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Introduction 

Flow shop scheduling problems consist of 𝑛 identical 

jobs processed in the same order across 𝑚 machines. 

Real scheduling problems often encounter 

challenges where data cannot be accurately recorded 

or collected, particularly in unexpected 

circumstances. An example is the imprecise 

measurement of job processing times, making it 

challenging to gather precise data. In 1954, Johnson 

introduced algorithm 1 known as Johnson’s rule, 

aimed at minimizing the makespan in the two-

machine flow shop problem. This concept, renowned 

for its ability to yield precise results in the two-

machine scenario, has catalyzed the development of 

heuristics for more complex m-machine flow shop 

problems, including notable algorithms like Palmer’s 
2, Gupta’s 3, and the CDS algorithm 4. While 

Johnson’s algorithm assumed deterministic 

processing times, setting precise values for job 
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processing times is often challenging in real-world 

scenarios. Variability is inherent, with processing 

times often fluctuating within intervals rather than 

fixed values. Consequently, representing such 

uncertainties is both natural and realistic 5. As a 

result, there arises a necessity to extend the classical 

Johnson’s algorithm to accommodate fuzzy 

processing times. Therefore, there has been a 

growing interest among researchers in recent years in 

using fuzzy processing time to tackle job scheduling 

problems, with particular emphasis on the flow-shop 

scheduling problem. Additionally, researchers 

propose employing fuzzy set theory 6,  to tackle 

uncertainty in scheduling problems, a crucial 

approach for domains such as healthcare and 

production 7. In flow shop scheduling problem-

solving, NP-complete problems 8 are quick to verify 

but slow to solve. This limits the effectiveness of 

exact optimization algorithms for large-scale 

problems. Instead, Industries 9 relies on scheduling 

to allocate resources to tasks over time, aiming to 

minimize metrics such as makespan 10, 11, total flow 

time, tardiness 12, and waiting time 13. 

In flow shop scheduling, the focus is on minimizing 

waste, including idle time of machines and waiting 

time of jobs. These factors significantly impact 

production efficiency and are crucial considerations 

in scheduling objectives 14. The significant impact of 

waiting time, as seen in industries like steel 

production, involves the wastage of time, raw 

materials, and resources. In the context of the 

problem, Asif et al. 15 studied an effective algorithm 

aimed at reducing total elapsed time and idle time for 

solving FSSPs. McCahon and Lee 16, discussed a 

method for predicting the job sequence with an 

optimal value for a two-machine FSSP employing a 

triangular fuzzy number.  

Previous studies in flow-shop scheduling primarily 

focused on deterministic environments. However, 

real-world manufacturing processes inherently 

involve uncertainty 17. Recently, significant attention 

has been devoted to addressing uncertain shop 

scheduling problems, with fuzzy shop scheduling 

emerging as a prominent research area. Additionally, 

Dubios and Prade 18, proposed overlapping 

relationships among fuzzy numbers to characterize a 

domain of possibility. Mahfouf M. et al. 19,  highlight 

the application of fuzzy logic techniques in 

healthcare disciplines such as internal medicine and 

others. Kiptum et al. 20, evaluated the challenges 

associated with achieving sustainable urban 

development using a fuzzy approach. Besides, 

Alburaikan A. et al. 21 introduced a novel strategy for 

arranging tasks within a three-stage flow shop setting 

involving uncertain processing times. They 

presented two distinct methods: the first employs a 

ranking function, while the second utilizes a tight 

interval estimate of fuzzy numbers. In recent years, 

several researchers have made significant 

contributions to this literature. Zhou T  et al. 22, 

examined three-machine n-job FSSP with fuzzy 

piecewise quadratic processing times. Zubair and 

Ahmed 23, devised an innovative set of operational 

guidelines and a ranking procedure for Single-

Valued Neutrosophic Uncertain Linguistic Variables 

concerning linguistic scale functions. Akram et al. 24, 

introduced a new linear programming problem that 

incorporates LR-type Pythagorean fuzzy numbers. 

Zanjani B et al. 25, developed a multi-objective robust 

mixed-integer linear programming model 

considering real-world conditions where due dates 

and processing times are assumed to be uncertain. 

Edalatpanah et al.26, utilized Cooperative Continuous 

Static Games with fuzzy cost functions that exhibit 

piecewise quadratic behavior.  Gupta D. and Goyal 

B. 27, have created specialized structural models 

aimed at optimizing job waiting times in flow shop 

scheduling, with a focus on distinct setup times and 

the concept of job blocks. Here, a two-machine flow 

shop scheduling problem is presented, incorporating 

trapezoidal fuzzy processing times.  

Recently, there has been a growing focus among 

researchers on the fuzzy FSSPs. Engin and Isler 28,  

developed a parallel greedy algorithm for the fuzzy 

hybrid FSSPs with setup time and lot size. Bahmani 

V et al. 29, examined the two-stage flow shop 

scheduling problem involving distribution through 

vehicle routing within a flexible timeframe. 

Rouhbakhsh R et al. 30,  developed a lot-streaming 

algorithm for the hybrid flow shop scheduling 

problem considering transportation time. Jain et al. 
31, presented a model for optimizing fuzzy inventory-

transportation problems aimed at minimizing overall 

distribution costs. In this context, Goyal B and Kaur 

S 32, explored a triangular fuzzy number-based 
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algorithm for minimizing job waiting time in specific 

FSSPs, demonstrating its superiority in waiting time 

optimization compared to various heuristic 

approaches. To solve the same problem Goyal B  and 

Kaur S  33, explored scheduling issues in a two-

machine permutation flow shop, considering random 

processing times on both machines. In this article, an 

enhancement to the Goyal method is proposed. 

Specifically, a novel approach is introduced to 

thoroughly explore the potential relationships 

between fuzzy numbers, thereby leading to improved 

performance in obtaining optimal job sequences. 

The rest of the article is structured in the following 

manner: Preliminary concepts that explain the fuzzy 

set and other principles, providing an overview of the 

problem statement. The fuzzy two-machine FSSPs 

are proposed. The result analysis discusses the 

numerical comparison employed to verify the 

computational efficiency of the proposed method. 

The article provides a summary and explores 

potential avenues for future research in the 

conclusion. The flow chart for the proposed 

algorithm is clearly outlined in Fig 1 

Preliminary concepts 

The preliminary concept contains a mathematical 

representation of job completion time and waiting 

time. Moreover, the assumptions applied in the 

problem setting were presented. The subsequent 

notations indicate the total waiting time for the fuzzy 

FSSP with n jobs and 2 machine problems. 

Assumptions 

The following assumptions form the foundation of 

the flow shop scheduling problems 34. 

 At time zero, all machines should be 

operational. 

 Each machine processes each job once, and 

they work independently. 

 Predictable and consistent processing times 

exist. 

 Machines are always accessible and do not 

malfunction throughout the operation. 

 No machines can handle two or more tasks 

concurrently. 

 Preemption of jobs is not authorized; the 

machine remains dedicated to the current job 

until completion. 

 

The objective of the two-machine fuzzy FSSP is to 

determine the optimal sequencing of all jobs while 

minimizing the total waiting time. Table 1 provides 

a comprehensive list of symbols and their respective 

meanings utilized in two machine fuzzy FSSP. 

 

Table .1 Notation 

Characters  Descriptions  

𝑖 Index for jobs 𝛽𝑖,  i= 1, 2, . . . . . . 𝑛 

 M Machines (M1 and M2) 

�̃�𝑖
𝑀 Average Hesitant Fuzzy Set (AHR) 

score for the fuzzy processing time of 

the job 𝑖 on machine  𝑀 . This 

represented the average value of the 

fuzzy job time. 

𝑓𝑖
𝑀 Fuzzy processing time of job 𝑖 on 

machine M. 

𝐶𝛽
𝑀 Completion time of job 𝛽 on machine 

M. 

𝑈𝛽 Job 𝛽′𝑠 waiting time. 

𝑆𝑖 The starting time of the job 𝑖 on 

machine 𝑀, denoted as 𝑊𝑡. 

𝑊𝛽 Waiting time of job 𝛽. 

𝑊𝑡𝑖𝑚𝑒  Total waiting time. 

 

 
Figure 1. Flow chart for the proposed method 

https://doi.org/10.21123/bsj.2024.10784
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Fuzzy flow shop scheduling problem  

Problem statement  

In this section, the formulation of the fuzzy FSSP has 

been investigated, where the processing times for a 

set of n jobs, sequenced across a pair of machines, 

are expressed as trapezoidal fuzzy numbers denoted 

as  �̃�𝑖
𝑀. These fuzzy representations capture 

uncertainty, offering a range for each processing time 

rather than a precise value 35. The primary objective 

is to devise an optimal job processing sequence on 

the two machines, emphasizing the minimization of 

total waiting time while accounting for the 

uncertainty introduced by trapezoidal fuzzy 

numbers. The duration for processing job 𝑖 on 

machine M is represented by the trapezoidal fuzzy 

number  �̃� = (𝑒1, 𝑒2, 𝑒3, 𝑒4), where 𝑒1, 𝑒2, 𝑒3, 𝑒4 are 

parameters. For trapezoidal fuzzy numbers, the 

membership function is 1 or the maximum of (𝑒2 −

𝑒3), and it is zero at the corners 𝑒1 and 𝑒4 of the 

trapezoidal fuzzy number. Fig 2 illustrates these 

numbers. In this context, 𝜇 denotes the membership 

function, and 𝑥 signifies the processing time. The 

membership function, employed in fuzzy logic, 

assesses the degree of membership or truth value of 

an element in a fuzzy set, considering its attributes 

like processing time. Additionally, a crucial 

condition max(�̃�𝑖
1) ≤ min (�̃�𝑖

2) ensures 

compatibility in processing time intervals on 

different machines, contributing to the feasibility of 

the scheduling solution. 

Preliminaries  

The initial introduction of fuzzy mathematical 

programming at a broad level originated within the 

framework of fuzzy FSSP proposed by Behnamian 

J 36.  Next, essential definitions are provided. 

 

Fuzzy set 37 

A fuzzy set  �̃� maps elements from the universe of 

discourse  �̃� to the unit interval. Let  �̃� be represented 

as �̃� = {(x, µ�̃�(𝑥)/x ∈  �̃�)}, where µ�̃�  is the 

membership function that assigns a value to each 

element 𝑥 belonging to 𝑋 in the fuzzy set  �̃�.  µ
�̃�
(𝑥) 

yields the degree to which 𝑥 belongs to the fuzzy set 

 �̃�.  µ
𝑃 ̃

 maps �̃� to the interval [0,1], and the fuzzy set  

�̃� can be represented as  �̃�: �̃� → [0,1]. 

Fuzzy number 37, 38 

A fuzzy number, denoted as  �̃�, is defined based on 

the following criterion 

 µ�̃�(𝑥): 𝑅 → [0,1] is continuous. 

 µ�̃�(𝑥) = 1 for all 𝑥𝜖[𝑒1, 𝑒4] where 𝑒1 <
𝑒2 < 𝑒3 < 𝑒4. 

 µ�̃�(𝑥) strictly increasing on [𝑒1, 𝑒2] and 

strictly decreasing on [𝑒3, 𝑒4]. 
 µ�̃�(𝑥) = 0 for all 𝑥𝜖(−∞, 𝑒1) ∪ (𝑒4, +∞). 

Trapezoidal Fuzzy Number: A trapezoidal 

fuzzy number  �̃� = (𝑒1, 𝑒2, 𝑒3, 𝑒4) is defined by 

its membership function µ�̃�(x)  as follows: 

µ�̃�(x) =  

{
 
 
 

 
 
 

𝑥−𝑒1

𝑒2−𝑒1
, 𝑖𝑓    𝑒1 < 𝑥 < 𝑒2

 
1,                  𝑖𝑓    𝑒2 < 𝑥 < 𝑒3

 
𝑒4−𝑥

𝑒4−𝑒3
       𝑖𝑓    𝑒3 < 𝑥 < 𝑒4

 
 0,                 𝑖𝑓         otherwise 

 

         1 

 

Figure 2. Trapezoidal membership function 

 

Defuzzification method 39 

Finding the singleton value (crisp value), which is 

the average value of the trapezoidal fuzzy numbers, 

is the process of defuzzification. Due to its simplicity 

and accuracy, Robust’s Ranking approach is utilized 

in this case to defuzzify trapezoidal fuzzy numbers. 

Robust ranking technique 

If  �̃� is a trapezoidal fuzzy number, then the ranking 

method is given by 

𝑅(�̃�) = ∫ 𝛼(𝑏𝛼
𝐿 , 𝑏𝛼

𝑅)
1

0
𝑑𝛼 , where (𝑏𝛼

𝐿 , 𝑏𝛼
𝑅) =

{[𝛼(𝑒2 − 𝑒1) + 𝑒1, −𝛼(𝑒4 − 𝑒3) + 𝑒4]} the 𝛼 – level 

cut off the fuzzy numbers  �̃�. 
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R(P̃) = ∫ [e1 + α(e2 − e1)]αdα
1

0
+ ∫ [e4 − α(e4 −

1

0

e3)]αdα      2 

R(P̃) = ∫[e1α + α
2(e2 − e1)]dα

1

0

+∫[e4α − α
2(e4 − e3)]dα

1

0

 

R(P̃) = [e1
α2

2
+ (e2 − e1)

α3

3
]
0

1

  

+ [e4
α2

2
−
α3

3
(e4 − e3)]

0

1

 

𝑅(�̃�)  =
𝑒1+2(𝑒2+𝑒3)+𝑒4

6
   3 

𝑅(�̃�) is the ranking index for fuzzy number   �̃� 

Significance and novelty of the proposed 

model  

The importance of the proposed objective resonates 

across every service provider organization and 

industry because client satisfaction is of paramount 

importance to every executive. In today’s rapidly 

advancing world, where time is at a premium, 

everyone seeks services that minimize waiting times. 

Therefore, service executives consistently strive to 

ensure timely service delivery, avoiding extended 

wait periods for clients. Most of the previous 

research has focused on achieving different 

objectives, including minimizing elapsed time and 

reducing the rental cost of machines. The objective 

introduced in this study has previously garnered little 

attention from researchers in the context of 

trapezoidal fuzzy processing numbers. The novelty 

of this research lies in delving into this objective and 

presenting an algorithm aimed at minimizing job 

waiting times for flow shop scheduling problems 

with randomly generated trapezoidal fuzzy 

processing times. 

Total waiting time for flow shop scheduling 

Consider the problem of a flow-shop with 𝑛 jobs and 

two machines, where the jobs are processed 

sequentially on machines M1 and M2, following the 

order M1M2, without allowing any passing. 

Furthermore, let  𝑆𝑖
1 and 𝐶𝑖

1 denote the starting and 

completion times of job i on machine M1, and 𝑆𝑖
2 and 

𝐶𝑖
2 represent the starting and completion times of job 

𝑖 on machine M2, where 𝑖 =  1, 2… , 𝑛. The waiting 

time for job 𝑖 on machine M2, referred to as 𝑊𝑖, is 

determined as 𝑆𝑖
2  − 𝐶𝑖

1 within a schedule ‘S’ 

involving 𝑛 jobs ( 𝑆 = 𝛽1, 𝛽2, ……𝛽𝑛). The total 

completion time of all jobs in a two-machine flow 

shop problem is the completion time of the last job 

on the second machine, denoted as 𝐶𝛽𝑛
2  

𝐶𝛽1 
1 = �̃�1

1      4 

𝐶𝛽𝑖
1 = 𝐶𝛽i−1

1  +  �̃�𝛽𝑖
1  ,  i =  2, … , 𝑛   5 

𝐶𝛽𝑖
2  =  𝑚𝑎𝑥{𝐶𝛽i−1

2 , 𝐶𝛽𝑖
1 } + �̃�𝛽𝑖

2  ,   i =  2,… , 𝑛 6 

The total completion time is then 𝐶𝛽𝑛
2 . The objective 

is to find a schedule that minimizes the total waiting 

time 𝑊𝑡𝑖𝑚𝑒, where 𝑊𝑡𝑖𝑚𝑒  = ∑ 𝑊𝑖
𝑛
𝑖=1 . The 

mathematical details of this problem can be found in 

Table 2. 

Table 2. Representation of the problem 

description in matrix form 

Jobs(i) 𝑴𝟏(𝒇𝒊
𝟏) 𝑴𝟐(𝒇𝒊

𝟐) 

1 (𝐞𝟏𝟏
𝟏 , 𝒆𝟐𝟏

𝟏 , 𝒆𝟑𝟏
𝟏 , 𝒆𝟒𝟏

𝟏 ) (𝒆𝟏𝟏
𝟐 , 𝒆𝟐𝟏

𝟐 , 𝒆𝟑𝟏
𝟐 , 𝒆𝟒𝟏

𝟐 ) 

2 (𝒆𝟏𝟐
𝟏 , 𝒆𝟐𝟐

𝟏 , 𝜽𝟑𝟐
𝟏 , 𝒆𝟒𝟐

𝟏 ) (𝒆𝟏𝟐
𝟐 , 𝒆𝟐𝟐

𝟐 , 𝒆𝟑𝟐
𝟐 , 𝒆𝟒𝟐

𝟐 ) 

3 (𝐞𝟏𝟑
𝟏 , 𝒆𝟐𝟑

𝟏 , 𝒆𝟑𝟑
𝟏 ,  𝐞𝟒𝟑

𝟏 ) (𝒆𝟏𝟑
𝟐 , 𝒆𝟐𝟑

𝟐 , 𝒆𝟑𝟑
𝟐 , 𝒆𝟒𝟑

𝟐 ) 

. . . 

. . . 

. . . 

n (𝒆𝟏𝒏
𝟏 , 𝒆𝟐𝒏

𝟏 , 𝒆𝟑𝒏
𝟏 , 𝒆𝟒𝒏

𝟏 ) (𝐞𝟏𝒏
𝟐 , 𝒆𝟐𝒏

𝟐 , 𝒆𝟑𝒏
𝟐 , 𝒆𝟒𝒏

𝟐 ) 

 

The two-machine specialized flow-shop scheduling 

problem arises when the processing times of the n 

jobs on machines M1 and M2 adhere to the condition 

expressed as 𝑚𝑎𝑥 �̃�𝑖
1 ≤ min �̃�𝑖

2, transforming the 

problem into a specialized scheduling problem. 

 

Theorem 1: 
Let n-jobs, indexed from 1 through n, undergo 

processing on two machines (M1 and M2) in a flow 

shop environment, excluding any transient 

operations. Suppose these jobs adhere to the 

structural condition: 

𝑚𝑎𝑥 �̃�𝑖
1  ≤  𝑚𝑖𝑛 �̃�𝑖

2        7 

where �̃�𝑖
𝑀- represents the alpha cut ranking index 

(Eq 3) value of the equivalent fuzzy processing time 

required by the job 𝑖 on machine 𝑀 ( 𝑀 =  1,2 ), and 

( 𝑊𝑡𝑖𝑚𝑒), the total waiting time of jobs, is determined 

as:  

https://doi.org/10.21123/bsj.2024.10784
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Under this constraint, the total waiting time of jobs ( 

𝑊𝑡𝑖𝑚𝑒) is mathematically represented as: 

𝑊𝑡𝑖𝑚𝑒  =  𝑛 ⋅  �̃�𝛽1
1  + ∑ (𝑛 − 𝑞)𝑛−1 

𝑗=1 𝑑𝛽𝑞 − ∑ �̃�𝛽𝑖
1𝑛=1

𝑖=1  

      8 

where:     

  𝑑𝛽𝑞  =  (�̃�𝛽𝑞
2 − �̃�𝛽𝑞

1 )                            9 

Proof:  

Initially, the evaluation begins with determining 

the completion time, denoted as  C𝛽
M, for orders 

𝛽 on machine 𝑀, considering the sequence,  S =
𝛽1, 𝛽2, 𝛽3, … 𝛽𝑘… , 𝛽𝑛.   

Claim: 

𝐶𝛽𝑛
2 = �̃�β1

1 + �̃�β1
2 + �̃�β2

2 +⋯+ �̃�βn
2                10 

Applying mathematical induction to  𝑛,  

let  𝑃(𝑛) denote: 

𝐶𝛽𝑛
2 = �̃�β1

1 + �̃�β1
2 + �̃�β2

2 +⋯+ �̃�βn
2    11 

Now, for 𝑛 = 1, 

𝐶𝛽1
2 = �̃�β1

1 + �̃�β1
2      12 

Now, assuming  𝑃(𝑘)  to be true for  𝑛 =  𝑘,  

Then for  𝑃(𝑘 +  1), utilizing Eq.7. 

𝐶𝛽𝑘+1
2 = 𝑚𝑎𝑥 (𝐶𝛽𝑘+1

1 , 𝐶𝛽𝑘
2 ) + �̃�𝛽𝑘+1

2   13 

Proving,  

𝐶𝛽𝑛
2 = �̃�β1

1 + �̃�β1
2 + �̃�β2

2 +⋯+ �̃�βk
2 + �̃�βk+1

2  14 

Next, 𝑈𝛽  will be evaluated, representing the time 

consumed by the job 𝛽 while waiting. 

Claim:  For the sequence S = 𝛽1, 𝛽2, 𝛽3, …𝛽𝑘… , 𝛽𝑛 

of the jobs  

Next, the waiting time 𝑈𝛽  for the job, 𝛽 is analyzed 

for the sequence 𝑈𝛽𝑘 = 𝛽1, 𝛽2, 𝛽3, … , 𝛽𝑘… , 𝛽𝑛  of 

the jobs: 

Clearly, 

𝑈𝛽1 = 0     15 

and 

𝑈β𝑘 = 𝑆β1
2 − 𝐶β𝑘

1   𝑘 = 2, 3. . . , 𝑛              16 

Implicitly, 

𝑈𝛽𝑘 = max(𝐶𝛽𝑘−1 
2 , 𝐶𝛽𝑘

1 ) − 𝐶𝛽𝑘
1 , 𝑘 = 2, 3… , 𝑛 

               17 

Condition (Eq 7) of the proposed model specifies a 

requirement that must be satisfied, expressed as: 

 𝑈𝛽𝑘 = �̃�𝛽1
1 + ∑ 𝑑𝛽𝑞

𝑛−1
𝑞=1 + ∑ �̃�𝛽𝑘

1  𝑛
𝑖=1 , 𝑘 = 2,3. . . , 𝑛

      18 

Approaching the major proof of the theorem: 

𝑊𝑡𝑖𝑚𝑒 = 𝑈𝛽1 + 𝑈𝛽2 + 𝑈𝛽3 +⋯ ,+𝑈𝛽𝑛   19 

 𝑊𝑡𝑖𝑚𝑒 = 𝑛 . �̃�𝛽1
1 + ∑ (𝑛 − 𝑞)𝑑𝛽𝑞

𝑛−1
𝑞=1 +∑ �̃�𝛽𝑖

1  𝑛
𝑖=1 , 

𝑘 = 2,3. . . , 𝑛     20 

 

 

Theorem 2: 

Given a natural number 𝑘 and real numbers 

 𝑟1, 𝑟2, … , 𝑟𝑘  , among all possible linear combinations 

of the form  

 ∑(𝑘 − 𝑖)

𝑘−1

𝑖=0

𝑟𝑖+1 

the minimum value is attained when 𝑟1 ≤ 𝑟2 ≤

⋯ ,≤  𝑟𝑘. 

Proof:  

Applying the induction hypothesis on  𝑘, 

the result holds trivially for  𝑘 =  1. 

Assume that the result holds for less than  𝑘 real 

numbers. 

Now, considering the ordered sequence 

𝑟1 ≤ 𝑟2 ≤

⋯ ≤ 𝑟𝑘  

𝑘𝑟1 + (𝑘 − 1)𝑟2 + (𝑘 − 2)𝑟3 +⋯+  2𝑟𝑘−1 + 𝑟𝑘 
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= (𝑘 −  1)𝑟1 + (𝑘 −  2)𝑟2 + (𝑘 −  3)𝑟3  + ⋯ 

+ 𝑟𝑘−1  +∑𝑟𝑖

𝑘

𝑖=1

 

Since the last term  ∑ 𝑟𝑖
𝑘
𝑖=1   is constant, 

the hypothesis assumption implies that 

𝑘𝑟1  +  (𝑘 −  1)𝑟2  + (𝑘 −  2)𝑟3  + ⋯ +  2𝑟𝑘−1  

+  𝑟𝑘 

is minimized. 

Remark:  

Based on the result from Theorem 2,  

it is evident that for an 𝑛-job sequence S =

𝛽1, 𝛽2, 𝛽3, … 𝛽𝑘… , 𝛽𝑛 the term  

∑(𝑛 −  𝑞)

𝑛

𝑞=1

𝑑𝛽𝑞 

in Eq.8 will be minimized if the 𝑛 -jobs in sequence 

 𝑆 are arranged in the non-decreasing order of the 

values  

 𝑑𝛽𝑞 , while ∑ �̃�𝛽𝑖  
𝑛
𝑖=1   

remains constant for every sequence of jobs. Bearing 

these observations in mind, an exact method is 

proposed to minimize the total waiting time 

𝑊𝑡𝑖𝑚𝑒 for two-machine specially structured flow-

shop scheduling problems. 

Proposed algorithm 

The proposed algorithm entails the following steps: 

Step 1: Calculate the Ranking Index value of fuzzy 

processing time  𝑓𝑖
𝑀  = (𝑒1, 𝑒2, 𝑒3, 𝑒4) for all jobs  𝑗𝑖, 

where  𝑖 =  1, 2, 3 … , 𝑛, using alpha cut Ranking 

Index (Eq 3). 

Step 2. Verify the structural condition, i.e., 

𝑚𝑎𝑥 �̃�𝑖
1  ≤  𝑚𝑖𝑛 �̃�𝑖

2  

Step 3. Calculate ℎ𝑖𝑞  =  (𝑛 −  𝑞)𝑑𝑖, where  𝑑𝑖  =

�̃�𝑖
2 − �̃�𝑖

1 for  𝑖 =  1,2,3,… , 𝑛 − 1, and present the 

computed entries in the following tabulated format: 

Step 4. Arrange the jobs in ascending order of 𝑑𝑖 and 

obtain the sequence  𝑆1  = 𝛽1, 𝛽2, 𝛽3, … , 𝛽𝑛. 

Step 5. Identify the minimum processing time of 

machine 1 and denote it as �̃�𝑥
1. Then, verify the 

condition 

�̃�𝑥
1 = �̃�𝛽1

1 , 

If this condition is satisfied, then the sequence 

obtained in the previous step is optimal; otherwise, 

proceed to the next step. 

Step 6. Generate other sequences 𝑆𝑖, where  𝑖 =

 2,3,4,… , 𝑛, by exchanging the  𝑖𝑡ℎ job with the first 

one of the sequences  𝑆𝑖−1 while keeping the 

remaining job sequence unchanged. 

Step 7. Compute the total waiting time  𝑊𝑡𝑖𝑚𝑒 for all 

sequences  𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑛 using the formula defined 

in Eq.8. 

Step 8. Select the sequence with the minimum total 

waiting time from the list mentioned in the previous 

step; this sequence represents the optimal solution. 

Illustration  

A mathematical representation of a problem 

involving 10 jobs and two machines is presented in 

Table 3, as illustrated in the adjusted algorithm 37. 

Table 3. Trapezoidal fuzzy processing times 

Jobs 𝑴𝟏 𝑴𝟐  

i 𝑓𝑖
1 𝑓𝑖

2 

1 (65, 69, 77, 93) (75, 89, 97, 112) 

2 (61, 72, 83, 93) (80, 92, 104, 106) 

3 (65, 69, 77, 93) (81, 86, 97, 112) 

4 (64, 71, 79, 94) (76, 89, 99, 107) 

5 (57, 75, 78, 88) (79, 83, 98, 107) 

6 (54, 71, 76, 92) (82, 87, 102, 113) 

7 (65, 72, 85, 89) (76, 85, 103, 110) 

8 (60, 70, 80, 92) (80, 87, 98, 112) 

9 (58, 69, 78, 90) (76, 84, 94, 106) 

10 (63, 69, 84, 87) (75, 89, 94, 107) 

 

The representation of the ranking method (Eq 3) for 

the previously mentioned fuzzy processing times is 

shown in Table 4. 

 

 

 

 

 

 

https://doi.org/10.21123/bsj.2024.10784


 

Published Online First: October, 2024 

https://doi.org/10.21123/bsj.2024.10784  

P-ISSN: 2078-8665 - E-ISSN: 2411-7986 
 

Baghdad Science Journal 

Table 4. Crisp values of �̃�𝒋
𝑴 

Jobs 𝑴𝟏 𝑴𝟐 

j �̃�𝑖
1 �̃�𝑖

2 

1 75.00 93.16 

2 77.33 96.33 

3 76.66 91.50 

4 76.33 93.16 

5 75.16 91.33 

6 73.33 95.50 

7 78.00 93.66 

8 75.33 93.66 

9 73.66 89.66 

10 76.00 91.33 

 

It is clear from the above table that the max 

𝑚𝑎𝑥(�̃�𝑖
1) ≤ 𝑚𝑖𝑛(�̃�𝑖

2).  

Therefore, the structural criterion has been fulfilled. 

Then with the aid of step 4, the subsequent sequences 

have been obtained. 

𝑆1 = 𝛽3, 𝛽10, 𝛽7, 𝛽9, 𝛽5, 𝛽4, 𝛽1, 𝛽8, 𝛽2, 𝛽6 

As a result, 𝑃𝑥
1 ≠ 𝑃𝛽1

1 , all potential sequences 

according to step 6 are  

𝑆2 = 𝛽10, 𝛽3, 𝛽7, 𝛽9, 𝛽5, 𝛽4, 𝛽1, 𝛽8, 𝛽2, 𝛽6 

𝑆3 = 𝛽7, 𝛽3, 𝛽10, 𝛽9, 𝛽5, 𝛽4, 𝛽1, 𝛽8, 𝛽2, 𝛽6 

𝑆4 = 𝛽9, 𝛽3, 𝛽10, 𝛽7, 𝛽5, 𝛽4, 𝛽1, 𝛽8, 𝛽2, 𝛽6 

𝑆5 = 𝛽5, 𝛽3, 𝛽10, 𝛽7, 𝛽9, 𝛽4, 𝛽1, 𝛽8, 𝛽2, 𝛽6 

𝑆6 = 𝛽4, 𝛽3, 𝛽10, 𝛽7, 𝛽9, 𝛽5, 𝛽1, 𝛽8, 𝛽2, 𝛽6 

𝑆7 = 𝛽1, 𝛽3, 𝛽10, 𝛽7, 𝛽9, 𝛽5, 𝛽4, 𝛽8, 𝛽2, 𝛽6 

𝑆8 = 𝛽8, 𝛽3, 𝛽10, 𝛽7, 𝛽9, 𝛽5, 𝛽4, 𝛽1, 𝛽2, 𝛽6 

𝑆9 = 𝛽2, 𝛽3, 𝛽10, 𝛽7, 𝛽9, 𝛽5, 𝛽4, 𝛽1, 𝛽8, 𝛽6 

𝑆10 = 𝛽6, 𝛽3, 𝛽10, 𝛽7, 𝛽9, 𝛽5, 𝛽4, 𝛽1, 𝛽8, 𝛽2 

Therefore, the optimal job sequence 𝑆4, consisting of 

𝛽9, 𝛽3, 𝛽10, 𝛽7, 𝛽5, 𝛽4, 𝛽1, 𝛽8, 𝛽2, 𝛽6 had achieved the 

minimum total waiting time 𝑊𝑡𝑖𝑚𝑒 of 702.16 units, 

as had been indicated in Table 5. 

 

Table 5. The optimal job schedules 

Sequences Total Waiting Time (𝑾𝒕𝒊𝒎𝒆) 

𝑆1 730.00 

𝑆2 723.83 

𝑆3 744.50 

𝑆4 702.16 

𝑆5 717.83 

𝑆6 732.83 

𝑆7 727.50 

𝑆8 732.00 

𝑆9 757.33 

𝑆10 745.83 

 

After analyzing the outcomes of the aforementioned 

methods, it becomes evident that the proposed 

approach outperforms the Goyal method, exhibiting 

the most favorable optimal value. This comparison is 

detailed in Table 6. 

 

Table 6. Comparison for optimal sequence 

S. No Ranking Method Optimal sequence Waiting time 

1 B. Goyal & S. Kaur 34 𝛽9, 𝛽3, 𝛽10, 𝛽4, 𝛽7, 𝛽1, 𝛽5, 𝛽2, 𝛽8, 𝛽6 708.25 units 

2 Ranjith. K and Karthikeyan 40 𝛽9, 𝛽7, 𝛽10, 𝛽3, 𝛽4, 𝛽1, 𝛽5, 𝛽2, 𝛽8, 𝛽6 706.34 units 

3 Proposed algorithm 𝛽9, 𝛽3, 𝛽10, 𝛽7, 𝛽5, 𝛽4, 𝛽1, 𝛽8, 𝛽2, 𝛽6 702.16 units 

 

Pseudo code for the proposed algorithm  

The pseudocodes of the proposed algorithm steps are 

mentioned below 
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Pseudo code for Proposed algorithm  

Require: Fuzzy processing time matrix 𝑓𝑖
𝑀, Job 

processing times  �̃�𝑖
1, �̃�𝑖

2 

Ensure: Optimal job sequence 𝑆𝑖, minimum total 

waiting time 𝑊𝑡𝑖𝑚𝑒   
Initialization 

While 𝑚𝑎𝑥 �̃�𝑖
1  ≤  𝑚𝑖𝑛 �̃�𝑖

2 do 

Compute the alpha Ranking Index for 𝑓𝑖
𝑀 

    if processing times satisfy the condition, then 

        Compute difference matrix ℎ𝑖𝑞  =  (𝑛 −  𝑞)𝑉𝑖, 

where 𝑉𝑖  =  �̃�𝑖
2  −  �̃�𝑖

1 

        Arrange jobs in ascending order based on 

differences 

        Find minimum processing time �̃�𝑥
1 

        Obtain alternative job sequences 𝑆𝑖 
        Calculate the total waiting time 𝑊𝑖 for each 

sequence 

        Select a sequence with a minimum total waiting 

time 𝑆𝑖 
        Set 𝑊∗ to minimum 𝑊𝑖 

    else 

        Print "Structural condition not met." 

    end if 

end while 

Results and Discussion 

The algorithms were employed in MATLAB and 

performed on computers running Windows 10 

Professional, each equipped with 4 GB of RAM and 

Intel Core i5-3770 processors operating at 3.10 GHz. 

To assess the proposed algorithm, experiments were 

carried out by testing it on 10 different cases of the 

fuzzy two-machine FSSPs. These cases were 

randomly generated 33, resulting in a total of 14 

combinations for 2-machine n-jobs problems, with 

the number of machines (m) held constant at 2 and 

the number of jobs (n) varying within the range of n= 

{10, 20, 30, 40, 50, 60, 80, 90, 100, 120, 200, 250, 

300, 500}. The processing time �̃�  =  𝑒1, 𝑒2, 𝑒3, 𝑒4 

for job 𝑖 on machine M1 and M2 was determined as 

follows: �̃�𝑖
1 was assigned a random value between 65 

and 90, while  �̃�𝑖
2 was randomly generated within the 

range of 90 to 115. Each of the algorithms requires 

an equal amount of computation time, resulting in a 

waiting time of 𝑛 ×  2 seconds. For each group, the 

mean total waiting time for each problem generated 

by the proposed algorithm is compared with the 

mean makespan values of existing approaches such 

as the Palmer algorithm 2, Johnson algorithm 1, NEH 

algorithm 41, and Goyal B. and Kaur S. 34. These 

comparisons are visualized in the graph presented in 

Fig  3. These results were obtained using both the 

proposed algorithm and existing heuristics, as 

depicted in Table 7. 

The examination of the experiment involved 

applying a multi-factor Analysis of Variance  

(ANOVA) technique 42, with n-jobs and 2-machine 

considered as uncontrollable factors. To execute 

ANOVA, it is crucial to verify the primary 

hypotheses, specifically focusing on the normality 

and independence of residuals. Normality can be 

assessed through methods such as a Quantile–

Quantile plot (Fig 4) of the residuals, or by 

evaluating their fit to a theoretical normal 

distribution. Additionally, statistical tests such as the 

chi-square test or the Kolmogorov–Smirnov test for 

normality can be employed in this context. The 

results of the ANOVA analysis are presented in 

Table 10. Fig  5, illustrates the results of different 

statistical tests used to evaluate the adherence of our 

data to a normal distribution. A high p-value 

(exceeding 0.05) indicates that the data does not 

significantly deviate from normality.  

 

 

 

 

 

 

https://doi.org/10.21123/bsj.2024.10784


 

Published Online First: October, 2024 

https://doi.org/10.21123/bsj.2024.10784  

P-ISSN: 2078-8665 - E-ISSN: 2411-7986 
 

Baghdad Science Journal 

Table 7. Average mean of total waiting time for FSSPs 

Jobs  
Palmer’s 

Method 2 

Johnson’s  

Method 1 

NEH  

Algorithm 41 

B. Goyal &  

S. Kaur 34 

Proposed 

algorithm 

10 1001.78 910.12 856.56 882.11 840.43 

20 4465.84 4324.52 3865.56 3986.13 3799.23 

30 10605.92 9905.92 9205.92 9428.81 9280.59 

40 19205.52 18005.52 16585.52 16916.67 16374.47 

50 29535.36 28635.36 25535.36 26564.62 25398.47 

60 41708.53 38952.36 35069.27 37217.52 35049.66 

80 75259.35 70523.23 66925.52 66984.44 65923.66 

90 92124.52 89365.42 83245.25 83799.91 83009.82 

100 112235.3 111235.3 104235.3 104957.6 103945.3 

120 150873.36 158973.67 149883.85 148873.62 148873.6 

200 428004.26 412984.26 398984.26 398004.18 397984.26 

250 701661.88 681661.88 661661.88 651661.88 651735.97 

300 953894.94 933894.94 923894.94 935718.69 923894.94 

500 2652455.01 2552455.01 2489542.66 2587262.75 2417305.66 

 

In Table 8, descriptive statistics outline the mean, 

standard deviation, and standard error for various 

algorithms, including the Palmer, Johnson, NEH, 

Goyal, and Kaur, and the proposed method. Notably, 

the mean values for the proposed method are lower 

than those of the other algorithms, indicating 

potential performance improvements. Specifically, 

the proposed method exhibits the lowest mean 

among all algorithms, suggesting its superior 

performance in the evaluated metric. However, 

drawing definitive conclusions requires considering 

the associated standard deviations and standard 

errors, which offer insights into the variability and 

precision of the measurements. The lower mean in 

the proposed method category, coupled with an 

assessment of the associated variability, implies that 

this algorithm may represent the most advantageous 

choice among the options considered in this analysis.  

As mentioned in Table 9, the proposed method was 

compared to the Johnson, Palmer, NEH, and B. 

Goyal and S. Kaur algorithms. The mean deviations 

were -27829.67929, -16315.10357, -6148.27071, 

and -13488.7764 respectively. The significance level 

(p-value) was 1.000, and the confidence intervals 

ranged from -27829.67929 to -13488.7764. Our 

experiment involved a non-parametric analysis, 

including ANOVA and multiple comparisons, to 

determine whether there are statistically significant 

differences between the algorithms. Surprisingly, 

varying levels of parameter T do not yield 

statistically significant differences. This suggests 

that the proposed algorithm exhibits robustness 

across different values of T. As previously 

mentioned, there is no evident statistically significant 

disparity among the various levels of T. The high p-

values indicate no statistically significant differences 

between the means of the proposed method and the 

other algorithms, as shown in Table 10. 

 

Figure 3. Comparison of mean of total waiting 

time for FSSPs 
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Table 8. Descriptives of mean comparison 

Algorithms N Mean 
Std. 

Deviation 

Std. 

Error 

95% Confidence 

Interval for Mean 
Minimum Maximum 

Lower 

Bound 

Upper 

Bound 

Palmer’s 

Method 2 
14 376645.11 717233.64 191688.75 -37473.26 790763.49 1001.78 2652455.01 

Johnson’s 

Method 1 
14 365130.54 691114.24 184708.05 -33906.95 764168.02 910.12 2552455.01 

NEH 

Algorithm41 
14 354963.70 675471.15 180527.26 -35041.73 744969.13 856.56 2489542.66 

B. Goyal &S. 

Kaur 34 
14 362304.21 699562.45 186965.93 -41611.13 766219.54 882.11 2587262.75 

Proposed 

algorithm 
14 348815.43 657684.54 175773.59 -30920.31 728551.18 840.43 2417305.66 

Total 70 361571.79 668327.41 79880.40 202214.75 520928.84 840.43 2652455.06 

 

As discussed earlier, there is no clear statistically 

significant distinction among the various T levels. 

However, setting T to 0.5 appears to yield superior 

outcomes compared to a setting of 0.0, where only 

enhanced solutions are accepted. Further 

experiments with higher T levels did not result in 

additional improvements.  

Considering uncontrollable factors such as n-jobs 

and 2-machine setups, Further investigation into the 

optimal combinations of destruction and temperature 

factors for each of the 14 groups of instances can be 

conducted. While such analysis could potentially 

fine-tune the algorithm, it also runs the risk of over-

tuning, complicating its implementation. Therefore, 

all algorithms are executed under identical 

conditions. 

 

Table 9. Multiple Comparisons 

Dependent Variable: 

Tukey HSD 

(I) Algorithm 

Mean Difference 

(I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Palmer’s 

Method 2 

Johnson’s Method 11514.57571 260234.00707 1.000 -718656.2734 741685.4248 

NEH Algorithm 21681.40857 260234.00707 1.000 -708489.4406 751852.2577 

B. Goyal & S. Kaur 14340.90286 260234.00707 1.000 -715829.9463 744511.7520 

Proposed algorithm 27829.67929 260234.00707 1.000 -702341.1698 758000.5284 

Johnson’s 

Method 1 

Palmer’s Method -11514.57571 260234.00707 1.000 -741685.4248 718656.2734 

NEH Algorithm 10166.83286 260234.00707 1.000 -720004.0163 740337.6820 

B. Goyal & S. Kaur 2826.32714 260234.00707 1.000 -727344.5220 732997.1763 

Proposed algorithm 16315.10357 260234.00707 1.000 -713855.7456 746485.9527 

NEH 

Algorithm 41 

Palmer’s Method -21681.40857 260234.00707 1.000 -751852.2577 708489.4406 

Johnson’s Method -10166.83286 260234.00707 1.000 -740337.6820 720004.0163 

B. Goyal & S. Kaur -7340.50571 260234.00707 1.000 -737511.3548 722830.3434 

Proposed algorithm 6148.27071 260234.00707 1.000 -724022.5784 736319.1198 

B. Goyal &  

S. Kaur 34 

Palmer’s Method -14340.90286 260234.00707 1.000 -744511.7520 715829.9463 

Johnson’s Method -2826.32714 260234.00707 1.000 -732997.1763 727344.5220 

NEH Algorithm 7340.50571 260234.00707 1.000 -722830.3434 737511.3548 

Proposed algorithm 13488.77643 260234.00707 1.000 -716682.0727 743659.6256 

Proposed 

algorithm 

Palmer’s Method -27829.67929 260234.00707 1.000 -758000.5284 702341.1698 

Johnson’s Method -16315.10357 260234.00707 1.000 -746485.9527 713855.7456 

NEH Algorithm -6148.27071 260234.00707 1.000 -736319.1198 724022.5784 

B. Goyal & S. Kaur -13488.77643 260234.00707 1.000 -743659.6256 716682.0727 
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Based on the provided ANOVA results, it does not 

appear that there is a statistically significant 

difference in the performance of the proposed 

algorithm. The high p-values for the F-statistic in 

both the Between Groups comparisons suggest that 

any observed variations are likely due to random 

chance rather than systematic differences. The 

analysis of the mean differences between the 

proposed algorithm and the comparison algorithms 

(Palmer, Johnson, NEH, B. Goyal, and S. Kaur) 

reveals that, on average, there are no statistically 

significant variations. The mean differences and 

associated confidence intervals suggest that any 

observed distinctions in performance are likely 

attributable to random chance rather than inherent 

differences in the algorithms. 

Table 10. ANOVA for the experiment on the parameter of the proposed algorithm. 

Total waiting time 

 Sum of Squares df Mean Square F Sig. 

Between Groups 6255166517.299 4 1563791629.325 0.003 1.000 

Within Groups 30813390987352.500 65 474052169036.192   

Total 30819646153869.800 69    

 

These values represent the differences in means, 

precision, significance, and confidence intervals 

around those differences. The high p-values suggest 

that there are no statistically significant differences 

between the means of the proposed method and each 

of the other algorithms. The mean comparisons are 

clearly displayed in Fig 4. As discussed earlier, there 

is no discernible statistically significant distinction 

among the various T levels. Nevertheless, it appears 

that setting T to 0.5 yields superior outcomes 

compared to a setting of 0.0, where only enhanced 

solutions are accepted. Further experiments with 

higher T levels did not result in any additional 

improvements.  

Our experiment employed a non-parametric analysis, 

incorporating ANOVA and multiple comparisons, to 

assess the presence of statistically significant 

differences among the algorithms. ANOVA Table 10 

suggests no overall significance, yet mean 

comparisons reveal a slight variance in the total 

waiting time of jobs between the proposed and 

existing algorithms. Notably, one of the suggested 

heuristics consistently emerges as the most effective 

across various distributions, yielding an ANOVA 

below one. This conclusion is supported by both 

visual and statistical analyses, including Tukey’s 

ANOVA and the Kolmogorov-Smirnov signed rank 

test. Future research could explore integrating 

machine setup time, using trapezoidal fuzzy 

numbers, and extending the algorithm's application 

to scheduling problems with three or more machines. 

 

Figure 4. Quantile-Quantile Plot 

 

Figure 5. The statistical mean difference for 

FSSPs 
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Conclusion 

In this paper, the two-machine flow-shop scheduling 

problem with trapezoidal fuzzy processing times is 

addressed, aiming to minimize the total waiting time. 

A novel algorithm with a specially structured model 

is proposed. A defuzzification function is utilized to 

rank fuzzy numbers. The proposed method is then 

compared with existing algorithms, including NEH, 

Palmer, Johnson, and B. Goyal & Kaur all re-

implemented for this study. Results from exact 

algorithms indicate that the approach outperforms 

the existing algorithms in both solution quality and 

computational effort. The efficiency of the proposed 

algorithm for jobs 10, 20, 30, 40, 50, 60, 80, 90, 100, 

120, 150, 200, 250, 300, and 500 is demonstrated, 

statistically outperforming other heuristics. 

Additionally, there is an aim to integrate uncertainty 

into distributed scheduling to enhance the 

practicality of scheduling outcomes. Furthermore, a 

key focus of future work is to merge artificial 

intelligence techniques like reinforcement learning 

with intelligent optimization algorithms to tackle 

combinatorial optimization challenges. 

 

Authors’ Declaration 

- Conflicts of Interest: None. 

- We hereby confirm that all the Figures and Tables 

in the manuscript are ours. Furthermore, any 

Figures and images, that are not ours, have been 

included with the necessary permission for re-

publication, which is attached to the manuscript. 

- No animal studies are present in the manuscript. 

- No human studies are present in the manuscript. 

- Ethical Clearance: The project was approved by 

the local ethical committee at Vellore Institute of 

Technology, Vellore, India. 

 

Authors’ Contribution Statement 

K.R. and K.K. were responsible for the design and 

implementation of the research. K.R. performed 

drafting the manuscript, conducted the analysis, 

acquired data, interpreted the results, and contributed 

to the writing of the manuscript. K.K. did the revision 

and interpretation. All authors read and agreed upon 

the published version of the manuscript. 

 

References 

1. Johnson SM. Optimal Two- and Three-Stage 

Production Schedules with Setup Times Included. Nav 

Res Logist  Q. 1954 Mar; 1(1): 61–68. 

https://doi.org/10.1002/nav.3800010110 

2. Palmer DS. Sequencing Jobs Through a Multi-Stage 

Process in the Minimum Total Time—A Quick 

Method of Obtaining a Near Optimum. J Oper Res 

Soc. 1965 Mar; 16(1): 101-107. 

https://doi.org/10.1057/jors.1965.8 

3. Gupta JND. A Functional Heuristic Algorithm for the 

Flowshop Scheduling Problem. J Oper Res Soc. 1971; 

22(1): 39–47. https://doi.org/10.1057/jors.1971.18 
4. Campbell HG, Dudek RA, Smith ML. A Heuristic 

Algorithm for the n Job, m Machine Sequencing 

Problem. Manag Sci. Jun 1970; 16(10): B630-B637. 

https://www.jstor.org/stable/2628231 

5. Lee ES, Li R-J. Comparison of Fuzzy Numbers Based 

on the Probability Measure of Fuzzy Events. Comput 

Math Appl. 1988 Jan 1; 15(10): 887-896. 

https://doi.org/10.1016/0898-1221(88)90124-1 

6. Liu GS, Tu M, Tang YS, Ding TX. Energy-Aware 

Optimization for the Two-Agent Scheduling Problem 

with Fuzzy Processing Times. Int J Interact Des 

Manuf. 2023 Feb 1; 17(1): 237–248. 

https://doi.org/10.1007/s12008-022-00927-9 

7. Amat S, Ortiz P, Ruiz J, Trillo JC, Yanez DF. 

Geometric Representation of the Weighted Harmonic 

Mean of n Positive Values and Potential 

Applications. Indian J Pure Appl Math. 2023 Apr 30; 

55(2): 794–804.  https://doi.org/10.1007/s13226-023-

00409-y 

8. Abduljabbar IA, Abdullah SM. An Evolutionary 

Algorithm for Solving Academic Courses Timetable 

Scheduling Problem. Baghdad Sci  J. 2022 Apr 1; 

19(2): 399–408. 

https://doi.org/10.21123/bsj.2022.19.2.0399 

https://doi.org/10.21123/bsj.2024.10784
https://doi.org/10.1002/nav.3800010110
https://doi.org/10.1057/jors.1965.8
https://doi.org/10.1057/jors.1971.18
https://www.jstor.org/stable/2628231
https://doi.org/10.1016/0898-1221(88)90124-1
https://doi.org/10.1007/s13226-023-00409-y
https://doi.org/10.1007/s13226-023-00409-y
https://doi.org/10.21123/bsj.2022.19.2.0399


 

Published Online First: October, 2024 

https://doi.org/10.21123/bsj.2024.10784  

P-ISSN: 2078-8665 - E-ISSN: 2411-7986 
 

Baghdad Science Journal 

9. Shen J, Shi Y, Shi J, Dai Y, Li W. An Uncertain 

Permutation Flow Shop Predictive Scheduling 

Problem with Processing Interruption. Phys. A: Stat  

Mech  Appl. 2023 Feb 1; 611: 1-15. 

https://doi.org/10.1016/j.physa.2023.128457 

10. Allahverdi M, Allahverdi A. Minimizing Total 

Completion Time for Flowshop Scheduling Problem 

with Uncertain Processing Times. RAIRO–Oper Res. 

2021; 55: S929 - S946. 

https://doi.org/10.1051/ro/2020022 

11. Mehdizadeh E, Soleimaninia F. A Vibration Damping 

Optimization Algorithm to Solve Flexible Job Shop 

Scheduling Problems with Reverse Flows. Int J Res  

Ind Eng. 2023 Dec 1; 12(4): 431-449. 

https://doi.org/10.22105/riej.2023.383451.1363 

12. Bagheri M, Meybodi NB, Enzebati AH. Modeling and 

Optimizing a Multi-Objective Flow Shop Scheduling 

Problem to Minimize Energy Consumption, 

Completion Time and Tardiness. J  Oper Res Decis. 

2018 Nov 22; 3(3): 204-

222.   https://doi.org/10.22105/dmor.2018.81214 

13. Allahverdi M. An Improved Algorithm to Minimize 

the Total Completion Time in a Two-Machine No-

Wait Flow-Shop with Uncertain Setup Times. J Proj 

Manag. 2022; 7(1): 1-12. 

https://doi.org/10.5267/j.jpm.2021.9.001  

14. AL-jabr M, Diab A, AL-Diab J. Distributed Heuristic 

Algorithm for Migration and Replication of Self-

Organized Services in Future Networks. Baghdad Sci 

J. 2022 Dec 1; 19(6): 1335-1345. 

https://doi.org/10.21123/bsj.2022.6338 

15. Asif MK, Alam ST, Jahan S, Arefin MR. An Empirical 

Analysis of Exact Algorithms for Solving Non-

Preemptive Flow Shop Scheduling Problem. Int J Res  

Ind Eng. 2022 Sep 1; 11(3): 306-321. 

http://dx.doi.org/10.22105/riej.2022.350120.1324 

16. McCahon CS, Lee ES. Job Sequencing with Fuzzy 

Processing Times. Computers Math  Applic. 1990 Jan 

1; 19(7): 31–41. https://doi.org/10.1016/0898-

1221(90)90191-L 

17. Abdullah S, Abdolrazzagh-Nezhad M. Fuzzy Job-

Shop Scheduling Problems: A review. Inf Sci. 2014 

Sep 10; 278: 380–407. 

https://doi.org/10.1016/j.ins.2014.03.060 

18. Dubois D, Prade H. Ranking Fuzzy Numbers in the 

Setting of Possibility Theory. Inf  Sci. 1983 Sep 1; 

30(3): 183–224. DOI: https://doi.org/10.1016/0020-

0255(83)90025-7 

19. Mahfouf M, Abbod MF, Linkens DA. A Survey of 

Fuzzy Logic Monitoring and Control Utilisation in 

Medicine. Artif Intell Med. 2001 Jan 1; 21(1-3): 27-

42. https://doi.org/10.1016/S0933-3657(00)00072-5  

20. Kiptum CK, Bouraima MB, Badi I, Zonon BIP, 

Ndiema KM, Qiu Y. Assessment of the Challenges to 

Urban Sustainable Development Using an Interval-

Valued Fermatean Fuzzy Approach. Syst Anal. 2023 

Aug 29; 1(1): 11-26. 

https://doi.org/10.31181/sa1120233  

21. Alburaikan A, Garg H, Khalifa HA. A Novel 

Approach for Minimizing Processing Times of Three-

Stage Flow Shop Scheduling Problems Under 

Fuzziness. Symmetry. 2023 Jan 2; 15(1): 1-13. 

https://doi.org/10.3390/sym15010130 

22. Zhou W, Chen F, Ji X, Li H, Zhou J. A Pareto-Based 

Discrete Particle Swarm Optimization for Parallel 

Casting Workshop Scheduling Problem with Fuzzy 

Processing Time. Knowl.-Based Syst. 2022 Nov 28; 

256: 1-13. 

https://doi.org/10.1016/j.knosys.2022.109872  

23. Zubair SAM. Single-Valued Neutrosophic Uncertain 

Linguistic Set Based on Multi-Input Relationship and 

Semantic Transformation. J  Fuzzy  Ext  Appl. 2023 

Oct 1; 4(4): 257–270. 

https://doi.org/10.22105/jfea.2023.423474.1319 

24. Akram M, Ullah I, Allahviranloo T, Edalatpanah SA. 

LR-Type Fully Pythagorean Fuzzy Linear 

Programming Problems with Equality Constraints. J  

Intell Fuzzy Syst. 2021; 41(1): 1975–1992. 

https://doi.org/10.3233/JIFS-210655 

25. Zanjani B, Amiri M, Hanafizadeh P, Salahi M. Robust 

Multi-Objective Hybrid Flow Shop Scheduling. J Appl 

Res. Ind  Eng. 2021 Mar 1; 8(1): 40-55. 

https://doi.org/10.22105/jarie.2021. 252651.1202  

26. Edalatpanah SA, Khalifa HA, Keyser RS. A New 

Approach for Solving Fuzzy Cooperative Continuous 

Static Games. Soft  Comput Fusion Appl. 2024 Jan 15; 

1(1): 19-26.  

27. Gupta D, Goyal B. Specially Structured Flow Shop 

Scheduling in Two Stage with Concept of Job Block 

and Transportation Time to Optimize Total Waiting 

Time of Jobs. Int J Eng  Technol. 2018 Oct-Nov; 

10(5): 1273–1284. 

https://doi.org/10.21817/ijet/2018/v10i5/181005022  

28. Engin O, Isler M. An Efficient Parallel Greedy 

Algorithm for Fuzzy Hybrid Flow Shop Scheduling 

with Setup Time and Lot Size: A Case Study in 

Apparel Process. J Fuzzy Ext Appl. 2022 Jul 1; 3(3): 

249–262. 

https://doi.org/10.22105/jfea.2021.314312.1169 

29. Bahmani V, Adibi MA, Mehdizadeh E. Integration of 

Two-Stage Assembly Flow Shop Scheduling and 

Vehicle Routing Using Improved Whale Optimization 

Algorithm. J  Appl Res Ind  Eng. 2023 Mar 1; 10(1): 

56–83. 

https://doi.org/10.22105/jarie.2022.329251.1450 

30. Rouhbakhsh R, Mehdizadeh E, Adibi MA. Presenting 

a Model for Solving Lot-Streaming Hybrid Flow Shop 

Scheduling Problem by Considering Independent 

Setup Time and Transportation Time. J Decis Oper 

Res. 2023;  8(2): 307–332. 

https://doi.org/10.22105/dmor.2022.296154.1450 

31. Jain C, Saini RK, Sangal A. Application of 

Trapezoidal Fuzzy Numbers in the Inventory Problem 

of Decision Science. Multicriteria Algo  Appl. 2024 

https://doi.org/10.21123/bsj.2024.10784
https://doi.org/10.1016/j.physa.2023.128457
https://doi.org/10.1051/ro/2020022
https://doi.org/10.22105/riej.2023.383451.1363
https://doi.org/10.22105/dmor.2018.81214
http://dx.doi.org/10.5267/j.jpm.2021.9.001
https://doi.org/10.21123/bsj.2022.6338
http://dx.doi.org/10.22105/riej.2022.350120.1324
https://doi.org/10.1016/0898-1221(90)90191-L
https://doi.org/10.1016/0898-1221(90)90191-L
https://doi.org/10.1016/j.ins.2014.03.060
https://doi.org/10.1016/S0933-3657(00)00072-5
https://doi.org/10.31181/sa1120233
https://doi.org/10.3390/sym15010130
https://doi.org/10.1016/j.knosys.2022.109872
https://doi.org/10.22105/jfea.2023.423474.1319
https://doi.org/10.3233/JIFS-210655
https://doi.org/10.22105/jarie.2021.252651.1202
https://doi.org/10.21817/ijet/2018/v10i5/181005022
https://doi.org/10.22105/jfea.2021.314312.1169
https://doi.org/10.22105/jarie.2022.329251.1450
https://doi.org/10.22105/dmor.2022.296154.1450


 

Published Online First: October, 2024 

https://doi.org/10.21123/bsj.2024.10784  

P-ISSN: 2078-8665 - E-ISSN: 2411-7986 
 

Baghdad Science Journal 

Mar 12; 3: 1–14. 

https://doi.org/10.61356/j.mawa.2024.311461 

32. Goyal B, Kaur S.  Flow Shop Scheduling-Especially 

Structured Models Under Fuzzy Environment with 

Optimal Waiting Time of Jobs. Int  J  Design 

Engineering. 2022 Nov; 11(1): 47–60. 

https://doi.org/10.1504/IJDE.2022.127075 

33. Goyal B, Kaur S. Comparative Performance Analysis 

of Heuristics with Bicriterion Optimization for Flow 

Shop Scheduling. In: Das S, Saha S, Coello Coello 

CA, Bansal JC, editors. Advances in Data-Driven 

Computing and Intelligent Systems. ADCIS 2022. 

Lecture Notes in Networks and Systems.   Singapore: 

Springer. 2023; 698:  p.653–669. 

https://doi.org/10.1007/978-981-99-3250-4_50. 

34. Goyal B, Kaur S. Specially Structured Flow Shop 

Scheduling Models with Processing Times as 

Trapezoidal Fuzzy Numbers to Optimize Waiting 

Time of Jobs. In: Tiwari A, Ahuja K, Yadav A, Bansal 

JC, Deep K, Nagar AK, editors. Soft Computing for 

Problem Solving. Advances in Intelligent Systems and 

Computing. Singapore: Springer; 2021; 1393: p. 27-

42. https://doi.org/10.1007/978-981-16-2712-5_3 

35. Zhang W, Li C, Gen M, Yang W, Zhang G. A 

Multiobjective Memetic Algorithm with Particle 

Swarm Optimization and Q-Learning-Based Local 

Search for Energy-Efficient Distributed 

Heterogeneous Hybrid Flow-Shop Scheduling 

Problem. Expert Syst Appl. 2023 Mar; 237(Part C): 1-

20. https://doi.org/10.1016/j.eswa.2023.121570 

36. Behnamian J. Survey on Fuzzy Shop Scheduling. 

Fuzzy Optim Decis Making. 2016 Sep; 15: 331-366. 

https://doi.org/10.1007/s10700-015-9225-5  

37. Zimmerman H-J. Fuzzy Set Theory and its 

Applications. 4th edition. New York: Springer 

Seience+Business Media; 2001. Chapter 1, 

Introduction to Fuzzy Sets; p.1-8. 

https://doi.org/10.1007/978-94-010-0646-0_1 

38. Zadeh LA. Fuzzy Sets  Inf  Control. 1965; 8(3): 338-

353. https://doi.org/10.1016/S0019-9958(65)90241-X 

39. Elizabeth S, Sujatha L. Project Scheduling Method 

Using Triangular Intuitionistic Fuzzy Numbers and 

Triangular Fuzzy Numbers. Appl Math Sci. 2015; 

9(4): 185–198. 

http://dx.doi.org/10.12988/ams.2015.410852 

40. Ranjith K, Karthikeyan K. New Algorithm for Two-

Machine Fuzzy Flow Shop Scheduling Problem with 

Trapezoidal Fuzzy Processing Time. J Intell Fuzzy 

Syst. 2024; 46: 1-14. https://doi.org/10.3233/JIFS-

235526 

41. Nawaz M, Enscore EE, Ham I. A Heuristic Algorithm 

for the m-Machine, n-Job Flow-Shop Sequencing 

Problem. Omega. 1983; 11(1): 91-95. 

https://doi.org/10.1016/0305-0483(83)90088-9 

42. Paraveen R, Khurana MK. A Comparative Analysis of 

SAMP-Jaya and Simple Jaya Algorithms for PFSSP. 

Soft Comput. 2023 Aug 1; 27(15):  10759–10776. 

https://doi.org/10.1007/s00500-023-08261-2 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.21123/bsj.2024.10784
https://doi.org/10.61356/j.mawa.2024.311461
https://doi.org/10.1504/IJDE.2022.127075
https://doi.org/10.1007/978-981-99-3250-4_50
https://doi.org/10.1007/978-981-16-2712-5_3
https://doi.org/10.1016/j.eswa.2023.121570
https://doi.org/10.1007/s10700-015-9225-5
https://doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.12988/ams.2015.410852
https://doi.org/10.3233/JIFS-235526
https://doi.org/10.3233/JIFS-235526
https://doi.org/10.1016/0305-0483(83)90088-9
https://doi.org/10.1007/s00500-023-08261-2


 

Published Online First: October, 2024 

https://doi.org/10.21123/bsj.2024.10784  

P-ISSN: 2078-8665 - E-ISSN: 2411-7986 
 

Baghdad Science Journal 

تقليل إجمالي وقت الانتظار لمشكلة جدولة متجر التدفق الغامض لجهازين مع وقت معالجة غير 

 مؤكد

 كارثيكيان ك.  ، ك.رانجيث

 

 .قسم الرياضيات، كلية العلوم المتقدمة، معهد فيلور للتكنولوجيا، فيلور، الهند

 

 ةالخلاص

محددة مع مرور الوقت. تقليديا، كان وقت المعالجة لكل مهمة يعتبر قيمة ثابتة. ومع  تتضمن الجدولة تخصيص الموارد للوظائف ضمن قيود

م أسلوب يذلك، في السيناريوهات العملية، يمكن أن تتقلب أوقات معالجة الوظائف ديناميكياً بناءً على الظروف السائدة. في هذه المقالة، يتم تقد

في بيئة غامضة، حيث يتم تمثيل أوقات معالجة الوظيفة بأرقام غامضة شبه منحرفة.  (FSSP) جديد لمشكلة جدولة متجر التدفق الضبابي

المكون من جهازين مع أوقات معالجة غامضة.  FSSP بالإضافة إلى ذلك، تم اقتراح وتطوير خوارزمية جديدة تعتمد على نهج جويال لـ

ئها في هذا السياق المحدد. تهدف الدراسة إلى تقليل إجمالي وقت الانتظار وفي الوقت نفسه، تم تعزيز الخوارزمية الموجودة لتحسين أدا

 مللوظائف. يتم استخدام وظيفة إزالة الضبابية لترتيب الأرقام الغامضة، بهدف نهائي هو تقليل إجمالي وقت الانتظار. علاوة على ذلك، يقو

، 011، 01، 01، 01، 01، 01، 01، 01، 01تخدام مشاكل الاختبار مع المقال بتقييم أداء هذه الأساليب من حيث جودة الحلول، وذلك باس

إجمالي وقت الانتظار بالخوارزميات الموجودة، آلات. تتم مقارنة متوسط  0وظيفة، جنبا إلى جنب مع  011، و 011، 001، 011، 001

والخوارزمية المقترحة. بالإضافة إلى ، B. Kaurو B. Goyal، وJohnson ، وطريقةPalmer ، وطريقةNEH بما في ذلك خوارزمية

جيد التنظيم، تسلط الضوء على فعالية الطريقة المقترحة في معالجة  ANOVA ذلك، فإن النتائج التي تم الحصول عليها، إلى جانب اختبار

ثنائي الجهاز  FSSP بشكل فعال في مشكلة الجدولة قيد التحقيق. توضح النتائج التجريبية أن الخوارزمية المقترحة يمكنها تقليل وقت الانتظار

 .وتحقيق نتائج متفوقة بالمقارنة مع الخوارزميات المختلفة الموجودة

التسلسل الأمثل، الرقم شبه المنحرف  : مشكلة جدولة متجر التدفق الغامض، المنطق الضبابي، الخوارزمية الإرشادية،المفتاحية الكلمات

(TrFN.إجمالي وقت الانتظار ،) 

https://doi.org/10.21123/bsj.2024.10784

