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Abstract

The study of medical image-based disease detection has witnessed a notable surge in interest and success
with computational methods. This work proposes a novel framework to detect diseases at earlier stages
from medical images, using mathematical model and Machine Learning. Introduce two new quantitative
measures for COVID-19 and Tumor disease detection: image uncertainty based on Shannon entropy and
image complexity based on fractal dimension. Our result demonstrated that in COVID-19 positive images
exhibited skewed pixel distribution due to the hazy regions resulting in lower entropy values for diseased
cases compared to healthy ones. The second quantity, fractal dimension was measured by box counting
method determines the image's complexity. The outcomes of both techniques were applied to the
classification of images using the Machine Learning (ML) model k-NN (k-nearest neighbor). This complete
framework provides a new and unique approach to identify and classify diverse types of images with a
classification accuracy of 90% for Covid and 70% for Tumor achieved. Our work shows that Entropy and
fractal dimensions can distinguish between COVID-19 and healthy patients, making them promise for early
diagnosis. This manuscript presents a novel, computationally efficient and explainable methodology for
disease classification that provides early-stage disease detection.

Keywords: CT scan, Fractal Dimension, K-Nearest Neighbors, Machine Learning, Magnetic Resonance
Imaging, Medical Image Analysis, Shannon Entropy, Statistical Analysis.

Introduction

Convolutional neural networks (CNNs) have  use of magnetic resonance imaging (MRI)

achieved remarkable success in detecting diseases
including cancer !, heart disease 2, and diabetes 3,
Alzheimer’s disease #, schizophrenia®, from medical
images °. Despite being a potential tool for disease
detection, CNNs are computationally expensive and
time consuming ’.  Moreover, the limited
interpretability of CNNs hampers trust in medical
applications, hindering  decision-making and
acceptance by healthcare professionals. Here, this
study uses two different methods for detecting two
different diseases: Tumors and COVID-19.

The prevalence of brain tumors, which are severe
illnesses that impair multiple brain functions, and the

technology to examine anatomical changes occurring
in tumors has increased substantially in recent years
89 MRI plays a vital role in helping to identify the
lesion location, assess the extent of tissue
involvement, and evaluate the resulting mass effect
on the brain, ventricular system, and vasculature °.
Structural MRI studies have shown that brain tumor
patients typically have smaller total brain volumes
and larger ventricles than healthy individuals *'. To
analyze MRI scans for research purposes, large
groups of patients and healthy control subjects are
used 1224,
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Chest computed tomography (CT) scans have the
potential to diagnose, identify, and predict the
prognosis of coronavirus disease 2019 (COVID-19)
5 The clinical utility of CT will increase with
suitable preventative safety measures, protocol
optimization, and a standardized reporting system
based on pulmonary findings in this disease 47,
However, the results of chest CT scans can be both
false-positive and false-negative. Imaging techniques
including chest CT findings of COVID-19 and its
complications, and chest CT diagnostic accuracy
using a mathematical model and machine learning
for patients and healthy control subjects have been
discussed 181°,

This project proposes a mathematical model for
classifying and detecting diseases (Tumors and
COVID-19) based on mathematical modeling and
machine learning. Here, two types of MR images,
functional MRI (fMRI) and structural MRI (sMRI),
are helpful techniques for examining functional and
structural abnormalities in images 222, This model
computes different mathematical quantities from MR
images, such as the moment of inertia, fractal
dimensions, and entropy 2325, These quantities are
then used by machine learning models, such as
support vector machines (SVMs) 26, K-nearest
neighbors (KNN) 27 and logistic regression (LR) %,
for classification using features of images with
certain accuracy 231,

Classification is a supervised machine learning
procedure in which input data are assigned to

predetermined groups or classes *2. The primary need
for applying a classification technigue is that all data
items must be assigned to specific classes, with each
data object being assigned to only a single class.
Additionally, the primary emphasis of the k-NN
classifier has been on datasets containing exclusively
numerical features. One prevalent classification
technique that relies on distance metrics is the k-NN
method. The conventional k-NN classification
algorithm is utilized to identify the k-NN and
categorize numerical data records by evaluating the
Euclidean distance between the test sample and all
training samples 3. The primary principle of k-NN
algorithm is to compute the distances between the
tested data samples and the training data samples to
identify the nearest neighbors. The tested sample is
thereafter allocated to the class of its closest
neighbor. The technique can be used for both
classification and regression between healthy and
patient datasets.

This research proposes a novel image classification
method for disease detection that leverages Shannon
entropy and the fractal dimension. This work
contributes to developing interpretable and
computationally efficient tools for disease diagnosis
through medical image analysis. Our study’s results
highlight this approach’s potential for advancing the
field of disease detection and improving patient
outcomes, Table 1 shows the literature survey of
existing work and its advantages and limitations.

Table 1. Literature survey of existing work and their advantages and limitations

Author Method Classifier Entropy/ Advantage
Fractal
Dimension
Hasan AM  To exploit the Convolutional Neural Network CNN Entropy 326 T2W-TSE images
etal. (CNN) in discriminating breast MRI scans into and 326 STIR images
pathological and healthy. is 98.77%.
Utkarsh To conduct a comparative analysis of the various KNN Fractal highest accuracies,
Laletal®  FDs that, as feature extraction measures from Dimension  yielding a mean
EEG, can discriminate Parkinson's patients who accuracy of 99.65% for
are ON and OFF medication from healthy PD patients ON
controls using ML architecture. medication and 99.45%
for PD patients OFF
medication,
respectively.
Raveenthin ~ To develop a generic multiocular CAD system CNN Entropy The proposed ensemble
i Metal3® for Diabetic retinopathy and glaucoma diagnosis based DL and fractal  model resulted in
features accuracy as 98.08%,

for three-class
classification to
categorize samples as
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normal, DR or
glaucoma.
Munmun Two most effective techniques are used in SVM Fractal The combination of
Swain et separate operations, FA: Box Count Method Dimension  SVM and FD vyielded
al.% (BCM) and Support Vector Machine (SVM). the highest with
98.13% accuracy.
Dheerendr  To comprehensively investigate the potential of ML Fractal FD values of enhanced
anath fractal  dimension (FD) measures in Dimension  tumor regions yielded
Battalapalli discriminating brain gliomas by examining high accuracy (93%).
et al.’ tumor and nontumorous.
Anisha The Glaucoma Image Classification (GIC) is Maximum  Shannon The classification
Rebinthet made by using different entropy features and likelihood  Entropy accuracy of 96% by
al.®® Maximum Likelihood Classifier (MLC). classifier using Shannon entropy
feature and MLC
Pilar Ortiz- An Entropy-based Measure of Complexity Statistical Entropy Lung Damage Measure
Vilchis et (EMC) to analyses lung CT images of COVID- Analysis (LDM) increased as
al.®® 19. much as clinical
classification and CO-
RADS scores.
Ammini For accurate prediction of rhonchi (RB) and PCA Fractal PCA cover
Renjiniet  Bronchial Breath (BB) signals, Power Spectral Dimension  approximately 86.5%
al.40 Density (PSD) and non-linear measures are fed of the overall variance
as input attributes to various machine learning of the data class,
models. successfully
distinguishing BB and
RB signals.
Urvashi To find universal threshold values for prediction Block Fractal The proposed
Sharmaet  and provide an optimum block size for encoding Based Analysis technique gives a
al.* used Independent Gradient Edge Predictorlé Arithmetic higher coding
(RIGED16) and Block Based Arithmetic Encoding efficiency rate
Encoding (BAAE). (BAAE) compared to other

techniques.

Methodology

This study employs a four-step approach to classify images based on features derived from Shannon entropy

and fractal dimension. First, these features are
extracted from both MRI and CT scans of individuals
classified as either tumor-positive, COVID-positive,
or healthy controls. Statistical analysis was used to
evaluate then evaluates the significance and potential
discriminative power of these features. Visualization
through scatter plots further aids in understanding the
data distribution. Finally, the k -nearest neighbor (k-
NN) technique leverages these features to classify
new images based on their similarity to known
classes. Notably, preliminary analysis revealed a
significant difference in average entropy values
between COVID-19-positive and COVID-19-
negative patients, suggesting its potential as a
discriminative feature.

Entropy

Entropy, a fundamental concept in thermodynamics,
statistical mechanics, and information theory, may
provide a clearer understanding of its relationship to
chaos, unpredictability, and a lack of information 2,
In particular, Shannon entropy is used in information
theory, communication theory, and related areas
such as cryptography and image processing “.
Several survey reports have reviewed the
applications of entropy in a variety of areas, such as
economics *4, image processing “°, discrete
mathematics “¢, and signal processing *’“8. The
concept of information theory, Shannon’s entropy of
an image, involves the average level of
“randomness” or ‘“‘uncertainty” inherent to the
variable’s possible outcomes “°. To measure the
uncertainty or randomness of the image, then sum the
probability of each pixel value in the image
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multiplied by the logarithm of that probability °°.
Here the probabilistic events are the pixel intensities
of the 2-D histogram between the images (normal
and patient images) °'.

Mathematical Explanation:

The continuous probability distribution function

p(x), depicted in the histogram plots of Fig. 1.

1. Histogram Calculation: First, a histogram of
pixel intensities from the medical image is
constructed. The frequency of occurrence of
each intensity level in the image is represented
by this histogram.

2. Probability Distribution: Calculate the
probability p; of each intensity level ii by
dividing the frequency of that intensity by the
total number of pixels in the image.
Mathematically: p; = % , Where: n; is the

frequency of intensity level ii in the histogram.
N is the total number of pixels in the image.

3. Shannon Entropy Calculation: The most
significant entropy in applications is Shannon
entropy, which is defined as follows: let X be a
discrete random variable as Eq. 1
HX) ==X pi.logpp;
=[ pi(x).logypi(x). dx 1

where m is the number of gray levels (256 for 8-bit
images), piis the probability of a pixel having gray
level i, p € [0,1], and b is the base of the logarithm
function, which is a natural measure of additivity. In
medical imaging, entropy is a measure of complexity
or irregularity in MRI structures of Tumors. For such
cases, biologically a new type of cell growth is
observed that is easily captured in the MR images.
Analyzing such images gives rise to low entropy
values. Low entropy says that the pixel values are
reasonably uniform or predictable, whereas high
entropy suggests that the pixel values are highly
variable or random. Depending on the nature of the
disease, a higher or lower entropy value might be
observed, as calculated from the associated images.
Next, to measure the complexity of an MR image, the
fractal dimension is calculated by dividing the
number of boxes needed to cover an image by the
size of the boxes. A higher fractal dimension has
been associated with disease, which indicates greater
complexity and more detail at smaller image scales.

o

Frequency
=
.

=

¢ 9 T —
Pixel value
Figure. 1. Pixel value histograms for (a) healthy
and (b) COVID-19-affected CT scan images.
COVID-19 images have a more no uniform pixel

value distribution.
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Fractal Dimension

In mathematical terms, a fractal is a geometric set
such that its Hausdorff-Besicovitch dimension
strictly exceeds its topological dimension %2, Benoit
Mandelbrot introduced the term “fractal” to refer to
non-Euclidean structures that exhibit self-similarity
at various sizes.

In Euclidean n-dimensional space, a bounded set A
can be considered statistically self-similar if A is the
union of K. nonoverlapping subsets with respect to a
scaling factor ¢, each of which is of the form ¢(A,)
where the K. and A, sets are congruent in
distribution to A.

Here, using the box-counting technique the fractal
dimension can be computed as Eq. 2:

log(Kc ) 2
log(Y/e)

where K. is the number of self-similar (invariant)
shapes and ¢ is the corresponding scaling factor and
the fractal dimension of the shape is estimated as
shown in Fig. 2.

Fractal dimension =

Let us consider analyzing a medical image of a chest
X-ray of a patient with COVID-19 using the box-
counting method.

1. Box Size Determination: Choose a range of box
sizes ¢, for example, € = 2K for k=0,1, 2,... K,
where K is the maximum scale determined by the
image resolution.

2. Covering the image: Cover the chest X-ray
image with nonoverlapping boxes of size € for
each scale k. Count the number of boxes K;
needed to cover the chest X-ray at each scale.
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3. Fractal Dimension Calculation: Box-counting
data are used to estimate the fractal dimension D
using the formula mentioned earlier as Eq. 3:

log(K¢) 3
€0 10g(/e)

A quantitative assessment of the structural
complexity or irregularity of chest X-ray can be
obtained from the fractal dimension that is produced.
Higher complexity or irregularity is indicated by a
higher fractal dimension, whereas greater uniformity
or regularity is suggested by a lower fractal
dimension. This information can help with the
diagnosis and treatment of several medical
conditions as well as the analysis of the anatomy and
texture of structures in medical images.

D= lim

One advantage of this operation is that it increases
the values of the dark pixels while decreasing the
values of the higher brightness levels of images. It
also reduces the light intensity of images with wide
pixel value changes. The fractal dimension of a shape

Results and Discussion

The results discussed in the section are obtained for
the freely available open-source image data, which
have been used, the details of which are given in the
“Data availability” section.

Medical Image Analysis

Our analysis explored the potential of Shannon
entropy and fractal dimension to distinguish between
COVID-19 patients and healthy individuals using
CT scan images >, Fig. 3 reveals distinct patterns
in these measures between the diseased patients
(shown in red) and healthier patients (blue). Fig. 3(a)

A
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can be used to quantify its complexity. For example,
a shape with a high fractal dimension is more
complex than one with a low fractal dimension. Note
that the parameters for the above calculations are 1.
Binwidth for pixel histogram plot (for entropy), 2.
Box size for fractal dimension.
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Figure 2. log (box size) vs log (box count) for a
specific MRI image of Tumor. The slope of the
line connecting the data points was used to
determine fractal dimension of the image.

shows that COVID-19 patients exhibited
significantly lower average entropy (5.66 + 0.68)
than healthy patients (6.47 + 0.43). Conversely, the
average fractal dimension was significantly greater
(2.03 = 0.28) in the COVID-19 patients than in the
healthy controls (1.81 £ 0.26), as shown in Fig. 3 (b).
These findings suggest that entropy and fractal
dimension might capture characteristic changes in
lung tissue associated with COVID-19, with lower
entropy potentially reflecting increased homogeneity
and higher fractal dimension indicating greater
structural complexity in diseased lungs.

- COVID
—— Healthy
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L L
1000 1500

n

I
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Figure 3. Shannon entropy and fractal dimension for each of the available images for the COVID-19
and non-COVID-19 patients.

By calculating the Shannon entropy and fractal
dimension for both tumor and nontumor areas of

interest (ROIs), a comparison can be made to
discern dissimilarities in the level of complexity,
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heterogeneity, or structural attributes between
the two categories of regions. Due to the scarcity
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Figure 5. Shannon entropy VS fractal dimension of (a) COVID-19 (left) and (b) Tumor data images
(right).

Additionally, this observes that the CT scan images
corresponding to COVID-19 patients, on average,
showed higher Shannon entropy (S) values, and
lower fractal dimension values (d). On the other
hand, healthy patients have lower entropy values and
greater fractal dimensions °6-%8, This correlation
inherently gives rise to the classification scheme
between the diseased and healthy patients in the S—d
plane as Fig. 5.

Therefore, on average, plotting S;vs di will give rise
to 2 separable clusters. These clusters can then be
separated using various machine learning techniques,
one of which has been used in this work, namely the
k-nearest neighbor method. As explained earlier,
diseased patients (shown in red) and healthy controls
(shown in blue) were included. Two distinct clusters
are visible for the COVID-19 figure, whereas due to
unavailability of data the Tumor figure conceals any
inherent clustering.

Theoretical Analysis
Consider a grayscale image where each pixel
indicates the intensity of light. When noise is added

of MR images for tumors, patients did not
exhibit any clear patterns as Fig. 4.
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(for example, random pixel value changes), the
image  becomes more unpredictable and
disorganized. The unpredictability or randomness
can be quantified using entropy. A uniform or
homogeneous probability distribution gives rise to
higher entropy values than nonhomogeneous
distributions. For SARS-Cov2 patients, CT images
show ground-glass opacities or cloudy areas in
peripheral regions *°. This phenomenon manifests
itself in the image’s increased number of darker pixel
values. Therefore, the distribution of the pixel values
becomes skewed toward the left of the spectra
(meaning toward lower values). However, for the
images of healthy patients, the distribution remains
quite homogeneous through the spectra of pixel
values, which results in larger values of entropy. On
the other hand, the skewed pixel distribution of
diseased patients shows lower entropy values.
Mathematically, it can represent decreasing entropy
as follows: Eshannon(Healthy) > Eshannon(Disease)

where Esnannon(Healthy) is the entropy of healthy, and
Esnannon(Disease) is the entropy of diseased. Note that
this behaviour of entropy is entirely dependent on the
pixel distribution and, hence, on the specific type of
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disease and how it impacts the system. On the other
hand, noise disrupts the self-similarity of patterns or
textures, making the image appear less structured.
This can be quantified using the fractal dimension.
Fractal Dimension Decreasing implies that the
structures within the image are becoming less
complex or less self-similar. Mathematically, it can
represent fractal dimension decreasing as: FDHealthy
< FDpisease

where FDreany and FDpisease are the fractal
dimensions indicating an increase in the fractal
dimension. Therefore, entropy is a tool used in image
processing to measure an image’s informational
density. Note that the proportionality between the
Shannon entropy and the fractal dimensions, as
indicated by some authors 1, is not observed for
our case partially due to the nonuniformity of the
sizes of the accessible dataset used.

It seems that in the case of some diseases, the
opposite scenarios can also appear due to the
following:

a. For healthy patients, there was a lower entropy
and a greater fractal dimension. This suggests
that the image has clarity, the pixel values are
predictable, and there is considerable self-
similarity among the structures.

b. For diseased patients, entropy may increase
when there are artifacts, noise, or pathology
(such as a tumor). Higher entropy levels arise
from the randomness that the noise and
abnormalities add to the image.

These relations inherently give rise to a classification
technique to classify the images, the details of which
are given in the next section. This technique was used
for both sets of data: CT scan of COVID-19 and MR
images of tumors.

Statistical Analysis

Here, statistical tests (e.g., t-test) were used to assess
whether there were significant differences in entropy
between healthy controls and individuals with
Tumors or COVID-19. To compare and check for
significant differences in entropy between MRI scans
and CT scans, the t-test can be used. Levene’s test
was used to determine whether the variances of two
or more classes were statistically different. This test
is used to determine the homogeneity of variances
between the classes through the following
hypotheses:

Null Hypothesis (H0): The variances of the two
classes are equal (homogeneous). HO: o2 =
o2=.. =0}
Alternative Hypothesis (Ha): The variances of the
two classes are not equal (heterogeneous). Ha: a? #
a/ for at least one pair (i, j).
Typically, the test statistic calculated by Levene's
test is derived from the absolute deviations of the
observations from their group mean values. The test
statistic can be calculated as follows as Eq. 4:

_ (k) S NiZimZ)? 4

(k=) 5k 57 772

The test statistic W follows an F-distribution with
k—1 and N—k degrees of freedom.
N is the total number of observations.
k is the number of groups.
N; is the number of observations in the i" group.

Z;. is the mean of the absolute deviations from the
median in the i" group.

Z is the overall mean of the absolute deviations from
the median.

Z;; is the j™ observation in the i group.

The value of W is the critical value of the F-
distribution at a chosen significance level (e.g., 0.05)
i.e the p-value. If the calculated W exceeds the
critical value, it will reject the null hypothesis,
indicating that there is evidence to suggest that the
variances of the classes are not equal.

p-Value for Homogeneity of Variances

The p-value is a probability value used in hypothesis
testing to determine whether the null hypothesis
should be accepted or rejected. If the p-value is small
(typically smaller than a chosen significance level,
such as 0.05), the observed data are unlikely to have
occurred under the null hypothesis. In that case, the
null hypothesis is rejected, and the alternative
hypothesis is accepted. If the p-value is large, the null
hypothesis may fail to be rejected. The p-value, is
calculated via the the F-Distribution, also known as
the Fisher-Snedecor distribution, which is a
continuous probability distribution used in statistics.
It is used most frequently when comparing variances
or determining the importance of variance
differences. The p-value for an F-distribution is
calculated as Eq. 5:

P(p—value) = 1-F (critical, di, dy) 5
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where F (critical, di, d2) is the cumulative
distribution function (CDF) of the F-distribution at
the critical value. di is the numerator degree of
freedom, and d, is the denominator degree of
freedom. Levene’s test, was used to assess the
homogeneity of the variances among the classes. For
healthy control and Tumor, p-value = 0.016 (< 0.05).
For healthy control and COVID-19 patients, the p-
value is = 0, (< 0.05). This rejects the null
hypothesis. There is a significant difference between
the classes, which indicates that the variances are
significantly different (heterogeneous).

k-Nearest Neighbour Technique (k-NN)
Distance-based algorithms are extensively employed
in the context of data classification challenges. The
classification process relies on the computation of
distances between the test sample and the training
samples for the outcome. Here, the variable k denotes
the quantity of closest neighboring data points that
are considered for classification or regression tasks.
When the value of k = 1, the new data item is
allocated to the class of its nearest neighbor. The
neighbors are selected from a set of training data
items for which the correct classification is known.
The Euclidean distance function is commonly used
as the primary metric in the k-NN algorithm.

K-Mearest Neighbors (k=5)

30
25

20 %
- ‘f¥¢W:ﬁ'

10

Class 2

v

05

00 Y4 v

—0.5

-1.0

=3 -z -1 o 1 2 3
Class 1

Figure 6. k-Nearest neighbor classification

Predicted
Actual Positive Negative
Positive~~ True Positive (TP) False Negative (FN)
Negative ~ False Positive (FP) True Negative (TN)

Figure 7. A confusion matrix for binary
classification

In k-NN classification, the value of “k = 5” indicates
that the algorithm will take into account the five
nearest data points Fig. 6. As previously mentioned,
the k-NN classifier can classify new data objects
based only on their distance from labeled examples.

The confusion matrix is the predominant method
employed for summarizing the efficacy of a
classification system. Fig. 7 displays the confusion
matrix pertaining to the binary classification
scenario.

Results of k-Nearest Neighbors

Table 1, and Table 2 show the results obtained by
applying k-NN to heterogeneous datasets with k =5,
10, and 15. The k-NN algorithm is utilized for the
classification of data into two distinct classes
(COVID-19 and non-COVID-19 also Tumor and
non-Tumor). This is achieved by identifying the k-
NN of a given data point within the feature space and
subsequently assigning the class label. The available
dataset was randomly divided into 20% (80%) test
data (train data) using the python package scikit-
learn, to perform the k-NN analysis. The high values
of accuracy for the COVID-19 cases indicate that our
technique indeed gives rise to a classification scheme
that is efficient and effective. Here, the precision is
greater than the accuracy, which suggests that the
model is relatively better at avoiding false positives.

Table 2. The results obtained for COVID-19 by k-
NN

K Values Accuracy Precision Recall
k=5 91% 93% 89%
k=10 92% 93% 91%
k=15 92% 93% 91%

Table 3. The results obtained for Tumor by k-NN

K Values Accuracy Precision Recall
k=5 69% 80% 60%
k=10 69% 61% 57%
k=15 75% 78% 75%
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Figure 8. Classification using k-NN for (a) COVID-19 and (b) Tumor
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Figure 9. Confusion matrix for (a) COVID-19 (Left) and (b) Tumor (Right)

Fig. 8 shows that for the COVID-19 cases, most
test data points are correctly predicted by the k-NN
technique. Therefore, the number of mismatches,
i.e., incorrect predictions, is less than the number
of correct predictions, which results in high
accuracy values, as shown in Table 2. Similar
calculations for the tumor cases show that the
percentage or ratio of the incorrect predictions to
correct predictions increases, leading to slightly
lower accuracy, as shown in Table 3. The
confusion matrix is also plotted in Fig. 9. The
diagonal elements indicate the true positive (TP)
and true negative (TN) values, and the off-diagonal
elements indicate the false positive (FP) and false
negative (FN) values. The high values of TP and
TN compared to those of FP and FN also show the
high accuracy with which our model predicts

Conclusion

In this study, a novel image classification method
using Shannon entropy and fractal dimension was
developed to distinguish between diseased and
healthy patients with two types of disease: COVID-
19 and brain tumors. The behavior of these quantities
varies depending on the type of disease and can be
used for classification. Specifically, it was found that
the entropy of COVID-19 images decreases due to
changes in the pixel distribution as the fractal

correct results. Here also added the confusion
matrix plot for the tumor case for completeness.
Limitations: ~ Although ~ our  model is
computationally more effective than the
contemporary methods it still suffers from the
following limitations:

The method depends explicitly on the specific
nature of the disease and how it affects the
medical image. For example: showed that for
COVID-19 positive patients, entropy is greater
than that for non-COVID-19 patients, whereas
for tumors the opposite trend is observed.

The correlation between entropy and fractal
dimension shown in this draft can also change
depending on the specific disease.

dimension increases. These values are plotted in the
S-d plane, and two separable clusters are observed.
Then, the k-NN method, a supervised machine
learning technique, was used to classify the images.
Our method achieved a high classification accuracy
of approximately 90% for COVID-19 and 70% for
brain tumors. The lower accuracy for brain tumor
classification is likely due to the paucity of data. It
believed that with a larger dataset, our method could
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achieve even higher accuracy. Overall, this novel
model provides an interpretable and computationally
efficient alternative for disease classification. Our
methodology can potentially be used for the early
detection of various diseases such as COVID-19,

Availability of data and materials

Source from the open-access Kaggle website:
https://www.kaggle.com/datasets/hasimdev/ brain-
mri-dataset, https://www.
kaggle.com/datasets/drsurabhithorat/covid-19-ct-

scan-dataset, the dataset was used for this study.
Details the brain MR dataset consists of MR images
used has 2 categories: Tumor and healthy controls.
The COVID-19 dataset consists of CT scan images
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