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Introduction 

Recent research has investigated different epidemic 

models for preventing and managing infectious 

diseases, including measles, tuberculosis, and the 

flu1,2. A mathematical model is an important tool for 

studying the development and effects of infectious 

diseases in epidemiology3,4. In addition to identifying 

disease trends, analyzing epidemiological studies, 

and making general predictions about diseases, 

researchers can also use mathematical models to 

analyze epidemiological data5-7. 

It is one of the prominent topics of population 

genetics research to comprehend how mutations and 

selection interact with each other. A better part of this 

field's research is devoted to deterministic models, 
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while a second major part deals with stochastic 

models8,9. It is possible to formulate deterministic 

mutation-selection equations as discrete or 

continuous-time dynamical systems by using 

methods developed for dynamical systems. In 

stochastic mutation-selection models, as in the 

Moran and Wright-Fischer models10,11, it is also 

possible to include fluctuations arising from random 

reproduction over very long-time scales. These 

fluctuations cannot be captured by deterministic 

dynamics. 

An existing epidemiological model assumes, 

sometimes incorrectly, that one particular pathogen 

causes a pandemic. Regardless of this, they ignore 

the mutations that occur over time, which results in 

the emergence of different strains of the pathogen. 

The majority of mutations undertaken have no 

significant impact on the pathogen's bio-

epidemiological behavior12. In some cases, 

pathogen mutations result in diseases that are more 

contagious, more deadly, and have a higher mortality 

rate13. Our understanding of the structure and 

mutation processes of pathogens will help us develop 

better medicines and vaccines. Therefore, it is 

necessary to incorporate the model in which the 

effect of pathogen mutations from epidemiological 

documentation based on tests on populations. This 

will enhance its accuracy. The spread of epidemics 

over time is impossible to capture using these models 

if the infectious pathogen is mutated. As an example, 

drug resistance to anticancer drugs is systems; tumor 

cells sensitive to toxic agents may probabilistically 

mutate into cells resistant to the drug's activity over 

time. This modeling involves the derivation of a 

probability distribution for mutant cells, which is an 

important aspect of it. In this scenario, populations 

undergo stochastic mutations, births, and deaths. It is 

helpful to model drug-resistance based on the 

probability distribution of antidrug tumor cells to 

transform more effective cancer treatment 

strategies14. 

The efficacy of treatment in halting the 

dissemination of various infectious diseases is 

widely acknowledged for its noteworthy success. It 

is assumed that the spread of infection is proportional 

to the number of individuals who are infected in 

classical epidemic models. However, in general, the 

rate of recovery is influenced by medical resources, 

including drugs, immunizations, hospital beds, 

isolation areas, and the effectiveness of the 

treatment. It is very important to adopt the most 

appropriate treatment method for a given disease 

since every country or community has limited 

resources for treating a particular disease. The 

following is a constant treatment introduced by 

Wang and Ruan15 in a SIR model:  

𝐹(ℐ) = {
𝜌ℐ,    ℐ > 0
0, ℐ = 0

.                                       1 

It is denoted by 𝜌 as a positive constant, and 𝐼 as the 

number of infected individuals. This represented a 

constrained ability to treat. Furthermore, Wang16 

examined the following piecewise linear treatment 

functions: 

                                                                         

𝐹(𝐼) = {
𝜌ℐ, 0 ≤ ℐ ≤ ℐ0
𝑙0, ℐ ≥ 0 

,                              2 

where 𝑙0 = 𝜌𝐼0, 𝜌 and 𝐼0 are positive constants. 

Aside from this, the treatment efficiency will be 

seriously affected by the delay in treating infected 

individuals. A saturated treatment function was also 

proposed by Zhang and Liu 17: 

𝑇(ℐ) =
𝜌ℐ

1+𝑏ℐ
.  

Where 𝜌 > 0,  𝑏 > 0,  ′𝜌′is a cure rate and the 

parameter ′𝑏′ evaluates the impact of treatment in the 

infected delays. When the number of infected 

individuals is very low, this saturated treatment 

function produces near linear results, while for 

higher values of 𝐼, it approaches a fixed limit18-20. 

Additionally, this treatment function has a 

continuous and finite value for each feasible value of 

𝐼. It has been extensively discussed in many 

literatures how to model epidemic dynamics using 

SIR or SIS models with different types of incidence 

rates and treatment functions21-23. The saturated 

treatment function and saturated incidence rate, 

however, have not been studied as much in the 

stochastic SEIRS epidemic models. 

 

This study has serious concerns regarding a 

stochastic SEIRS epidemic model including the 

recovered compartment R(t) in S(t) along with 

saturated incidence rates and saturated treatment 

functions. This paper explores the nuances of virus 

evolution by analyzing and integrating an 

evolutionary epidemic model with stochastic SEIRS 

models. This integration captures the stochastic 

evolution of susceptible, exposed, infected, and 
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recovered populations. Over time, individuals within 

this population engage in stochastic interactions and 

undergo state transitions. This perspective 

characterizes the infectious process as a white noise 

interaction, enabling easy recovery from infection 

through treatment. Additionally, those who recover 

from the disease undergo treatment for disease 

mutation and revert to the vulnerable stage upon 

recovery. In this study, our aim is to demonstrate the 

substantial effects of saturation treatment on a 

stochastic SEIRS epidemic model. 

This paper continues in the following manner: The 

SEIRS treatment function epidemic model Eq.4 is 

described in Section 2 of the paper. The global 

positivity and uniqueness of solutions for the 

stochastic model Eq 4 with a positive initial value are 

established in Section 3.  In Section 4, by 

constructing a stochastic Lyapunov function to fit the 

solutions of the system Eq 4,  demonstrating  the 

ergodic stationary distribution existence and its 

uniqueness. The condition for the extinction of the 

infections is constructed in Section 5. The theoretical 

results are based on examples and numerical 

calculations in section 6. A brief discussion and 

future work of the main findings are presented in 

Section 7. 

 

Model 

This paper introduces an exposed class to an 

epidemic model, aiming to elucidate the dynamic 

aspects of the epidemic and their implications. 

Within the SEIR paradigm, individuals highly 

susceptible to the disease transition into an exposed 

compartment upon contact with an infectious person. 

Notably, there is a subsequent non-infectious period 

post-exposure, during which the individual remains 

non-contagious until the incubation period 

concludes. Additionally, individuals who have 

recovered from the disease, having undergone 

treatment and gained immunity, are permanently 

protected against reinfection 24-26. Consequently, the 

deterministic SEIRS epidemic model, featuring a 

saturated incidence rate and saturated treatment 

function, can be formulated as follows: 

𝑑𝒮

𝑑𝑡
= Θ −

𝛽𝒮ℐ

1+𝜓ℐ
− 𝜇𝒮 + 𝜂ℛ,                                               

𝑑ℰ

𝑑𝑡
=

(1−𝜈)𝛽𝒮ℐ

1+𝜓ℐ
− (𝜇 + 𝜀)ℰ,                                               

 
𝑑ℐ

𝑑𝑡
= 𝜀ℰ +

𝜈𝛽𝒮ℐ

1+𝜓ℐ
−
(1+𝜙)𝛾ℐ

(1+𝑏ℐ)
− (𝜇 + 𝛿)ℐ,                  3 

𝑑ℛ

𝑑𝑡
=

(1−𝜙)𝛾ℐ

1+𝑏ℐ
− (𝜇 + 𝜂)ℛ,  

 
by the conditions of non-negative terms 

(𝒮(0), ℰ(0), ℐ(0), ℛ(0)) ≥ 0. The detailed 

environmental illustrations of the parameters are 

given in Tables 1 and 2. 

 

Table 1. Model Variables and Description 

Variables Description 

𝓢(𝒕)                                     Susceptible population 

𝓔(𝒕)                                     Exposed population 

𝓘(𝒕)                                    Infected population 

𝓡(𝒕)                                    Recovered population 

 

Table 2. Model Parameters and Description 

Variables Description 

𝚯 Recruitment rate  

𝜷 Transmission rate 

𝝋 Saturated factor that measures 

inhibitory effect 

𝝂 

𝜺 

𝝁 

𝜹 

𝝓 

𝜸 

 

𝒃 

 

𝜼 

Fast progression rate 

Rate at which peoples become 

infectious 

Natural death rate 

Disease induced death rate 

Failure treatment rate 

Recovery rate 

Treatment effect of infected delayed  

  measured by saturated factor 

Loss of immunity 

 

At time 𝑡, the population densities for susceptible, 

exposed, infected, and removed are plotted as 

𝑆(𝑡),𝐸(𝑡),𝐼(𝑡), and 𝑅(𝑡). In the real world, abundant 

and unpredictable environmental noise hurts 

population models. The mathematical modelling of 

ecological systems is also limited by deterministic 

systems, regardless of environmental fluctuations. 

There is a lot of difficulty in fitting data to them 

perfectly 27. Thus, stochastic models are receiving 

growing attention from researchers. Additionally, 

there have been discussions of various stochastic 

perturbations with population models 28,29. A random 

fluctuation in the population dynamics model is 

inevitable in real life. An epidemic model of a 

stochastic SIRS epidemic was developed by Li et 

al.30 to understand the mechanism of influenza A 

virus transmission. A study by Feng T et al.31 

demonstrated how environmental noise can change 

qualitative behaviors. Our paper considers a 

stochastic SEIRS epidemic model with a saturated 

https://doi.org/10.21123/bsj.2024.11183
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incidence rate based on the above motivations25 
𝛽𝒮ℐ

1+𝜑ℐ
 

and continuously differentiable treatment function 

𝑇(ℐ) =
𝑟ℐ

1+𝑏ℐ
 produced by32 incorporating the 

recovered compartment ℛ(𝑡) in 𝒮(𝑡) with the 

saturation phenomenon of constrained medical 

resources. Where 
1

1+𝜑ℐ
 measures the inhibition effect 

resulting from the behavioral changes of the affected 

people when their number of growths from the 

congested affected of the infected individuals, while 

𝛽𝒮(𝑡)ℐ(𝑡) measures the infection force of the 

disease. If establishing Υ = {(𝒮, ℰ, ℐ, ℛ): 𝒮 + ℰ +

ℐ + ℛ ≤
Θ

𝜇
, (𝒮, ℰ, ℐ, ℛ) ≥ 0}. There is no problem 

verifying that region Υ is positively invariant 

concerning model Eq.3. The reproduction number is: 

ℛ0 =
𝛽Θ(𝜀 + 𝜇𝜈)

𝜇(𝜀 + 𝜇)((1 − 𝜙)𝛾 + 𝛿 + 𝜇)
. 

In a susceptible population, it is the average number 

of secondary transmissions of a single infected 

person. It displays the behavior of the solution 

according to the value of the threshold ℛ0:  

 In model Eq 3, if ℛ0 < 1, there exists a unique 

disease-free equilibrium ℰ0 = (
Θ

𝜇
, 0,0,0), 

which is globally asymptotically stable. 

 When ℛ0 >  1 in addition to 𝐸0, model Eq 3, 

contains a global asymptotically stable positive 

endemic equilibrium ℰ∗(𝒮∗, ℰ∗, ℐ∗, ℛ∗). 
The goal of this study is to investigate whether the 

stochastic 𝑆𝐸𝐼𝑅𝑆 epidemic model solution has an 

ergodic stationary distribution. In our approach, 

stochastic perturbations are incorporated. Keeping 

these facts in mind motivates us to keep working 

hard. It is assumed in this paper that stochastic 

perturbations are of the white noise type, where 

𝑆, 𝐸, 𝐼, and 𝑅 are directly proportional to each other, 

with 
𝑑𝒮

𝑑𝑡
, 
𝑑ℰ

𝑑𝑡
, 
𝑑ℐ

𝑑𝑡
, and 

𝑑ℛ

𝑑𝑡
 influencing the system Eq 3. 

Considering the above, proposing the following 

stochastic SEIRS epidemic model that integrates 

saturated treatment and contact rates: 

𝑑𝒮 = [Θ −
𝛽𝒮ℐ

1 + 𝜓ℐ
− 𝜇𝒮 + 𝜂ℛ]𝑑𝑡 + 𝜚1𝒮𝑑ℬ1(𝑡), 

  𝑑ℰ = [
(1−𝜈)𝛽𝒮ℐ

1+𝜓ℐ
− (𝜇 + 𝜀)ℰ] 𝑑𝑡 + 𝜚2ℰ𝑑ℬ2(𝑡) ,    4       

                            

 𝑑ℐ = [𝜀ℰ +
𝜈𝛽𝒮ℐ

1 + 𝜓ℐ
−
(1 + 𝜙)𝛾ℐ

(1 + 𝑏ℐ)
− (𝜇 + 𝛿)ℐ] 𝑑𝑡

+ 𝜚3ℐ𝑑ℬ3(𝑡), 

𝑑ℛ = [
(1 − 𝜙)𝛾ℐ

1 + 𝑏ℐ
− (𝜇 + 𝜂)ℛ]𝑑𝑡 + 𝜚4ℛ𝑑ℬ4(𝑡), 

where ℬ𝑖′s are standard one- dimentional 

independent Brownian motion, 𝜚𝑖 > 0 is the 

intensity of the white noise, (𝑖 = 1,2,3,4) that is 

specified on a complete probability area (Ω, ℱ, 𝑃) 
with {ℱ}𝑡∈ℝ+4  filtration fulfilling the normal 

requirements, ℱ0 contains all P-null sets, whereas 

{ℱ}𝑡∈ℝ+4  value is increasing and continuous 33. In all 

cases, the coefficients are not negative, Θ > 0. In this 

study, saturated treatment rates and contact rates are 

discussed with the stochastic 𝑆𝐸𝐼𝑅𝑆 epidemic 

model. To determine whether the model has a 

stationary ergodic distribution, the model’s 

dynamical properties will be investigated. 

 

Existence of a Unique Global Solution 

The investigation into the dynamics of an epidemic 

model necessitates a comprehensive evaluation of 

the solution’s global and positive aspects. In 

summary, the subsequent findings confirm the 

existence and uniqueness of a positive global 

solution. To delve into the dynamic behavior of 

model Eq 4, a preliminary analysis of its static 

features is indispensable for a thorough 

understanding. Firstly, considering stochastic 

differential equations in d-dimensions: 

𝑑𝒳 = 𝑓(𝒳(𝑡), 𝑡)𝑑𝑡 + 𝑔(𝒳(𝑡), 𝑡)𝑑ℬ(𝑡)    for     

𝑡 ≥ 𝑡0, 

with the initial value for 𝒳(0) = 𝒳0 ∈ ℝ
𝒹 . The 

differential operator ℒ associated with the equation 

above can be defined as follows: 

ℒ =
𝜕

𝜕𝑡
+ ∑ 𝑓𝑖(𝒳, 𝑡)

𝒹
𝑖=1

𝜕

𝜕𝒳
+

                        
1

2
∑ [𝑔𝒯(𝒳, 𝑡)𝑔(𝒳, 𝑡)]𝑖𝑗
𝒹
𝑖,𝑗=1

𝜕2

𝜕𝒳𝑖𝜕𝒳𝑗
.  

If ℒ acts on a function 𝒱 ∈ 𝒞2(ℝ𝒹 × [𝑡0,∞;ℝ+]), 

then 

ℒ𝒱(𝒳, 𝑡) = 𝒱𝑡(𝒳, 𝑡)𝑓(𝒳, 𝑡) +

                             
1

2
𝑡𝑟𝑎𝑐𝑒[𝑔𝒯(𝒳, 𝑡)𝒱𝒳𝒳(𝒳, 𝑡)𝑔(𝒳, 𝑡)].  

Where 𝒱𝑡 =
𝜕𝒱

𝜕𝑡
, 𝒱𝒳 = (

𝜕𝒱

𝜕𝒳1
,
𝜕𝒱

𝜕𝒳2
, … ,

𝜕𝒱

𝜕𝒳𝒹
, ), 𝒱𝒳𝒳 =

(
𝜕2

𝜕𝒳𝑖𝜕𝒳𝑗
)
𝒹×𝑑

. Thus, by Ito’s formula, if 𝒳𝑡 ∈ ℝ
𝒹

, 

then𝑑𝒱(𝒳(𝑡), 𝑡) = ℒ𝒱(𝒳(𝑡), 𝑡)𝑑𝑡 +

 𝒱𝒳(𝒳(𝑡), 𝑡)𝑔(𝒳(𝑡), 𝑡)𝑑ℬ(𝑡). 

There are several theories of stationary distributions 

that will be discussed in the next section 

(Hasminskii34). 

Theorem 1: For any initial value 

(𝒮(0), ℰ(0), ℐ(0), ℛ(0)) ∈ ℝ+
4 , there is a unique 

https://doi.org/10.21123/bsj.2024.11183
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solution 𝒮(𝓉), ℰ(𝓉), ℐ(𝓉), ℛ(𝓉)) of the model Eq 3, 

on 𝓉 > 0 and the solution will remain in ℝ+
4  with 

probability one. 

Proof: It is known that for any initial value 

(𝒮(0), ℰ(0), ℐ(0), ℛ(0)) the coefficients in the 

system Eq.3, satisfy the local Lipschitz condition, 

and that a unique local solution 

𝒮(𝓉), ℰ(𝓉), ℐ(𝓉), ℛ(𝓉)) can be found on [0, 𝜏∗) 
𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑢𝑟𝑒𝑙𝑦, where 𝜏∗ is the explosion time 33. 

The solution must be universally applicable. Only 

one thing needs to be proved: 𝜏∗ = +∞ almost 

certainly exists. Now, let ℓ0 > 0 be a sufficiently 

large number such that (𝒮(0), ℰ(0), ℐ(0), ℛ(0))  lies 

inside the interval. For each integer [ 
1

ℓ0
, ℓ0] define 

the stopping time 33, 

𝜏ℓ = inf {𝓉 ∈ [0, 𝜏
∗): 𝒮(𝑡) ∉ (

1

ℓ
, ℓ)  𝑜𝑟 ℰ(𝑡) ∉

(
1

ℓ
, ℓ)  𝑜𝑟 ℐ(𝑡) ∉ (

1

ℓ
, ℓ)  𝑜𝑟 ℛ(𝑡) ∉ (

1

ℓ
, ℓ)}, 

a typical format is set to ∅ = +∞ (Under normal 

conditions, ∅ denotes the empty set). It is clear that 

𝜏ℓ is rising in ℓ and 𝜏∞ < 𝜏∗. Then 𝜏ℓ = lim
ℓ→∞

𝜏ℓ 

makes sense, and  𝜏ℓ < 𝜏
∗ a. s. An important step is 

to construct a Lyapunov function. Consider that  

𝜏∞ < ∞, then there are two constants 𝒯 > 0 and 𝜖 ∈
(0,1) such that 𝒫{𝜏∞ ≤ 𝒯} > 𝜖. Therefore, there is 

an integer ℓ1 ≥ ℓ0 such that, 𝒫{𝜏∞ < 𝒯} ≥ 𝜖 ∀ ℓ ≥
ℓ1. Thus, the term is defined by us a ℂ2 function 

𝒱:ℝ+
4 → ℝ+ as follows: 

𝒱(𝒮, ℰ, ℐ, ℛ) = 𝒮 − 1 − ln 𝒮 + ℰ − 1 − lnℰ + ℐ −
  1 − ln ℐ + ℛ − 1 − lnℛ .     5                             

Applying the Ito formula it will be, 

𝒹𝒱 = 𝑝𝒱𝒹𝓉 + 𝜚1(𝒮 − 1)𝒹𝒲1(𝓉) + 𝜚2(ℰ −
1)𝒹𝒲2(𝓉) + 𝜚3(ℐ − 1)𝒹𝒲3(𝓉) + 𝜚4(ℛ −
1)𝒹𝒲4(𝓉).                                                           6 

Therefore,  

ℒ𝒱 = (1 −  
1

𝒮
) (Θ −

𝛽𝒮ℐ

1+𝜓ℐ
− 𝜇𝒮 + 𝜂ℛ) + (1 −

  
1

ℰ
) (

(1−𝜈)𝛽𝒮ℐ

1+𝜓ℐ
− (𝜇 + 𝜀)ℰ) + (1 −  

1

ℐ
) (𝜀ℰ +

𝜈𝛽𝒮ℐ

1+𝜓ℐ
−
(1+𝜙)𝛾ℐ

(1+𝑏ℐ)
− (𝜇 + 𝛿)ℐ) + (1 −  

1

ℛ
) (

(1−𝜙)𝛾ℐ

1+𝑏ℐ
−

(𝜇 + 𝜂)ℛ)  

= Θ + 4𝜇 + 𝜖 + 𝜂 − 𝜇(𝒮 + ℰ + ℐ + ℛ) −
Θ

𝒮
−
𝜂ℛ 

𝒮

−
𝜖ℰ

ℐ
−

𝛽𝒮ℐ

1 + 𝜑ℐ
+

𝛽ℐ

1 + 𝜑ℐ

+
(1 − 𝜗)𝛽𝒮ℐ

1 + 𝜑ℐ
−
(1 − ϑ)β𝒮ℐ

ℰ(1 + φℐ)

+
(1 − ϕ)γℐ

ℛ(1 + 𝒷ℐ)
−
ϑβ𝒮ℐ

1 + φℐ
−

ϑβ𝒮

1 + φℐ

+
(1 − ϕ)γ

ℛ(1 + 𝒷ℐ)
+
𝜚1
2 + 𝜚2

2 + 𝜚3
2 + 𝜚4

2

2
 

  

≤ Θ + 4𝜇 + 𝜖 + 𝜂 +
𝜚1
2+𝜚2

2+𝜚3
2+𝜚4

2

2
     

≤ 𝒦0,    

where 𝒦0 is a suitable constant that is independent. 

The remainder of the proof of Theorem 1 is similar 

to Mao et al.34 and it's neglected. 

 

The asymptotic behavior of the equilibrium 

solution for a disease-free system 

 

The various stability concepts have been explored in 

the context of disease-free equilibrium. 

Stochastically asymptotic stability, focusing on 

probabilities near equilibrium, elucidates the 

asymptotic trajectory of sample paths within a 

system, providing insight into almost sure behaviors. 

Assuming global stochastic asymptotic stability for 

𝐸0, one can employ a Lyapunov function to identify 

an equilibrium devoid of disease. Analyzing the 

stochastic model Eq 4, up to asymptotic equilibrium 

allows for a comprehensive examination of its 

asymptotic behavior. 

Theorem 2: If ℰ0 = (
Θ

𝜇
, 0,0,0) is a disease-free 

equilibrium of the stochastic model Eq 4, is globally 

asymptotically stable on 𝒟. Then ℛ0 ≤ 1. 
Proof. Now define the function 𝒞2 is 𝒱:ℝ+

4 → ℝ+ as 

follows, 

𝒱(𝒮, ℰ, ℐ, ℛ) = ln(𝒮, ℰ, ℐ, ℛ)2 + ln ℐ . 
The Lyapunov function generator ℒ on 𝒱 provides 

the following result, 

 

𝒱(𝒮, ℰ, ℐ, ℛ) = (Θ −
𝛽𝒮ℐ

1+𝜓ℐ
− 𝜇𝒮 +

𝜂ℛ) (
2

(𝒮+ℰ+ ℐ+ℛ)
) + (

(1−𝜈)𝛽𝒮ℐ

1+𝜓ℐ
− (𝜇 +

𝜀)ℰ) (
2

(𝒮+ℰ+ ℐ+ℛ)
)  

+(𝜀ℰ +
𝜈𝛽𝒮ℐ

1+𝜓ℐ
−
(1+𝜙)𝛾ℐ

(1+𝑏ℐ)
− (𝜇 + 𝛿)ℐ) (

2

(𝒮+ℰ+ ℐ+ℛ)
+

1

ℐ
) + (

(1−𝜙)𝛾ℐ

1+𝑏ℐ
− (𝜇 + 𝜂)ℛ)(

2

(𝒮+ℰ+ ℐ+ℛ)
)  

https://doi.org/10.21123/bsj.2024.11183


 

Published Online First: December, 2024 

https://doi.org/10.21123/bsj.2024.11183  

P-ISSN: 2078-8665 - E-ISSN: 2411-7986 
 

Baghdad Science Journal 

+
1

2
(

−2

(𝒮 + ℰ +  ℐ + ℛ)2
) 𝜚1

2𝒮2

− (
2

2(𝒮 + ℰ +  ℐ + ℛ)2
) 𝜚2

2ℰ2

+
1

2
(

−2

(𝒮 + ℰ +  ℐ + ℛ)2

−
1

ℐ2
)𝜚3

2ℐ2 

                         −(
2

2(𝒮+ℰ+ ℐ+ℛ)2
) 𝜚4

2ℛ2.  

In order to simplify that 𝒮 + ℰ +  ℐ + ℛ ≤ 1, in our 

case, 

ℒ𝒱 = −2𝜇 + (
𝜑𝛽Θ

𝜇
− (1 − 𝜙)𝛾 − (𝜇 + 𝛿))

−
1

2
𝜎3
2

−
𝜎1
2𝒮2 + 𝜎2

2ℰ2 + 𝜎3
2ℐ2 + 𝜎4

2ℛ2

(𝒮 + ℰ + ℐ + ℛ)2
. 

Then ℒ𝒱(𝒮 + ℰ + ℐ + ℛ) becomes a negative 

definite on 𝒟 with a condition  ℛ0 ≤ 1. The disease 

will persist here, so there is only one condition for 

ℛ0, and the other two are automatically satisfied. The 

disease-less equilibrium solution ℰ0 = (
Θ

𝜇
, 0,0,0) of 

the stochastic model Eq 4, is globally asymptotically 

stable on 𝒟. 
Remark 1: The above Theorem 2 provides that the 

disease cases exist when ℛ0 < 1. From the stability 

of the condition ((1 − 𝜙)𝛾 + 𝜇 + 𝒮) ≥
𝜑𝛽Θ

𝜇
  , then 

the disease will disappear. Taking into account the 

ℛ0 =
𝛽Θ(𝜀+𝜇𝜈)

𝜇(𝜀+𝜇)((1−𝜙)𝛾+𝛿+𝜇)
< 1. Then ℰ0 =

(
Θ

𝜇
, 0,0,0)  of the stochastic model Eq 4, is 

asymptotically stable in the large. 

 

Remark 2: According to Theorem 2, the stochastic 

model Eq 4 will approach disease-less equilibrium if 

the white noise intensity is high enough. Since the 

intensity of white noise 𝜚𝑖 (for i =  1, 2, 3, 4)  is 

small, the solutions of stochastic model Eq 4, will 

generally fluctuate around the diseases-less 

equilibrium of deterministic model Eq 3. 

 

Existence of ergodic stationary distribution 

In the analysis of epidemic dynamical models, 

assessing the persistence and prevalence of a disease 

in a population holds paramount importance. 

Deterministic models often establish global attractor 

or global asymptotic stability by focusing on their 

endemic equilibrium. Notably, model Eq 4, lacks 

such equilibrium. This section introduces the concept 

of an ergodic stationary distribution, grounded in 

Has’minskii’s theory 34, providing evidence for the 

persistence of the disease.  

The following stochastic differential equation 

describes 𝒳(𝑡) as a homogeneous Markov process in 

ℝ+
4 . 

𝒹𝒳(𝓉) = 𝑓(𝒳(𝓉))𝒹𝓉 +∑ℊ𝑖(𝒳)𝒹𝒲𝑖(𝓉).

𝑘

𝑖=1

 

As a result, the diffusion matrix can be defined as 

follows: 

  𝒜(𝓍) = (𝒶𝑖𝑗(𝓍)) , 𝒶𝑖𝑗(𝓍) = ∑ ℊ𝑖
𝑝
(𝓍)ℊ𝑖

𝓆
(𝓍)𝑘

𝑖=1 . 

 

Lemma 1: 35 There is a unique ergodic stationary 

distribution 𝜔(. ) for the Markov process 𝒳(𝓉) if the 

domain 𝔻 ⊂ ℝ4
+ has a regular boundary Γ∗, with the 

following properties: 

ℋ1: there is a positive number ℳ such that 
 

∑ 𝒶𝑖𝑗(𝓍)

4

𝑖,𝑗=1

𝜉𝑖𝜉𝑗 ≥ℳ|𝜉|2 𝑓𝑜𝑟 𝓍 ∈ 𝔻, 𝜉𝑖

∈ ℝ+
4  (𝑖 = 1,2,3,4). 

 

ℋ2:
 there exists a non-negative 𝒞2 function 𝒱(𝓍)and 

a positive constant 𝒞∗ such that 𝒱ℒ ≤ 𝒞∗ for any 

ℝ+
4 \𝔻. Then 

 

𝒫𝒳 { lim
𝒯→∞ 

1

𝒯
∫ 𝑓(𝒳(𝓉))

𝒯

0

𝒹𝓉 = ∫𝑓(𝓍)𝜔(𝒹𝓍)

 

ℝ+
4

}

= 1, 
 

Define a parameter value ℛ0
𝒮  corresponding to the 

basic reproduction number ℛ0 of the system Eq 4, as 

follows: 

ℛ0
𝒮 =

Θ𝛽𝜗𝜖

(𝜇+
𝜚1
2

2
)(𝜖+𝜇+

𝜚2
2

2
)((1−𝜙)𝛾+𝜇+𝛿+

𝜚3
2

2
)

 .  

and a function 𝑓(. ) with respect to a measure 𝜔(. ) is 

an integral function. 

 

Theorem 3: Assume that ℛ0
𝒮 > 1, then the model 

Eq.4, has a unique stationary distribution Γ(. ) and it 

has the ergodic property. 

 

Proof: Defining the diffusion matrix for a system  
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𝒜 =

(

 
 

𝜚1
2𝒮2 0 0 0 0

0 𝜚2
2ℰ2 0 0 0

0 0 𝜚3
2ℐ2 0 0

            0      0       0       0  𝜚4
2ℛ2)

 
 

 

There is a positive number 

𝒵 = min
(𝒮,ℰ,ℐ,ℛ)∈𝒟

{𝜚1
2𝒮2, 𝜚2

2ℰ2, 𝜚3
2ℐ2, 𝜚4

2ℛ2}, 

such that  

∑ 𝑎𝑖𝑗ς𝑖ς𝑗

4

𝑖,𝑗=1

= ϱ1
2𝒮2ς1

2 + ϱ2
2ℰ2ς2

2 + ϱ3
2ℐ2ς3

2

+ ϱ4
2ℛ2ς4

2 ≥ 𝒵 |ς|2, (𝒮, ℰ, ℐ, ℛ)

∈ 𝒟ϵ, ς ∈  ℝ
𝟜,                                     7 

which indicates that Lemma 1 (ℋ1)  and Assumption 

1(i) are satisfied. 

Construct a 𝒞2- function 𝒱:ℝ+
𝟜 → ℝ in the following 

form 

𝑑𝒱 = 𝒦0(𝒮 + ℰ + ℐ + ℛ − 𝛼1 ln 𝒮 − 𝛼2 ln ℰ
− 𝛼3 ln ℐ)

+
1

𝜃 + 1
 (𝒮 + ℰ + ℐ + ℛ)𝜃+1

− ln𝒮 𝑙𝑛 − ℰ 

                 − lnℛ + (𝒮 + ℰ + ℐ + ℛ)  
             = 𝒦0𝒱1 + 𝒱2 + 𝒱3 + 𝒱4 + 𝒱5 +𝒱6.  
Where 𝜃 is a constant satisfying  

0 < 𝜃 <
2

𝜚1
2⋁𝜚2

2⋁𝜚3
2⋁𝜚4

2,  

 

α1 =
Θ

μ +
ϱ1
2

2

,     α2 =
Θ

ε + μ +
ϱ2
2

2

  

 
 α3 =

Θ

(1 − ϕ)γ + δ + μ +
ϱ3
2

2

 . 

 

There is an easy way to check that 

lim
𝑖→∞,(𝒮,ℰ,ℐ,ℛ)∈ℝ+

𝟜∖𝑈𝑛̅̅ ̅̅
𝑖𝑛𝑓 Γ(𝒮, ℰ, ℐ, ℛ) = +∞,    

where 𝑈𝓀̅̅ ̅̅ = (
1

𝓀
, 𝓀) × (

1

𝓀
, 𝓀) × (

1

𝓀
, 𝓀) × (

1

𝓀
, 𝓀).  

 

Furthermore, Γ(𝒮, ℰ, ℐ, ℛ) is a continuous function. 

Hence, Γ(𝒮, ℰ, ℐ, ℛ) must have a minimum point 

(𝒮(0), ℰ(0), ℐ(0), ℛ(0)) in the interior of ℝ+
4 . Our 

next step is to define non-negative 𝒞2- function 

𝒹𝒱:ℝ+
4 → ℝ+ as follows; 

𝒹𝒱(𝒮, ℰ, ℐ, ℛ) = Γ(𝒮, ℰ, ℐ, ℛ) − Γ(𝒮0, ℰ0, ℐ0, ℛ0). 
As a result of applying the Ito formula, that gives 

𝔏𝒱1 = Θ−
β𝒮ℐ

1 + φℐ
− μ𝒮 + ηℛ +

(1 − ϑ)β𝒮ℐ

(1 + φℐ)ℰ

− (ε + μ) −
εℰ

ℐ
−
ϑβ𝒮ℐ

1 + φℐ

−
(1 − ϕ)γ

1 + 𝑏ℐ
− (μ + δ) − α1

Θ

𝒮

− α1
βℐ

1 + φℐ
+ α1μ + α1

ηℛ

𝒮

+ α1
ϱ1
2

2
− α2

(1 − ϑ)β𝒮ℐ

(1 + φℐ)ℰ

− α2(ε + μ) − α3
εℰ

ℐ
− α3

ϑβ𝒮

1 + φℐ

− α3
(1 − ϕ)γ

1 + 𝑏ℐ
− α3(μ + δ)

+ α3
ϱ2
2

2
+ α3

ϱ3
2

2
 

= Θ − α1
Θ

𝒮
− α2

(1 − ϑ)β𝒮ℐ

(1 + φℐ)ℰ
− α3

εℰ

ℐ
− α3

ϑβ𝒮

1 + φℐ

+ α1 (μ +
ϱ1
2

2
)

+ α2 (ε + μ +
ϱ2
2

2
)  

+ α3 ((1 − ϕ)γ + δ + μ

+
ϱ3
2

2
)  .                                              8  

Using inequality   𝑎 + 𝑏 ≥ 2√𝑎𝑏,  𝑎, 𝑏 > 0, 

𝔏𝑉1 = −2(α2α3
ε(1 − ϑ)β𝒮

1 + φℐ
)

1
2

− 2(α1α3
ϑβΘ

1 + φℐ
)
2

+ Θ

+ α1
βℐ

1 + φℐ
+ α3

(1 − ϕ)γ

1 + 𝑏ℐ

+ α1 (μ +
ϱ1
2

2
) + α2 (ε + μ +

ϱ2
2

2
)

+ α3 ((1 − ϕ)γ + δ + μ +
ϱ3
2

2
) 
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≤ −4(
α1α2α3(1 − ϑ)βΘε

1 + φℐ
)

1
4

+ Θ + α1
βℐ

1 + φℐ

+ α3
(1 − ϕ)γ

1 + 𝑏ℐ
+ α1 (μ +

ϱ1
2

2
)

+ α2 (ε + μ +
ϱ2
2

2
)

+ α3 ((1 − ϕ)γ + δ + μ +
ϱ3
2

2
) 

= −4(
Θ4ϑβεμ

(μ+
ϱ1
2

2
)(ε+μ+

ϱ2
2

2
)((1−ϕ)γ+δ+μ+

ϱ3
2

2
)∧(1+φℐ)

)

1

4

+

4Θ + α1
βℐ

1+φℐ
+ α3

(1−ϕ)γ

1+𝑏ℐ
  

=

−4Θ

{
 
 

 
 

[
ϑβεμ

(μ+
ϱ1
2

2
)(ε+μ+

ϱ2
2

2
)((1−ϕ)γ+δ+μ+

ϱ3
2

2
)∧(1+φℐ)

]

1

4

−

1

}
 
 

 
 

+ α1
βℐ

1+φℐ
+ α3

(1−ϕ)γ

1+𝑏ℐ
  

= −ϑ + α1
βℐ

1+φℐ
+ α3

(1−ϕ)γ

1+𝑏ℐ
 ,                 9                                                                                                             

where, 

ϑ =

4Θ

{
 
 

 
 

[
ϑβεμ

(μ+
ϱ1
2

2
)(ε+μ+

ϱ2
2

2
)((1−ϕ)γ+δ+μ+

ϱ3
2

2
)∧(1+φℐ)

]

1

4

−

1

}
 
 

 
 

> 0.  

Similarly 

𝔏𝑉2 = (𝒮 + ℰ + ℐ + ℛ)
ν(Θ − μ𝒮 − μℰ − (μ − ϑ)ℐ

− μℛ) +
ν

2
(𝒮 + ℰ + ℐ + ℛ)ν−1

× (ϱ1
2𝒮2 + ϱ2

2ℰ2 + ϱ3
2ℐ2 + ϱ4

2ℛ2)  
≤ (𝒮 + ℰ + ℐ + ℛ)ν[Θ − μ(𝒮 + ℰ + ℐ + ℛ)]

+
ν

2
(𝒮 + ℰ + ℐ + ℛ)ν+1

× (ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2) 

= Θ(𝒮 + ℰ + ℐ + ℛ)ν − [μ −
ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨

ϱ4
2)] (𝒮 + ℰ + ℐ + ℛ)ν+1       

≤  Θ

−
1

2
[μ −

ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)] (𝒮ν+1 + ℰν+1

+ ℐν+1 +ℛν+1).                                             10  
Where 

Ξ = sup
(𝒮,ℰ,ℐ,ℛ)∈𝑅+

𝟜
{Θ(𝒮 + ℰ + ℐ + ℛ)ν

−
1

2
[μ

−
ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)] (𝒮 + ℰ

+ ℐ + ℛ)ν+1},  

there is also the possibility of getting 

𝔏𝑉3 = −
Θ

𝒮
+

βℐ

1 + φℐ
+ μ +

ηℛ

𝒮
+
ϱ1
2

2
 ,           11 

𝔏𝑉4 = −
(1 − ϑ)β𝒮ℐ

ℰ(1 + φℐ)
+ μ + ε +

ϱ2
2

2
  ,                12  

𝔏𝑉5 = −
(1 − ϕ)γℐ

(1 + 𝑏ℐ)ℛ
+ μ + δ + η +

ϱ4
2

2
,           13 

𝔏𝑉6 = Θ− μ(𝒮 + ℰ + ℐ + ℛ) ,                              14 

our findings 

𝔏𝑉 = −𝑃𝑀 +
𝑃α1βℐ

1 + φℐ
+
𝑃α3(1 − ϕ)γ

1 + 𝑏ℐ

−
1

2
[μ −

ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)]

× (𝒮ν+1 + ℰν+1 + ℐν+1 +ℛν+1)

−
Θ

𝒮
+

βℐ

1 + φℐ
+ μ +

ηℛ

𝒮

−
(1 − ϑ)β𝒮ℐ

ℰ(1 + φℐ)
+ μ + ε

−
(1 − ϕ)γℐ

(1 + 𝑏ℐ)ℛ
+ μ + δ + η + Θ

− μ(𝒮 + ℰ + ℐ + ℛ) +
ϱ1
2

2
+
ϱ2
2

2

+
ϱ4
2

2
 . 

𝔏𝑉 = −𝑃𝑀 +
𝑃α1βℐ

1 + φℐ
+
𝑃α3(1 − ϕ)γ

1 + 𝑏ℐ

−
1

2
[μ −

ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)]

× (𝒮ν+1 + ℰν+1 + ℐν+1 +ℛν+1)

−
(1 − ϑ)β𝒮ℐ

ℰ(1 + φℐ)
−
(1 − ϕ)γℐ

(1 + 𝑏ℐ)ℛ
−
Θ

𝒮

+
βℐ

1 + φℐ
+
ηℛ

𝒮
− μ(𝒮 + ℰ + ℐ + ℛ) + Θ + δ + η

+ ε + 3μ +
ϱ1
2 + ϱ2

2 + ϱ4
2

2
  .         15 

https://doi.org/10.21123/bsj.2024.11183


 

Published Online First: December, 2024 

https://doi.org/10.21123/bsj.2024.11183  

P-ISSN: 2078-8665 - E-ISSN: 2411-7986 
 

Baghdad Science Journal 

In order to construct a closed domain 𝔇ϵ with a 

bounded boundary, our steps are as follows: 

𝔇ϵ = [(𝒮, ℰ, ℐ, ℛ) ∈ ℝ+
4 : ε1 < 𝒮 <

1

ε1
, ε2 < ℰ

<
1

ε2
, ε1 < 𝒮 <

1

ε1
, ε2 < 𝒮 <

1

ε2
], 

where 0 < ε1, ε2 < 1 is a sufficiently small constant. 

In the set ℝ+
4 ∖ 𝔇ϵ, it is possible to choose ϵ small 

enough to meet the following conditions. 

−
Θ

ε1
+𝐻 ≤ −1 ,                                                    16 

−𝑃 (𝑀 −
α1βε2

φ
−
α3(1−ϕ)γ

𝑏
) + 𝐺 ≤ −1 ,               17  

−2(
α1𝑃ε1μβ

φ
)

1

2
+ 𝑇 ≤ −1 ,                                   18   

 

−
(1−ϕ)γ

𝑏ε2
+
𝑃α1β

φ
+ 𝐹 ≤ −1 ,                                   19  

−
1

4
[μ −

ϑ

2
(ϱ1
2 ∨ ϱ1

2 ∨ ϱ2
2 ∨ ϱ3

2 ∨ ϱ4
2)]

1

ε1
ϑ+1

+ 𝐽

≤ −1,                                                                             20 
                                                                                      

−
1

4
[μ −

ϑ

2
(ϱ1
2 ∨ ϱ1

2 ∨ ϱ2
2 ∨ ϱ3

2 ∨ ϱ4
2)]

1

ε1
2(ϑ+1) +𝑊 ≤

−1,                                                                              21  

−
1

4
[μ −

ϑ

2
(ϱ1
2 ∨ ϱ1

2 ∨ ϱ2
2 ∨ ϱ3

2 ∨ ϱ4
2)]

1

ε2
ϑ+1 + 𝑋 ≤

−1,                                                                                       22 

−
1

4
[μ −

ϑ

2
(ϱ1
2 ∨ ϱ1

2 ∨ ϱ2
2 ∨ ϱ3

2 ∨ ϱ4
2)]

1

ε2
2(ϑ+1) + 𝑌 ≤

−1,                                                                                    23  

Here H, G, T, F, J, W, X, and Y are the positive 

constants that are given explicitly in the expression 

Eq 16 to Eq 23. For our convenience. It is possible to 

divide ℝ+
4 ∖ 𝒟ϵ into eight domains. 

𝔇1 = {(𝒮, ℰ, ℐ, ℛ) ∈ ℝ+
4 : 0 < 𝒮 < ε1},                         

𝔇2 = {(𝒮, ℰ, ℐ, ℛ) ∈ ℝ+
4 : 0 < ℐ < ε1, 𝒮 ≥ ε1},           

𝔇3 = {(𝒮, ℰ, ℐ, ℛ) ∈ ℝ+
4 : 𝒮 ≥ ε1ℐ ≥ ε1,0 < ℰ

< ε2}, 

𝔇4 = {(𝒮, ℰ, ℐ, ℛ) ∈ ℝ+
4 : 0 < ℛ < ε2, ℐ ≥ ε1}, 

𝔇5 = {(𝒮, ℰ, ℐ, ℛ) ∈ ℝ+
4 : 𝒮 >

1

ε1
},                    

𝔇6 = {(𝒮, ℰ, ℐ, ℛ) ∈ ℝ+
4 : ℐ >

1

ε1
},                       

𝔇7 = {(𝒮, ℰ, ℐ, ℛ) ∈ ℝ+
4 : ℰ >

1

ε2
},                     

𝔇8 = {(𝒮, ℰ, ℐ, ℛ) ∈ ℝ+
4 : ℛ >

1

ε2
}.                     

Apparently, ℝ+
4 ∖ 𝒟ϵ = 𝔇1⋃𝔇2⋃  …⋃𝔇8. Our 

next step will be to demonstrate that 

 𝔏V(S, E, I, R) ≤ −1 for any ℝ+
4 ∖ 𝒟ϵ.  

Thus, it must be proven in each of the eight domains 

listed above. 

Case-1: Suppose that (𝒮, ℰ, ℐ, ℛ) ∈ 𝔇1, according to 

Eq 16, here are the results 

𝔏𝑉 = −
Θ

𝒮
+
𝑃α1βℐ

1 + φ𝐼

−
1

2
(μ −

ϑ

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2))

× (𝒮ν+1 + ℰν+1 + ℐν+1 +ℛν+1)
+ Θ + 3μ + η + ε + δ

+
ϱ1
2 + ϱ2

2 + ϱ4
2

2
 

         ≤ −
Θ

𝒮
+𝐻 ≤ −

Θ

ε1
+𝐻  ≤ −1 ,                24 

 

where, 

ℋ

= sup
(𝒮,ℰ,ℐ,ℛ)∈𝑅+

𝟜
{
𝑃α1βℐ

1 + φℐ

−
1

2
(μ −

ϑ

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)) (𝒮ν+1 + ℰν+1

+ ℐν+1 +ℛν+1)+Θ + 3μ + η + ε + δ

+
ϱ1
2 + ϱ2

2 + ϱ4
2

2
}

< ∞ .                                                                       25 

Case-2: Suppose that (𝒮, ℰ, ℐ, ℛ) ∈ 𝔇2, in view of Eq 

18, the result is 

𝔏𝑉 ≤ −𝑃𝑀 +
𝑃α1β𝒮ℐ

(1 + φℐ)
+
𝑃α3(1 − ϕ)γ

(1 + 𝑏ℐ)

−
1

2
[μ −

ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)]

× (𝒮ν+1 + ℰν+1 + ℐν+1 +ℛν+1)
+ Θ + δ + η + ε + 3μ

+
ϱ1
2 + ϱ2

2 + ϱ4
2

2
 

        ≤ −𝑃𝑀 +
𝑃α1βε2

φ
+
𝑃α3(1−ϕ)γ

𝑏
+ 𝐺    

        ≤ −𝑃 (𝑀 −
α1βε2

φ
+
α3(1−ϕ)γ

𝑏
) + 𝐺 ≤ −1.    26  

Case-3: Suppose that (𝒮, ℰ, ℐ, ℛ) ∈ 𝔇3, by Eq 18, 

getting 

𝔏𝑉 ≤ −2(
𝑃α1βμ𝒮ℐ

φℰ
)

1

2
+
(1−ϑ)β𝒮ℐ

1+φℐ
+

βℐ

ℰ(1+φℐ)
+ Θ+

3μ + η + ε + δ +
ϱ1
2+ϱ2

2+ϱ4
2

2
  

       ≤ −2(
𝑃α1βμε1ε2

φε2
)

1

2
+
(1−ϑ)βε1ε2

1+φℐ
+

βε1

ε2(1+φℐ)
+

Θ+ 3μ + η + ε + δ +
ϱ1
2+ϱ2

2+ϱ4
2

2
                              

≤ −2(
𝑃α1βμε1

φ
)

1

2
+ 𝑇 ≤ −1.                               27   
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Case-4: Suppose that (𝒮, ℰ, ℐ, ℛ) ∈ 𝔇4, by Eq.19, 
getting 

𝔏𝑉(𝒮,ℰ,ℐ,ℛ) ≤ −
(1−ϕ)γ

ℛ(1+𝑏ℐ)
+

𝑃α1βℐ

ℛ(1+φℐ)
+
η

𝒮
+ 3μ + δ +

Θ + 𝐵 + ε + β +
ϱ1
2+ϱ2

2+ϱ4
2

2
 −

1

2
[μ −

ν

2
(ϱ1
2 ∨ ϱ2

2 ∨

ϱ3
2 ∨ ϱ4

2)] × (𝒮ν+1 + ℰν+1 + ℐν+1 +ℛν+1)  

                 ≤ −
(1−ϕ)γ

ℛ𝑏
+
𝑃α1βℐ

ℛφ
+ 𝐹    

                 ≤ −
(1−ϕ)γ

ε2𝑏
+
𝑃α1βε2

ε2φ
+ 𝐹    

                 ≤ −
(1−ϕ)γ

ε2𝑏
+
𝑃α1β

φ
+ 𝐹 .                    28 

Case-5: Suppose that (𝒮, ℰ, ℐ, ℛ) ∈ 𝔇5, by Eq 20, 

getting 

𝔏𝑉(𝒮,ℰ,ℐ,ℛ) ≤ −
1

4
[μ −

ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)] 𝒮ν+1

−
1

4
[μ

−
ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)] 𝒮ν+1

−
1

2
[μ

−
ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)] (ℰν+1

+ ℐν+1 +ℛν+1) +
𝑃α1βε1
φ

+ 3μ

+ δ + Θ + 𝐵 + η + ε + β

+
ϱ1
2 + ϱ2

2 + ϱ4
2

2
 

≤ −
1

4
[μ −

ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)] 𝒮ν+1 + 𝐽   

≤ −
1

4
[μ −

ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)]
1

ε1
ν+1 + 𝐽 ≤ −1.   

                                                                               29                                                             

 

Case-6: Suppose that (𝒮, ℰ, ℐ, ℛ) ∈ 𝔇6, by Eq.21, 

getting 

𝔏𝑉(𝒮,ℰ,ℐ,ℛ) ≤ −
1

4
[μ −

ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)] ℐν+1

−
1

4
[μ

−
ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)] ℐν+1

−
1

2
[μ

−
ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)] (𝒮ν+1

+ ℰν+1 +ℛν+1) +
𝑃α1βℐ

1 + φ
+
β

φ
+ 3μ + δ + Θ + 𝐵 + η + ε

+
ϱ1
2 + ϱ2

2 + ϱ4
2

2
 

≤ −
1

4
[μ −

ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)] ℐν+1 +𝑊             

≤ −
1

4
[μ −

ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)]
1

ε1
ν+1 +𝑊

≤ −1 .                                                                                30 
 

Case-7: Suppose that (𝒮, ℰ, ℐ, ℛ) ∈ 𝔇7, by Eq.22, the 

result is 

𝔏𝑉(𝒮,ℰ,ℐ,ℛ) ≤ −
1

4
[μ −

ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)] ℰν+1

−
1

4
[μ

−
ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)] ℰν+1

−
1

2
[μ

−
ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)] (𝒮ν+1

+ ℐν+1 +ℛν+1) +
𝑃α1βℐ

(1 + φ)ℰ
+ 3μ

+ δ + Θ + 𝐵 + η + ε + β

+
ϱ1
2 + ϱ2

2 + ϱ4
2

2
 

≤ −
1

4
[μ −

ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)] ℰν+1

+ 𝑋                                                                                 

≤ −
1

4
[μ −

ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)]
1

ε2
ν+1 + 𝑋

≤ −1 .                                                               31 

Case-8: Suppose that (𝒮, ℰ, ℐ, ℛ) ∈ 𝔇8, by Eq 23, the 

result is 

𝔏𝑉(𝒮,ℰ,ℐ,ℛ) ≤ −
1

4
[μ −

ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)]ℛν+1

−
1

4
[μ

−
ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)]ℛν+1

−
1

2
[μ

−
ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)] (𝒮ν+1

+ ℰν+1 + ℐν+1) +
𝑃α1βε1
φ

+ 3μ

+ δ + Θ + 𝐵 + η + ε + β

+
ϱ1
2 + ϱ2

2 + ϱ4
2

2
 

≤ −
1

4
[μ −

ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)] 𝑅ν+1 + 𝑌          

  ≤ −
1

4
[μ −

ν

2
(ϱ1
2 ∨ ϱ2

2 ∨ ϱ3
2 ∨ ϱ4

2)]
1

ε2
ν+1 + 𝑌 ≤ −1 . 

                                                                               32                                                      

Thus, from the above eight cases, our conclusion is 

as follows: 
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𝔏𝑉(𝒮,ℰ,ℐ,ℛ) ≤ −1 𝑓𝑜𝑟𝑎𝑙𝑙 (𝒮, ℰ, ℐ, ℛ) ∈ ℝ+
4  , 

where ε is sufficiently small. In this case, assumption 

1(ii) is satisfied. 

Then, according to Lemma 1 (ℋ2), model Eq 4, has 

a unique stationary distribution and has an ergodic 

property. The proof is completed. 

 

Remark 3: 

 If  ℛ0
𝒮 =

Θ𝛽𝜗𝜖

(𝜇+
𝜚1
2

2
)(𝜖+𝜇+

𝜚2
2

2
)((1−𝜙)𝛾+𝜇+𝛿+

𝜚3
2

2
)

> 1, then 

the system Eq.4, has a unique ergodic stationary 

distribution Γ(. ), according to Theorem 3. If the 

intensity of white noises is excluded from the 

analysis, the expression of ℛ0
𝒮 corresponds to the 

threshold ℛ0 of the deterministic system Eq.3. In 

particular, when 𝜚𝑖 = 0, 𝑖 = 1, 2, 3, 4. It shows that 

our results generalize those of the deterministic 

system. 

Extinction of the disease infection 

In this section, a different perspective on the 

spreading of disease can be gained by considering the 

extinction of infection. In a biological sense, the 

extinction of diseases indicates that they will 

eventually disappear. The stochastic model Eq 4, 

establishes the required conditions for disease 

extinction. 

 

Lemma 2: Let (𝒮(𝑡), ℰ(𝑡), ℐ(𝑡), ℛ(𝑡)) be the 

solution of system Eq.3, with any initial value 

(𝒮(0), ℰ(0), ℐ(0), ℛ(0)) ∈ ℝ+
4 . Then 

lim
𝑡→∞

𝒮(𝑡)

𝑡
= 0,  lim

𝑡→∞
(
ℰ(𝑡),ℐ(𝑡),ℛ(𝑡)

𝑡
) = 0 almost 

surely,                                                                    33         

furthermore, if μ >
ϱ1
2∨ϱ2

2∨ϱ3
2∨ϱ4

2

2
, then 

lim
𝑡→∞

∫
𝒮(𝑠)𝑑𝔅1(𝑠)

𝑡
= 0,   lim

𝑡→∞
∫

ℰ(𝑠)𝑑𝔅2(𝑠)

𝑡

𝑡

0
= 0,

𝑡

0
      

lim
𝑡→∞

∫
ℐ(𝑠)𝑑𝔅3(𝑠)

𝑡

𝑡

0
= 0, lim

𝑡→∞
∫

ℛ(𝑠)𝑑𝔅4(𝑠)

𝑡

𝑡

0
= 0, 

almost surely.                                                        34          

Since the proof of Lemma 2 is identical to that of 

Lemma 2.1 and Lemma 2.2 of Zhao and Jiang 36, it 

is therefore omitted. 

Let us define a parameter 

ℛ0
�̃� =

βϑ(ε+μ)

(ε+μ)2((1−ϕ)γ+δ+μ+
ϱ3
2

2
)∧(

γ2ϱ2
2

2
)

.  

Theorem 4: If ℛ0
S̃ < 1, then the disease will 

eventually be eradicated from the system Eq.4 and 

also satisfies the following condition 

lim
𝑡→∞

< 𝒮(𝑡) ≥
Θ

μ
,                                          

lim
t→∞

< ℰ(𝑡) > = 0,                                       

lim
𝑡→∞

< ℛ(𝑡) > = 0,35 

and  

𝑙𝑖𝑚 𝑠𝑢𝑝𝑡→∞
1

𝑡
ln [
(1 − ϕ)γℐ

1 + 𝑏ℐ
+ (μ + ε + δ)ℛ(𝑡)]

≤ ϑβ

−
1

2(ε + μ)2
[(ε + μ)2 ((1 − ϕ)γ + δ + μ +

ϱ3
2

2
)

∧ (
γ2ϱ2

2

2
)] < 0 𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑢𝑟𝑒𝑙𝑦.                            36 

Proof, The sum of the four variables in model Eq.4, 

yields 

𝑑(𝒮 + ℰ + ℐ + ℛ)

= [μ

− ϑβ(𝒮(𝑡) + ℰ(𝑡) + ℐ(𝑡)

+ ℛ(𝑡))]𝑑𝑡 + ϱ1𝒮𝑑𝔅1(𝑡)

+ ϱ2ℰ𝑑𝔅2(𝑡) + ϱ3ℐ𝑑𝔅3(𝑡) 
+ϱ4ℛ𝑑𝔅4(𝑡).                 37 

This results in 
𝒮(𝑡) − 𝒮(0)

𝑡
+
ℰ(𝑡) − ℰ(0)

𝑡
+
ℐ(𝑡) − ℐ(0)

𝑡

+
ℛ(𝑡) − ℛ(0)

𝑡
 

= 𝒜 − μ < 𝒮(𝑡) ≻ μ < ℰ(𝑡) ≻ μ < ℐ(𝑡) ≻ μ <

ℛ(𝑡) > +ϱ1 ∫
𝒮(𝑠)𝑑𝔅1(𝑠)

𝑡

𝑡

0
+ ϱ2 ∫

ℰ(𝑠)𝑑𝔅2(𝑠)

𝑡

𝑡

0
+

ϱ3 ∫
ℐ(𝑠)𝑑𝔅3(𝑠)

𝑡

𝑡

0
+ ϱ4 ∫

ℛ(𝑠)𝑑𝔅4(𝑠)

𝑡

𝑡

0
  .                  38  

let us take, φ =
(1−ϕ)γℐ(𝑡)

1+𝑏ℐ
+ (μ + ε + δ)ℰ(𝑡). 

Our results from applying Ito's formula are 

𝑑 lnφ (𝑡) =

{
βϑ𝒮ℐ−μ(ε+μ)((1−ϕ)γ+μ+δ)ℐ(𝑡)

((1−ϑ)+ε)ℰ(𝑡)+(ε+δ+μ)ℐ(𝑡)
−
ε2ϱ2

2ℰ2(𝑡)((1−ϕ)γ+(ε+μ)2ϱ3
2𝐼2(𝑡))

2[((1−ϑ)+ε)ℰ(𝑡)+(ε+μ+δ)ℐ(𝑡)]
}  

                      +
(1−ϑ)εϱ2ℰ(𝑡)

((1−ϑ)+ε)ℰ(𝑡)+(ε+μ+δ)ℐ(𝑡)
𝑑𝔅2(𝑡) +

(1−ϕ)γεϱ3ℐ(𝑡)

((1−ϑ)+ε)ℰ(𝑡)+(ε+μ+δ)ℐ(𝑡)
𝑑𝔅3(𝑡)  

  ≤ ϑβ −
1

2(ε+μ)2
[(ε + μ)2 ((1 − ϕ)γ + μ + δ +

ϱ3
2

2
) ∧

γ2ϱ2
2

2
] +

(1−ϑ)εϱ2ℰ(𝑡)

((1−ϑ)+ε)ℰ(𝑡)+(ε+μ+δ)ℐ(𝑡)
𝑑𝔅2(𝑡)  

                    +
(1−ϕ)γεϱ3ℐ(𝑡)

((1−ϑ)+ε)ℰ(𝑡)+(ε+μ+δ)ℐ(𝑡)
𝑑𝔅3(𝑡).  

                                                                            39    

Integrating both sides of Eq 36 from 0 to t and 

together with Eq 34 and Eq 35, in order to obtain 
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𝑙𝑖𝑚 𝑠𝑢𝑝𝑡→∞⟨𝒮(𝑡) + ℰ(𝑡) + ℐ(𝑡) + ℛ(𝑡)⟩ = 1     
almost surely.                                               40  

Integrating the both sides of Eq 39 from 0 tot, 

together with Eq 40, and noting that R0
�̃� < 1, one can 

get that 

𝑙𝑖𝑚 𝑠𝑢𝑝𝑡→∞
ln𝜑(𝑡)

𝑡
≤ ϑβ −

1

2(ε+μ)2
[(ε + μ)2 ((1 −

ϕ)γ + μ + δ +
ϱ3
2

2
) ∧

γ2ϱ2
2

2
]                                       41 

which implies that 

lim
𝑡→∞

ℰ (𝑡) = 0, lim
𝑡→∞

ℐ (𝑡) = 0,  𝑎𝑛𝑑              

lim
𝑡→∞

ℛ (𝑡) = 0.                         42 

 

The implications of Lemma 2, and Eq.41 are as 

follows: 

lim
𝑡→∞

⟨𝒮(𝑡)⟩ =
Θ

μ
= 1 𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑢𝑟𝑒𝑙𝑦. 

The proof has been completed. 

 

Remark 4: 

According to Theorem 4, if  ℛ0
�̃� =

βϑ(ε+μ)

(ε+μ)2((1−ϕ)γ+δ+μ+
ϱ3
2

2
)∧(

γ2ϱ2
2

2
)

< 1, the disease will 

eventually disappear. Take note of the expression for 

ℛ0
�̃�. It seems that the higher the white noise intensity, 

the easier it is to eradicate the disease. Therefore, 

adjusting the intensity of environmental noises can 

reduce disease outbreaks. 

 

 

Results and Discussion  
 

Numerical Simulation 

The extinction and persistence of diseases have been 

investigated to the best of our ability. Some 

numerical simulations will be performed using the 

Milstein scheme36 To demonstrate the effectiveness 

of our simulation. The discretization equation for 

model Eq 4, is as follows: 

 

𝒮ℓ+1 = 𝒮ℓ + [Θ −
β𝒮ℓℐℓ
1+φℐℓ

− μ𝒮ℓ + ηℛℓ] Δ𝑡 +

ϱ1𝒮ℓ√Δ𝑡ξ1,𝑙 +
ϱ1
2

2
𝒮ℓ(ξ1,𝑙

2 − 1)Δ𝑡,                         

ℰℓ+1 = ℰℓ + [
(1−ϑ)β𝒮ℓℐℓ
1+φℐℓ

− (ε + μ)ℰℓ] Δ𝑡 +

ϱ2ℰℓ√Δ𝑡ξ2,𝑙 +
ϱ2
2

2
ℰℓ(ξ2,𝑙

2 − 1)Δ𝑡 ,                          

ℐℓ+1 = ℐℓ + [
ϑβ𝒮ℓℐℓ
1+φℐℓ

+ εℰℓ −
(1−ϕ)γℐℓ

1+𝑏ℐℓ
− (μ +

δ)ℐℓ] Δ𝑡 + ϱ3ℐℓ√Δ𝑡ξ3,𝑙 +
ϱ3
2

2
ℐℓ(ξ3,𝑙

2 − 1)Δ𝑡 , 

ℛℓ+1 = ℛℓ + [
(1−ϕ)γℐℓ

1+𝑏ℐℓ
− (μ + η)ℛℓ] Δ𝑡 +

ϱ4ℛℓ√Δ𝑡ξ4,𝑙 +
ϱ4
2

2
ℛℓ(ξ4,𝑙

2 − 1)Δ𝑡 ,                        

 

where the time increment Δt > 0, and ξi
2 is the 

Gaussian random variable (i = 0,1,2,… , n).   
The parameter values are given in the following 

Table 3, which validates our theoretical finding by 

examples. 

 

 

 

Table 3. The parameters used in the simulation of 

model Eq 4. 

Parameters  𝔼𝟏            𝔼𝟐                      Source 

𝚯 
𝛃 

5.00          4.50                 presumed 

0.70        0.70               ref 37 

𝛗 0.50        0.45               presumed 
𝛝 
𝛜 
𝛈 
𝛄 
𝛅 
𝛟 
𝛍 
𝒃 

𝓢(𝟎)𝓔(𝟎) 
𝓘(𝟎) 
𝓡(𝟎) 

0.70        0.70               presumed 

0.50        0.55               presumed 

0.50        0.50               ref 37 

0.50        0.50               ref 38 

0.70        0.50               presumed 

0.40        0.35               presumed 

0.30        0.30               ref 39 

0.75        0.50               presumed 

0.50        0.50               presumed 

0.30        0.30               presumed 

0.40        0.40               presumed 

0.60        0.60               presumed 
𝚫𝒕 0.01        0.01               ref 37 

 

Example 1: Assume that the environmental white 

noise parameters are (ϱ1, ϱ2, ϱ3, ϱ4) = 0.2. 
Furthermore, Table 3, 𝔼1 shows the parameter values 

in relation to the biological feasibility results. Then 

ℛ0
𝒮

=
Θβεϑ

(μ +
ϱ1
2

2 ) (μ + ε +
ϱ2
2

2 )(
(1 − ϕ)γ + μ + δ +

ϱ3
2

2 )

 

=  3.5367 >  1,                                      
satisfies the parameter requirement in Theorem 3, it 

may be decided that the stochastic model Eq.4, 
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occupies ergodic attributes and a unique stationary 

distribution Π(. ). It is evident from Figs 1 and 3 that 

the solution of the model Eq 4 alternates between 

descending and ascending within a small area. It is 

evident from Fig  1, that there exists a stationary 

distribution from the density functions shown on the 

right-hand side. 

 

Example 2: Assume that the environmental white 

noise parameters are (ϱ1, ϱ2, ϱ3, ϱ4) = 0.2. 
Furthermore, Table 3, (𝔼2) shows the parameter 

values in relation to the biological feasibility results. 

Then 

ℛ0
�̃� =

βϑ(ε + μ)

(ε + μ)2 ((1 − ϕ)γ + μ + δ +
ϱ3
2

2
) ∧ (

γ2ϱ2
2

2
)

 

=  0.6556 <  1.                                                    

According to Theorem 4, exposed individuals and 

infected individuals will go extinct almost certainly 

if all parameter conditions are met. The conclusion 

of Theorem 4, is validated by Fig. 2. The numerical 

values of ϱ1 = ϱ2 = ϱ3 = ϱ4 = 0.2 shown in Figs 1 

and 4 indicate the possibility of infective individuals 

going extinct under a set of large stochastic 

parameter values. 

The below Figs 2 and 4 below demonstrate that when 

the white noise value is large, infectious diseases can 

go extinct. This implies that stochastic fluctuations 

can suppress disease outbreaks, but small values can 

lead to persistent infectious diseases. Further, Figs 1 

and 3 illustrate that under appropriate conditions, the 

stochastic model Eq 4, has an ergodic stationary 

distribution. Consequently, there is full consistency 

between the theoretical outcomes of Theorems 3 and 

4 and the numerical simulation examples. 
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Figure 1. This diagram consists of a time sequence of stochastic persistence and stationary distribution 

of diseases based on the model Eq.4, for both 𝐑𝟎
𝐒  𝐚𝐧𝐝 �̃�𝟎

𝑺 > 𝟏. On the right side of the column, the 

probability density function for 𝓢(𝒕), 𝓔(𝒕), 𝓘(𝒕) and 𝓡(𝒕) is shown in the form of a histogram. 
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Figure 2. This time sequence diagram illustrates how disease extinction occurs in model Eq.4, for both 

𝐑𝟎
𝐒  𝐚𝐧𝐝 �̃�𝟎

𝑺 < 𝟏. On the right side of the column, the probability density function for 𝓢(𝒕), 𝓔(𝒕), 𝓘(𝒕) 
and 𝓡(𝒕) is shown in the form of a histogram. 

 
Figure 3. Comparison of solutions on 

𝓢(𝒕), 𝓔(𝒕), 𝓘(𝒕) and 𝓡(𝒕) for each class of the 

Deterministic vs Stochastic system with 𝐑𝟎
𝐒   

greater than 1. 

 

 
Figure 4. Comparison of solutions on 

𝓢(𝒕), 𝓔(𝒕), 𝓘(𝒕) and 𝓡(𝒕) for each class of the 

Deterministic vs Stochastic system with �̃�𝟎
𝑺 less 

than 1. 

Conclusion 

This paper explores the effect of treatment on disease 

transmission by considering the stochastic 

𝒮ℰℐℛ𝒮 epidemic model with saturated incidence and 

treatment function. In addition, there is a bi-linear 

incidence rate ℎ(ℐ) = 𝛽𝒮ℐ as well as a saturation 

incidence rate ℎ(ℐ) =
𝛽𝒮ℐ

1+𝜑ℐ
. An analysis of the global 

behavior of the model is presented in this paper, 

along with an estimation of the basic reproduction 

number ℛ0. As a starting point, our initial findings 
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indicated that (𝒮(0), ℰ(0), ℐ(0), ℛ(0)) ∈ ℝ+
4  could 

be satisfied by a unique global positive solution. 

Furthermore, this research provides the necessary 

condition ℛ0
�̃� < 1 for the disease to vanish. Our 

study also determines whether the stochastic 

Lyapunov function method is effective in 

determining whether ℛ0
𝒮 > 1 exists for stationary 

distributions for positive solutions. Further, this 

study introduced white noise into our model Eq.4, to 

explore the dynamics of an autonomous stochastic 

epidemic disease mutation model. In the forthcoming 

research, our investigation will delve into Levy 

jumps and Markov Switching, as well as an epidemic 

model incorporating disease mutation. The 

importance of Theorem 4 becomes apparent in the 

presence of the condition ℛ0
�̃� < 1, where the 

susceptible population predominates, resulting in the 

eradication of the infected recovering population. 

Through an analysis of the case ℛ0
�̃� > 1 in Theorem 

4, the objective of the study is to reveal the 

characteristics of stochastic systems described in 

Eq.4. Subsequent investigations will concentrate on 

these particular scenarios. Ultimately, our results 

were confirmed through numerical simulations, 

highlighting the beneficial effect of enhancing 

disease resistance in the realm of disease prevention 

and management.  
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مع معدل الإصابة المشبع ووظيفة العلاج  SEIRSالتوزيع الثابت للنموذج الوبائي العشوائي لـ 

  المشبع

 إس سارافانان، سي. مونيكا

 
 ، معهد فيلور للتكنولوجيا، فيلور، الهند(SAS) الرياضيات، كلية العلوم المتقدمةسم ق

 ةالخلاص 

العشوائي الديناميكي )المعرض والمكشوف والمعدي  SEIRSيهدف هذا البحث إلى تعزيز وتوسيع النموذج الرياضي الذي يحكم وباء 

 العلاج المشبعة، والتي تعتبر أساسية في دالة والمعافى(. يدمج هذا النموذج المعقد مكونات حاسمة، بما في ذلك معدل الإصابة المشبع و

المصممة  Lyapunovل تطبيق وظيفة الحل العالمي الإيجابي من خلا وحدانية تشكيل ديناميكيات الوباء. الهدف هو استكشاف وجود و

بدقة، مما يسهل إجراء تحليل أكثر عمقا لتعقيدات الأنظمة. يمكّننا هذا الإطار التحليلي من الكشف عن التفاعلات بين انتقال المرض 

فراد مع عدد الأوديناميكيات العلاج والتأثيرات العشوائية. ضمن هذا الإطار النظري، يفترض أن الاستجابة للعلاج تتناسب طرديا 

المصابين طالما بقيت حالات الإصابة داخل نظام الرعاية الصحية. يكمن أحد الجوانب الرئيسية لمساهمتنا في تحديد رقم التكاثر الأساسي 

𝑅0باعتباره عتبة حرجة تحدد مسار الوباء. في ظل الظروف التي تتميز بمستويات ضوضاء منخفضة و 𝑅0العشوائي 
𝑆 > ، فإنه يحدد 1

المتطلبات الأساسية لظهور توزيع ثابت مريح، ويقدم نظرة ثاقبة للاتجاهات المحتملة طويلة المدى في انتشار المرض. وعلى العكس من 

ℛ0ذلك، في السيناريوهات التي تتميز بكثافة الضوضاء العالية 
�̃� < ، يلقي تحليلنا الضوء على الاستئصال الحتمي للمرض. ولزيادة 1

ية، يدمج بحثنا عمليات محاكاة رقمية واسعة النطاق. لا تؤكد عمليات المحاكاة هذه صحة النتائج النظرية التي توصلنا تعزيز الأسس النظر

إليها فحسب، بل توفر أيضًا تصورًا ديناميكياً لآثار النموذج. تساهم هذه المنهجية المزدوجة، التي تجمع بين الفحص النظري الدقيق 

 في فهم دقيق لدور العشوائية في تشكيل ديناميكيات الوباء. وعمليات المحاكاة العملية،
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