)=\{1,2\}$.
(2c) If $t=-2, s=1$ then $d=0$, so $W_{A}(x)=x^{3}+2 x^{2}+x$ and the second and third eigenvalues are equal to 0 and -1 respectively
$\mathrm{L}_{f}{ }^{m} \cdot g^{m}=\left(1-(-1)^{m}\right)^{2}$, thus
$\mathrm{L}_{f}{ }^{m} \cdot g^{m}=0 \quad$ for $\quad m$ even and $\mathrm{L}_{f}{ }^{m}, g^{m}=4$ for m odd . We check in the same way as above
that $i_{1}(f, g)=L_{f, g}=4 \quad, i_{2}(f, g)$ $=L_{f^{2}, g^{n}}-L_{f, g}=-4 \quad, \quad i_{m}(f, g)=0$ for $m \geq 3$, so
$\operatorname{APer}(f, g)=\{1,2\}$.
(2d) If $t=-3, s=3$ then $d=-1$, so $W_{A}(x)=x^{3}+3 x^{2}+3 x+1$ and the second third
eigenvalues are equal to -1 . $\mathrm{L}_{f^{m}, g^{m}}=\left(1-(-1)^{m}\right)^{3}$
thus $\mathrm{L}_{f}{ }^{m}, g^{m}=0$ for m even
and $\mathrm{L}_{f}{ }^{m}, g^{m}=8$ for m odd. We have
$i_{1}(f, g)=L_{f, g}=8, \quad i_{2}(f, g)=-8$,$i_{m}(f, g)=0$ for
$m \geq 3$, so $\operatorname{APer}(f, g)=\{1,2\}$.
(2e)If $t \in \mathbb{Z} /\{-3,-2,-1,0,1\}$,
$s \in \mathbb{Z} /\{-1,0,1,3\}$, then for each m :
$\left|\mathrm{L}_{f} \mathrm{~m}_{\mathrm{m}} \cdot \mathrm{g}^{m}\right|=\left|1-(-1)^{m}\right|\left|1-\lambda_{2}^{m}\right|\left|1-\lambda_{3}^{m}\right|$
Notice that in the case under
consideration $\{1,2,3\} \subset \operatorname{APer}(f, g)$
, which follows from section
As $\quad|d|=\left|\lambda_{1}\right|\left|\lambda_{2}\right|\left|\lambda_{3}\right|$ and -1 is one of eigenvalues we obtain for k odd : $\left|\mathrm{L}_{f^{k}, g^{k}}\right|=$
$2\left|\lambda_{2}^{k} \lambda_{3}^{k}+\lambda_{2}^{k}+\lambda_{3}^{k}-1\right| \geq 2\left|\lambda_{2}^{k} \lambda_{3}^{k}-1\right| \geq 2\left(\left|\lambda_{2}^{k} \lambda_{3}^{k}\right|-1\right) \geq 2\left(|d|^{k}-1\right)$,
$\left|\mathrm{L}_{f^{k}, g^{k}}\right|=$
$2\left|\lambda_{2}^{k} \lambda_{3}^{k}+\lambda_{2}^{k}+\lambda_{3}^{k}-1\right| \leq 2\left(\left|\lambda_{2}^{k} \lambda_{3}^{k}\right|-\left|\lambda_{2}^{k}\right|-\left|\lambda_{3}^{k}\right|+1\right) \leq 2\left(\left|\lambda_{2}^{k} \lambda_{3}^{k}\right|+1\right)=2\left(|d|^{k}+1\right)$.

Thus, for m odd, estimating in the same way in Lemma 6 . We get
$i_{m}(f, g)=\sum_{\| \mid m} \mu(m / l) L_{f} l_{l^{l}} \geq\left|L_{f^{m} g^{m} \mid}\right|-\sum_{i|m,| m m} \mu(m / l) L_{f_{f}^{k} g^{k}}$
$i_{m}(f, g) \geq 2\left(|d|^{m}-1\right)-(2 \sqrt{m}-1) 2\left(|d|^{\frac{m}{m}}+1\right)$
... (12)
The right - hand side of the above formula is greater than zero for $|d| \geq 2, m>3$ so all $\mathrm{m}>3$ are algebraic coincidence periods.

If $m>3$ is even, then $m=2^{n} q$, where q is odd. By the fact that $\mathrm{L}_{f}{ }^{r}, g^{r}=0$ if $2 \| r$,we get $\mathrm{L}_{f^{r^{i} Q}, g^{x^{i} q}}=0$ for $1 \leq i \leq n, \quad$ thus $i_{m}(f, g)=\sum_{t \mid 2^{n} q} \mu\left(2^{n} \frac{q}{l}\right) L_{f}^{l} g^{l}=\sum_{t \mid q} \mu\left(2^{n} \frac{q}{l}\right) L_{f}^{l} g^{l}$...(13)

As μ is multiplicative and $\mu\left(2^{n}\right)=-1$ for $\mathrm{n}=1$ and
$\mu\left(2^{n}\right)=0$ for $n>1$, we get
$i_{m}(f, g)= \begin{cases}-i_{q}(f, g) & \text { if } n=1, \\ 0 & \text { if } n>1 .\end{cases}$
This leads to the conclusion that even m is an algebraic coincidence periods if and only if $m=2 q$ where q is odd. Finally in the case (2e) we obtain $\operatorname{APer}(f, g)=\mathbb{N} \backslash\{n \in \mathbb{N}: n \equiv 0(\bmod 8)\}$,

Before we consider complex cases let us state the following fact (cf. [11]). Let $f_{1 *}, g_{1 *}$ generated by f_{1} and g_{1} on homology, have as its only eigenvalues $\varepsilon_{1}, \ldots, \varepsilon_{\phi(d)}$ which are the d the primitive roots of unity $(\phi(d)$ denotes the Euler function). Then the Lefschetz coincidence numbers of iteration of f_{1} and g_{1} are the sum of powers of these roots : $L_{f_{1}^{m}, g_{1}^{m}}=\sum_{i=1}^{\phi(d)} \varepsilon_{i}^{m}$, we have the formula for $i_{m}\left(f_{1}, g_{1}\right)$ is such a case :
$i_{m}\left(f_{1}, g_{1}\right)= \begin{cases}0 & \text { if } m \nmid d \\ \sum_{k / m} \mu\left(\frac{d}{k}\right) \mu\left(\frac{m}{k}\right) \frac{\phi(d)}{\phi(d / k)} & \text { if } m \mid d\end{cases}$
Let now $\lambda_{1}=0$ and λ_{2}, λ_{3} be complex conjucats eigenvalues , then
$\mathrm{L}_{f^{m}} g^{m}=1-\lambda_{2}^{m}-\lambda_{3}^{m}+\left(\lambda_{2} \lambda_{3}\right)^{m}=2-\left(\lambda_{2}^{m}+\lambda_{3}^{m}\right)$

We may rewrite formula for $\mathrm{L}_{f}{ }^{m} \cdot g^{m}$ in the following way $: \mathrm{L}_{f^{m}} \cdot g^{m}=2-\mathrm{L}_{f_{1}^{m}}, g_{1}^{m}$, where f_{1} and g_{1} are described above. Since $i_{m}(f, g)=\sum_{k / m} \mu\left(\frac{m}{k}\right) L_{f^{k} g^{k}}=\sum_{k / m} \mu\left(\frac{m}{k}\right) \cdot 2-\sum_{k / m} \mu\left(\frac{m}{k}\right) L_{p_{1}, g_{1}^{k}}$ and
$\sum_{k / m} \mu\left(\frac{m}{k}\right) 2=2$ for $m=1$ and 0 for m >1; we get
$i_{m}(f, g)= \begin{cases}2-i_{m}\left(f_{1}, g_{1}\right) & \text { if } m=1 \\ -i_{m}\left(f_{1}, g_{1}\right) & \text { if } m>1\end{cases}$
(3) $\lambda_{2}, \lambda_{3} \in\{-i, i\}(t=0, s=1$,
$d=0$) are all primitive roots of unity of degree 4 . This , applying
formula (15) and (17) , we get
$i_{1}(f, g)=2 \quad, \quad i_{2}(f, g)=2 \quad$,
$i_{3}(f, g)=0, i_{4}(f, g)=-4$ and
$i_{m}(f, g)=0$ for $m>4$. Summing it up
: Aper $(f, g)=\{1,2,4\}$.
(4) $\lambda_{2}, \lambda_{3} \in\left\{-\frac{1}{2} \pm \frac{\sqrt{7}}{2} i\right\}(\mathrm{t}=-1, \mathrm{~s}=1, \mathrm{~d}=0$) are all primitive roots of unity of degree 6 . Again by formula (15) and (17) , we calculate the values of $i_{m}(f, g)$ and get : $i_{1}(f, g)=1$,
$i_{2}(f, g)=2, i_{3}(f, g)=3 \quad i_{4}(f, g)=0$
$, i_{5}(f, g)=0 \quad, \quad i_{6}(f, g)=-6 \quad$ and
$i_{m}(f, g)=0$ for $m>6$, so $\operatorname{Aper}(f, g)$ $=\{1,2,3,6\}$.
(5) $\lambda_{2}, \lambda_{3} \in\left\{\frac{1}{2} \pm \frac{\sqrt{3}}{2} i\right\}(\mathrm{t}=1, \mathrm{~s}=1, \mathrm{~d}=$ $0)$ are all primitive roots of unity of degree 3 .By (15) and (17) we have : $i_{1}(f, g)=3 \quad, \quad i_{2}(f, g)=0$, $i_{3}(f, g)=-3, i_{m}(f, g)=0$ for $m>3$, so $\operatorname{Aper}(f, g)=\{1,3\}$.

Conclusions:-

Sometimes the structure of the set of algebraic coincidence periods is a property of the space and may be deduced from the form of its homology groups. In this paper we provide a full characterization of algebraic coincidence periods in the case when homology spaces of X are small dimensional, namely when X is of rank 2. The work is based on [4,5,6] of self maps of, respectively the two - and three dimensional tours are given using Nielsen numbers. The differences results from the fact that the coefficients $i_{m}(f, g)$ are a sum of Lefschetz coincidence numbers , which unlike Nielsen numbers, do not have to be positive.

References:

1.Benkafadar ,N. M. and Benkara Mostefa , M.C.,2005," A generalized coincidence point index "Applied General Topology , vol. 6, no. 1, pp. 87 - 100 .
2.Saveliev , P., 2001, " Lefschetz coincidence theory for maps between spaces of different dimensions ", Topology Appl. 116, no. 1, p. 137-152.
3.Saveliev , P. , 2003," Removing coincidence of maps between manifolds of different dimensions " , Topol. Methods Nonlinear Anal. 22, no. 1, p. 105-113.
4.Alseda, L., Baldwin, S., Llibre, J., Swanson ,R., and Szlenk , W. , 1995,"Minimal sets of periods for torus maps via Nielsen numbers " ,Pacific Journal of Mathematics 169 , no. 1,p. 1-32.
5.Jezierski, J.and Mazantowicz, M. , 2005, " Homotopy Methods in Topological Fixed and Periodic Point Theory ", Springer, Dordrech, .
6.Jiang, B. and Llibre, J. ,1998, " Minimal sets of periods for tours maps", Discrete and Continuous Dynamical Systems 4 , no. 2, p. 301-320.
7.Haibao , D. ,1995," The Lefschetz numbers of iterated maps " , Topology and its Applications 67 ,no. 1, p. 71-79.
8.Mukherjea , K. K. , 1974 , " A survey of coincidence theory ,Global analysis and its applications " VOLL. III (Lectures, Internat. Sem. Course, Internat. Centre Theoret. ,Phys. Triste , 1972 ,:55-64. .Internat. Atomic Energy , Vienna .
9.Grzegorz, G., 2006 ," Algebraic periods of self - maps of rational exterior space of rank 2",Fixed Point Theory and Applications,p.1-9.
10. Chandrasekharan , K. , 1968 ," Introduction to Analytic Number Theory " , Die Grundlehren der Mathematischen Wissenschaften ,vol. 148 , Springer , New York .
11. Graff, G. , 2000, " Existence of δ_{m} - periodic points for smooth maps of compact manifold " ,Hokkaido Mathematical Journal 29 , no. 1, p. 11-21.

الاوريات المتطابقة الجبرية لدوال معرفة على فضاء خارجي منطقي من الرتبة 2

\author{

* بان جعفر الطائـي*
}
**سم الرياضيات/كلية العلوم للبنات/جامعة بغاد.

$$
\begin{aligned}
& \text { الخلاصة: } \\
& \text { لتكن g g و وال من فضـاء خارجي منطقي الـى نفســه . يسـمى العدد الصـحيح m بأنـه }
\end{aligned}
$$

g لـيس لهـا نقطـة متطابقـة ل $1 \leq k \leq m$. هـا البحـث يقدم وصـ كامـل لمجموعـة
اللدوريات المنطابقة الجبرية لدو ال معرفة على فضاء خارجي منطقي من الرنبـة 2 .

