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Introduction 

Convolutional neural networks (CNNs) have 

achieved remarkable success in detecting diseases 

including cancer 1, heart disease 2, and diabetes 3, 

Alzheimer’s disease 4, schizophrenia 5, from medical 

images 6. Despite being a potential tool for disease 

detection, CNNs are computationally expensive and 

time consuming 7. Moreover, the limited 

interpretability of CNNs hampers trust in medical 

applications, hindering decision-making and 

acceptance by healthcare professionals. Here, this 

study uses two different methods for detecting two 

different diseases: Tumors and COVID-19. 

The prevalence of brain tumors, which are severe 

illnesses that impair multiple brain functions, and the 

use of magnetic resonance imaging (MRI) 

technology to examine anatomical changes occurring 

in tumors has increased substantially in recent years 
8,9. MRI plays a vital role in helping to identify the 

lesion location, assess the extent of tissue 

involvement, and evaluate the resulting mass effect 

on the brain, ventricular system, and vasculature 10. 

Structural MRI studies have shown that brain tumor 

patients typically have smaller total brain volumes 

and larger ventricles than healthy individuals 11. To 

analyze MRI scans for research purposes, large 

groups of patients and healthy control subjects are 

used 12–14. 
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Chest computed tomography (CT) scans have the 

potential to diagnose, identify, and predict the 

prognosis of coronavirus disease 2019 (COVID-19) 
15. The clinical utility of CT will increase with 

suitable preventative safety measures, protocol 

optimization, and a standardized reporting system 

based on pulmonary findings in this disease 16,17. 

However, the results of chest CT scans can be both 

false-positive and false-negative. Imaging techniques 

including chest CT findings of COVID-19 and its 

complications, and chest CT diagnostic accuracy 

using a mathematical model and machine learning 

for patients and healthy control subjects have been 

discussed 18,19. 

This project proposes a mathematical model for 

classifying and detecting diseases (Tumors and 

COVID-19) based on mathematical modeling and 

machine learning. Here, two types of MR images, 

functional MRI (fMRI) and structural MRI (sMRI), 

are helpful techniques for examining functional and 

structural abnormalities in images 20–22. This model 

computes different mathematical quantities from MR 

images, such as the moment of inertia, fractal 

dimensions, and entropy 23–25. These quantities are 

then used by machine learning models, such as 

support vector machines (SVMs) 26, K-nearest 

neighbors (KNN) 27 and logistic regression (LR) 28, 

for classification using features of images with 

certain accuracy 29–31. 

Classification is a supervised machine learning 

procedure in which input data are assigned to 

predetermined groups or classes 32. The primary need 

for applying a classification technique is that all data 

items must be assigned to specific classes, with each 

data object being assigned to only a single class. 

Additionally, the primary emphasis of the k-NN 

classifier has been on datasets containing exclusively 

numerical features. One prevalent classification 

technique that relies on distance metrics is the k-NN 

method. The conventional k-NN classification 

algorithm is utilized to identify the k-NN and 

categorize numerical data records by evaluating the 

Euclidean distance between the test sample and all 

training samples 33. The primary principle of k-NN 

algorithm is to compute the distances between the 

tested data samples and the training data samples to 

identify the nearest neighbors. The tested sample is 

thereafter allocated to the class of its closest 

neighbor. The technique can be used for both 

classification and regression between healthy and 

patient datasets.  

This research proposes a novel image classification 

method for disease detection that leverages Shannon 

entropy and the fractal dimension. This work 

contributes to developing interpretable and 

computationally efficient tools for disease diagnosis 

through medical image analysis. Our study’s results 

highlight this approach’s potential for advancing the 

field of disease detection and improving patient 

outcomes, Table 1 shows the literature survey of 

existing work and its advantages and limitations. 

Table 1. Literature survey of existing work and their advantages and limitations 
Author       Method Classifier Entropy/ 

Fractal 

Dimension  

Advantage 

Hasan AM 

et al. 13 

To exploit the Convolutional Neural Network 

(CNN) in discriminating breast MRI scans into 

pathological and healthy. 

CNN Entropy 326 T2W-TSE images 

and 326 STIR images 

is 98.77%.  

Utkarsh 

Lal et al.34 

To conduct a comparative analysis of the various 

FDs that, as feature extraction measures from 

EEG, can discriminate Parkinson's patients who 

are ON and OFF medication from healthy 

controls using ML architecture. 

KNN Fractal 

Dimension 

highest accuracies, 

yielding a mean 

accuracy of 99.65% for 

PD patients ON 

medication and 99.45% 

for PD patients OFF 

medication, 

respectively. 

Raveenthin

i M et al.35 

 To develop a generic multiocular CAD system 

for Diabetic retinopathy and glaucoma diagnosis 

CNN 

based DL 

Entropy 

and fractal 

features 

The proposed ensemble 

model resulted in 

accuracy as 98.08%, 

for three-class 

classification to 

categorize samples as 
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normal, DR or 

glaucoma. 

Munmun 

Swain et 

al.36 

Two most effective techniques are used in 

separate operations, FA: Box Count Method 

(BCM) and Support Vector Machine (SVM). 

SVM Fractal 

Dimension 

The combination of 

SVM and FD yielded 

the highest with 

98.13% accuracy. 

Dheerendr

anath 

Battalapalli 

et al.37 

To comprehensively investigate the potential of 

fractal dimension (FD) measures in 

discriminating brain gliomas by examining 

tumor and nontumorous. 

ML Fractal 

Dimension 

FD values of enhanced 

tumor regions yielded 

high accuracy (93%). 

Anisha 

Rebinth et 

al.38 

The Glaucoma Image Classification (GIC) is 

made by using different entropy features and 

Maximum Likelihood Classifier (MLC). 

Maximum 

likelihood 

classifier 

Shannon 

Entropy 

The classification 

accuracy of 96% by 

using Shannon entropy 

feature and MLC 

Pilar Ortiz-

Vilchis et 

al.39 

An Entropy-based Measure of Complexity 

(EMC) to analyses lung CT images of COVID-

19. 

Statistical 

Analysis 

Entropy Lung Damage Measure 

(LDM) increased as 

much as clinical 

classification and CO-

RADS scores. 

Ammini 

Renjini et 

al.40 

For accurate prediction of rhonchi (RB) and 

Bronchial Breath (BB) signals, Power Spectral 

Density (PSD) and non-linear measures are fed 

as input attributes to various machine learning 

models.  

PCA Fractal 

Dimension 

PCA cover 

approximately 86.5% 

of the overall variance 

of the data class, 

successfully 

distinguishing BB and 

RB signals. 

Urvashi 

Sharma et 

al.41 

To find universal threshold values for prediction 

and provide an optimum block size for encoding 

used Independent Gradient Edge Predictor16 

(RIGED16) and Block Based Arithmetic 

Encoding (BAAE). 

Block 

Based 

Arithmetic 

Encoding 

(BAAE) 

Fractal 

Analysis 

The proposed 

technique gives a 

higher coding 

efficiency rate 

compared to other 

techniques. 

 

Methodology 

This study employs a four-step approach to classify images based on features derived from Shannon entropy 

and fractal dimension. First, these features are 

extracted from both MRI and CT scans of individuals 

classified as either tumor-positive, COVID-positive, 

or healthy controls. Statistical analysis was used to 

evaluate then evaluates the significance and potential 

discriminative power of these features. Visualization 

through scatter plots further aids in understanding the 

data distribution. Finally, the k -nearest neighbor (k-

NN) technique leverages these features to classify 

new images based on their similarity to known 

classes. Notably, preliminary analysis revealed a 

significant difference in average entropy values 

between COVID-19-positive and COVID-19-

negative patients, suggesting its potential as a 

discriminative feature. 

Entropy 

Entropy, a fundamental concept in thermodynamics, 

statistical mechanics, and information theory, may 

provide a clearer understanding of its relationship to 

chaos, unpredictability, and a lack of information 42. 

In particular, Shannon entropy is used in information 

theory, communication theory, and related areas 

such as cryptography and image processing 43. 

Several survey reports have reviewed the 

applications of entropy in a variety of areas, such as 

economics 44, image processing 45, discrete 

mathematics 46, and signal processing 47,48. The 

concept of information theory, Shannon’s entropy of 

an image, involves the average level of 

“randomness” or “uncertainty” inherent to the 

variable’s possible outcomes 49. To measure the 

uncertainty or randomness of the image, then sum the 

probability of each pixel value in the image 

https://doi.org/10.21123/bsj.2024.10835
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multiplied by the logarithm of that probability 50. 

Here the probabilistic events are the pixel intensities 

of the 2-D histogram between the images (normal 

and patient images) 51. 

Mathematical Explanation: 

The continuous probability distribution function 

p(x), depicted in the histogram plots of Fig. 1. 

1. Histogram Calculation: First, a histogram of 

pixel intensities from the medical image is 

constructed. The frequency of occurrence of 

each intensity level in the image is represented 

by this histogram.  

2. Probability Distribution: Calculate the 

probability 𝑝𝑖 of each intensity level ii by 

dividing the frequency of that intensity by the 

total number of pixels in the image. 

Mathematically: 𝑝𝑖 = 
𝑛𝑖

𝑁
 , where: 𝑛𝑖 is the 

frequency of intensity level ii in the histogram. 

N is the total number of pixels in the image. 

3. Shannon Entropy Calculation: The most 

significant entropy in applications is Shannon 

entropy, which is defined as follows: let X be a 

discrete random variable as Eq. 1 

H(X)   =−∑ 𝑝𝑖
𝑚−1
𝑖 . 𝑙𝑜𝑔𝑏𝑝𝑖 

=∫𝑝𝑖(𝑥).𝑙𝑜𝑔𝑏𝑝𝑖(𝑥). 𝑑𝑥                                     1 
where m is the number of gray levels (256 for 8-bit 

images), pi is the probability of a pixel having gray 

level i, p ∈ [0,1], and b is the base of the logarithm 

function, which is a natural measure of additivity. In 

medical imaging, entropy is a measure of complexity 

or irregularity in MRI structures of Tumors. For such 

cases, biologically a new type of cell growth is 

observed that is easily captured in the MR images. 

Analyzing such images gives rise to low entropy 

values. Low entropy says that the pixel values are 

reasonably uniform or predictable, whereas high 

entropy suggests that the pixel values are highly 

variable or random. Depending on the nature of the 

disease, a higher or lower entropy value might be 

observed, as calculated from the associated images. 

Next, to measure the complexity of an MR image, the 

fractal dimension is calculated by dividing the 

number of boxes needed to cover an image by the 

size of the boxes. A higher fractal dimension has 

been associated with disease, which indicates greater 

complexity and more detail at smaller image scales.   

 
Figure. 1. Pixel value histograms for (a) healthy 

and (b) COVID-19-affected CT scan images.    

COVID-19 images have a more no uniform pixel 

value distribution. 

 

Fractal Dimension 

In mathematical terms, a fractal is a geometric set 

such that its Hausdorff-Besicovitch dimension 

strictly exceeds its topological dimension 52. Benoit 

Mandelbrot introduced the term “fractal” to refer to 

non-Euclidean structures that exhibit self-similarity 

at various sizes. 

In Euclidean n-dimensional space, a bounded set A 

can be considered statistically self-similar if A is the 

union of 𝐾ϵ nonoverlapping subsets with respect to a 

scaling factor ϵ, each of which is of the form ϵ(An) 

where the 𝐾ϵ, and 𝐴𝑛  sets are congruent in 

distribution to A. 

Here, using the box-counting technique the fractal 
dimension can be computed as Eq. 2: 

 Fractal dimension = 
log(𝐾ϵ)

log(1 ϵ⁄ )
                                    2 

where 𝐾ϵ  is the number of self-similar (invariant) 

shapes and ϵ is the corresponding scaling factor and 

the fractal dimension of the shape is estimated as 

shown in Fig. 2. 

Let us consider analyzing a medical image of a chest 

X-ray of a patient with COVID-19 using the box-

counting method. 

1. Box Size Determination: Choose a range of box 

sizes ϵ, for example, ϵ = 2𝐾 for k=0,1, 2,...,K, 

where K is the maximum scale determined by the 

image resolution. 

2. Covering the image: Cover the chest X-ray 

image with nonoverlapping boxes of size ϵ for 

each scale k. Count the number of boxes 𝐾𝑡 
needed to cover the chest X-ray at each scale. 

https://doi.org/10.21123/bsj.2024.10835
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3. Fractal Dimension Calculation: Box-counting 

data are used to estimate the fractal dimension D 

using the formula mentioned earlier as Eq. 3:  

D= 𝑙𝑖𝑚ϵ→0 
log(𝐾ϵ)

log(1 ϵ⁄ )
                                      3 

A quantitative assessment of the structural 

complexity or irregularity of chest X-ray can be 

obtained from the fractal dimension that is produced. 

Higher complexity or irregularity is indicated by a 

higher fractal dimension, whereas greater uniformity 

or regularity is suggested by a lower fractal 

dimension. This information can help with the 

diagnosis and treatment of several medical 

conditions as well as the analysis of the anatomy and 

texture of structures in medical images. 

One advantage of this operation is that it increases 

the values of the dark pixels while decreasing the 

values of the higher brightness levels of images. It 

also reduces the light intensity of images with wide 

pixel value changes. The fractal dimension of a shape 

can be used to quantify its complexity. For example, 

a shape with a high fractal dimension is more 

complex than one with a low fractal dimension. Note 

that the parameters for the above calculations are 1. 

Binwidth for pixel histogram plot (for entropy), 2. 

Box size for fractal dimension.  

 

 
Figure 2. log (box size) vs log (box count) for a 

specific MRI image of Tumor. The slope of the 

line connecting the data points was used to 

determine fractal dimension of the image. 

 

Results and Discussion 

The results discussed in the section are obtained for 

the freely available open-source image data, which 

have been used, the details of which are given in the 

“Data availability” section. 

Medical Image Analysis 
Our analysis explored the potential of Shannon 

entropy and fractal dimension to distinguish between 

COVID-19 patients and healthy individuals using 

CT scan images 53–55. Fig. 3 reveals distinct patterns 

in these measures between the diseased patients 

(shown in red) and healthier patients (blue). Fig. 3(a) 

shows that COVID-19 patients exhibited 

significantly lower average entropy (5.66 ± 0.68) 

than healthy patients (6.47 ± 0.43). Conversely, the 

average fractal dimension was significantly greater 

(2.03 ± 0.28) in the COVID-19 patients than in the 

healthy controls (1.81 ± 0.26), as shown in Fig. 3 (b). 

These findings suggest that entropy and fractal 

dimension might capture characteristic changes in 

lung tissue associated with COVID-19, with lower 

entropy potentially reflecting increased homogeneity 

and higher fractal dimension indicating greater 

structural complexity in diseased lungs. 

                 
Figure 3. Shannon entropy and fractal dimension for each of the available images for the COVID-19 

and non-COVID-19 patients. 

By calculating the Shannon entropy and fractal 

dimension for both tumor and nontumor areas of 

interest (ROIs), a comparison can be made to 

discern dissimilarities in the level of complexity, 

https://doi.org/10.21123/bsj.2024.10835
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heterogeneity, or structural attributes between 

the two categories of regions. Due to the scarcity 

of MR images for tumors, patients did not 

exhibit any clear patterns as Fig. 4. 

       

Figure 4. (a) Shannon entropy and (b) fractal dimension of Tumor data 

 
Figure 5. Shannon entropy VS fractal dimension of (a) COVID-19 (left) and (b) Tumor data images 

(right). 

Additionally, this observes that the CT scan images 

corresponding to COVID-19 patients, on average, 

showed higher Shannon entropy (S) values, and 

lower fractal dimension values (d). On the other 

hand, healthy patients have lower entropy values and 

greater fractal dimensions 56–58. This correlation 

inherently gives rise to the classification scheme 

between the diseased and healthy patients in the S−d 

plane as Fig. 5. 

Therefore, on average, plotting Si vs di will give rise 

to 2 separable clusters. These clusters can then be 

separated using various machine learning techniques, 

one of which has been used in this work, namely the 

k-nearest neighbor method. As explained earlier, 

diseased patients (shown in red) and healthy controls 

(shown in blue) were included. Two distinct clusters 

are visible for the COVID-19 figure, whereas due to 

unavailability of data the Tumor figure conceals any 
inherent clustering. 

Theoretical Analysis 

Consider a grayscale image where each pixel 

indicates the intensity of light. When noise is added 

(for example, random pixel value changes), the 

image becomes more unpredictable and 

disorganized. The unpredictability or randomness 

can be quantified using entropy. A uniform or 

homogeneous probability distribution gives rise to 

higher entropy values than nonhomogeneous 

distributions. For SARS-Cov2 patients, CT images 

show ground-glass opacities or cloudy areas in 

peripheral regions 59. This phenomenon manifests 

itself in the image’s increased number of darker pixel 

values. Therefore, the distribution of the pixel values 

becomes skewed toward the left of the spectra 

(meaning toward lower values). However, for the 

images of healthy patients, the distribution remains 

quite homogeneous through the spectra of pixel 

values, which results in larger values of entropy. On 

the other hand, the skewed pixel distribution of 

diseased patients shows lower entropy values. 

Mathematically, it can represent decreasing entropy 

as follows: Eshannon(Healthy) > Eshannon(Disease) 

where Eshannon(Healthy) is the entropy of healthy, and 

Eshannon(Disease) is the entropy of diseased. Note that 

this behaviour of entropy is entirely dependent on the 

pixel distribution and, hence, on the specific type of 

https://doi.org/10.21123/bsj.2024.10835
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disease and how it impacts the system. On the other 

hand, noise disrupts the self-similarity of patterns or 

textures, making the image appear less structured. 

This can be quantified using the fractal dimension. 

Fractal Dimension Decreasing implies that the 

structures within the image are becoming less 

complex or less self-similar. Mathematically, it can 

represent fractal dimension decreasing as: FDHealthy 

< FDDisease 

where FDHealthy and FDDisease are the fractal 

dimensions indicating an increase in the fractal 

dimension. Therefore, entropy is a tool used in image 

processing to measure an image’s informational 

density. Note that the proportionality between the 

Shannon entropy and the fractal dimensions, as 

indicated by some authors 60,61, is not observed for 

our case partially due to the nonuniformity of the 

sizes of the accessible dataset used. 

It seems that in the case of some diseases, the 

opposite scenarios can also appear due to the 

following: 

a. For healthy patients, there was a lower entropy 

and a greater fractal dimension. This suggests 

that the image has clarity, the pixel values are 

predictable, and there is considerable self-

similarity among the structures. 

b. For diseased patients, entropy may increase 

when there are artifacts, noise, or pathology 

(such as a tumor). Higher entropy levels arise 

from the randomness that the noise and 

abnormalities add to the image. 

These relations inherently give rise to a classification 

technique to classify the images, the details of which 

are given in the next section. This technique was used 

for both sets of data: CT scan of COVID-19 and MR 

images of tumors. 

Statistical Analysis 

Here, statistical tests (e.g., t-test) were used to assess 

whether there were significant differences in entropy 

between healthy controls and individuals with 

Tumors or COVID-19. To compare and check for 

significant differences in entropy between MRI scans 

and CT scans, the t-test can be used. Levene’s test 

was used to determine whether the variances of two 

or more classes were statistically different. This test 

is used to determine the homogeneity of variances 

between the classes through the following 

hypotheses: 

Null Hypothesis (H0): The variances of the two 

classes are equal (homogeneous). H0:  𝜎1
2 = 

𝜎2
2=…=𝜎𝑘

2 

Alternative Hypothesis (Ha): The variances of the 

two classes are not equal (heterogeneous). Ha: 𝜎𝑖
2 ≠

𝜎𝑗
2 for at least one pair (i, j). 

Typically, the test statistic calculated by Levene's 

test is derived from the absolute deviations of the 

observations from their group mean values. The test 

statistic can be calculated as follows as Eq. 4: 

W = 
(𝑁−𝑘)

(𝑘−1)
 × 

∑ 𝑁𝑖(𝑍𝑖.−𝑍..)
2𝑘

𝑖=1

∑ ∑ |𝑍𝑖.−𝑍..|
2𝑁𝑖

𝑗=1
𝑘
𝑖=1

                          4 

The test statistic W follows an F-distribution with 

k−1 and N−k degrees of freedom.  

N is the total number of observations. 

k is the number of groups. 

𝑁𝑖 is the number of observations in the ith group. 

𝑍𝑖. is the mean of the absolute deviations from the 

median in the ith group. 

𝑍..is the overall mean of the absolute deviations from 

the median. 

𝑍𝑖𝑗 is the jth observation in the ith group.  

The value of W is the critical value of the F-

distribution at a chosen significance level (e.g., 0.05) 

i.e the p-value. If the calculated W exceeds the 

critical value, it will reject the null hypothesis, 

indicating that there is evidence to suggest that the 

variances of the classes are not equal.  

 

 p-Value for Homogeneity of Variances 

The p-value is a probability value used in hypothesis 

testing to determine whether the null hypothesis 

should be accepted or rejected. If the p-value is small 

(typically smaller than a chosen significance level, 

such as 0.05), the observed data are unlikely to have 

occurred under the null hypothesis. In that case, the 

null hypothesis is rejected, and the alternative 

hypothesis is accepted. If the p-value is large, the null 

hypothesis may fail to be rejected. The p-value, is 

calculated via the the F-Distribution, also known as 

the Fisher-Snedecor distribution, which is a 

continuous probability distribution used in statistics. 

It is used most frequently when comparing variances 

or determining the importance of variance 

differences. The p-value for an F-distribution is 

calculated as Eq. 5: 

P(p−value) = 1−F (critical, d1, d2)           5 

https://doi.org/10.21123/bsj.2024.10835
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where F (critical, d1, d2) is the cumulative 

distribution function (CDF) of the F-distribution at 

the critical value. d1 is the numerator degree of 

freedom, and d2 is the denominator degree of 

freedom. Levene’s test, was used to assess the 

homogeneity of the variances among the classes. For 

healthy control and Tumor, p-value = 0.016 (< 0.05). 

For healthy control and COVID-19 patients, the p-

value is ≈ 0, (< 0.05). This rejects the null 

hypothesis. There is a significant difference between 

the classes, which indicates that the variances are 

significantly different (heterogeneous). 

k-Nearest Neighbour Technique (k-NN) 

Distance-based algorithms are extensively employed 

in the context of data classification challenges. The 

classification process relies on the computation of 

distances between the test sample and the training 

samples for the outcome. Here, the variable k denotes 

the quantity of closest neighboring data points that 

are considered for classification or regression tasks. 

When the value of k = 1, the new data item is 

allocated to the class of its nearest neighbor. The 

neighbors are selected from a set of training data 

items for which the correct classification is known. 

The Euclidean distance function is commonly used 

as the primary metric in the k-NN algorithm. 

 
Figure 6. k-Nearest neighbor classification 

 
Figure 7. A confusion matrix for binary 

classification 

In k-NN classification, the value of “k = 5” indicates 

that the algorithm will take into account the five 

nearest data points Fig. 6. As previously mentioned, 

the k-NN classifier can classify new data objects 

based only on their distance from labeled examples. 

The confusion matrix is the predominant method 

employed for summarizing the efficacy of a 

classification system. Fig. 7 displays the confusion 

matrix pertaining to the binary classification 

scenario. 

Results of k-Nearest Neighbors 

Table 1, and Table 2 show the results obtained by 

applying k-NN to heterogeneous datasets with k = 5, 

10, and 15. The k-NN algorithm is utilized for the 

classification of data into two distinct classes 

(COVID-19 and non-COVID-19 also Tumor and 

non-Tumor). This is achieved by identifying the k-

NN of a given data point within the feature space and 

subsequently assigning the class label. The available 

dataset was randomly divided into 20% (80%) test 

data (train data) using the python package scikit-

learn, to perform the k-NN analysis. The high values 

of accuracy for the COVID-19 cases indicate that our 

technique indeed gives rise to a classification scheme 

that is efficient and effective. Here, the precision is 

greater than the accuracy, which suggests that the 

model is relatively better at avoiding false positives. 

Table 2. The results obtained for COVID-19 by k-

NN 

    K Values Accuracy Precision Recall 

k = 5 91% 93% 89% 

 k = 10 92% 93% 91% 

k = 15 92% 93% 91% 

 

Table 3. The results obtained for Tumor by k-NN 

    K Values Accuracy Precision Recall 

k = 5 69% 80% 60% 

k = 10 69% 61% 57% 

k = 15 75% 78% 75% 

 

 

 

 

Actual 

Predicted 

Positive Negative 

Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 
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Figure 8. Classification using k-NN for (a) COVID-19 and (b) Tumor 

 

Figure 9. Confusion matrix for (a) COVID-19 (Left) and (b) Tumor (Right) 

Fig. 8 shows that for the COVID-19 cases, most 

test data points are correctly predicted by the k-NN 

technique. Therefore, the number of mismatches, 

i.e., incorrect predictions, is less than the number 

of correct predictions, which results in high 

accuracy values, as shown in Table 2. Similar 

calculations for the tumor cases show that the 

percentage or ratio of the incorrect predictions to 

correct predictions increases, leading to slightly 

lower accuracy, as shown in Table 3. The 

confusion matrix is also plotted in Fig. 9. The 

diagonal elements indicate the true positive (TP) 

and true negative (TN) values, and the off-diagonal 

elements indicate the false positive (FP) and false 

negative (FN) values. The high values of TP and 

TN compared to those of FP and FN also show the 

high accuracy with which our model predicts 

correct results. Here also added the confusion 

matrix plot for the tumor case for completeness. 

Limitations: Although our model is 

computationally more effective than the 

contemporary methods it still suffers from the 

following limitations: 

1. The method depends explicitly on the specific 

nature of the disease and how it affects the 

medical image. For example:  showed that for 

COVID-19 positive patients, entropy is greater 

than that for non-COVID-19 patients, whereas 

for tumors the opposite trend is observed.  

2. The correlation between entropy and fractal 

dimension shown in this draft can also change 

depending on the specific disease.   

  

Conclusion 

In this study, a novel image classification method 

using Shannon entropy and fractal dimension was 

developed to distinguish between diseased and 

healthy patients with two types of disease: COVID-

19 and brain tumors. The behavior of these quantities 

varies depending on the type of disease and can be 

used for classification. Specifically, it was found that 

the entropy of COVID-19 images decreases due to 

changes in the pixel distribution as the fractal 

dimension increases. These values are plotted in the 

S-d plane, and two separable clusters are observed. 

Then, the k-NN method, a supervised machine 

learning technique, was used to classify the images. 

Our method achieved a high classification accuracy 

of approximately 90% for COVID-19 and 70% for 

brain tumors. The lower accuracy for brain tumor 

classification is likely due to the paucity of data.  It 

believed that with a larger dataset, our method could 

https://doi.org/10.21123/bsj.2024.10835
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achieve even higher accuracy. Overall, this novel 

model provides an interpretable and computationally 

efficient alternative for disease classification. Our 

methodology can potentially be used for the early 

detection of various diseases such as COVID-19, 

Tumor. In future work, the same technique could be 

used for different diseases, such as Alzheimer's 

disease.  can also use different ML techniques to 

improve accuracy. 

 

Availability of data and materials 

Source from the open-access Kaggle website: 

https://www.kaggle.com/datasets/hasimdev/ brain-

mri-dataset, https://www. 

kaggle.com/datasets/drsurabhithorat/covid-19-ct-

scan-dataset, the dataset was used for this study. 

Details the brain MR dataset consists of MR images 

used has 2 categories: Tumor and healthy controls. 

The COVID-19 dataset consists of CT scan images 

and has two categories: Non-COVID-19 and 

COVID-19. There are 5427 images for COVID-19, 

2628 for non-COVID-19 patients. For tumors 155 

and 98 for healthy controls. No special preprocessing 

technique was used for the analyses performed in the 

draft. This available dataset was randomly divided 

into 20% (80%) of the test data (training data) for the 

k-NN classifier.  
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      ةالخلاص

الطبية زيادة ملحوظة في الاهتمام والنجاح باستخدام الأساليب الحسابية. يقترح هذا شهدت دراسة الكشف عن الأمراض المستندة إلى الصور 

ين يالعمل إطارًا جديداً للكشف عن الأمراض في مراحل مبكرة من الصور الطبية، باستخدام النمذجة الرياضية والتعلم الآلي. نقدم مقياسين كم

اليقين في الصورة بناءً على إنتروبيا شانون وتعقيد الصورة بناءً على البعد وأمراض الأورام: عدم  31-جديدين للكشف عن مرض كوفيد

أظهرت توزيعاً منحرفاً للبكسل بسبب المناطق الضبابية مما أدى إلى  COVID-19الكسري. أظهرت نتائجنا أنه في الصور الإيجابية لـ

بع ا الكمية الثانية، وهي البعد الكسوري، فقد تم قياسها بطريقة العد المرانخفاض قيم الإنتروبيا للحالات المريضة مقارنة بالحالات السليمة. أم

أقرب جار(. ) k-NN (ML)التي تحدد مدى تعقيد الصورة. تم تطبيق نتائج كلا التقنيتين على تصنيف الصور باستخدام نموذج التعلم الآلي 

 %02≈ و Covidلفيروس  %12≈ مختلفة من الصور بدقة تصنيف تبلغ  يوفر هذا الإطار الكامل نهجًا جديداً وفريداً لتحديد وتصنيف أنواع

والمرضى الأصحاء، مما يجعلها واعدة بالتشخيص المبكر.  31-للورم. يظُهر عملنا أن الأنتروبيا والأبعاد الكسرية يمكن أن تميز بين كوفيد

 مراض والتي توفر الكشف عن المرض في مرحلة مبكرة.تقدم هذه المخطوطة منهجية جديدة وفعالة حسابياً وقابلة للتفسير لتصنيف الأ
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