Jordan θ-Centralizers of Prime and Semiprime Rings

Abdulrahman H. Majeed*

Mushreq I. Meften*

Received 3, April, 2008
Accepted 26, July, 2009

Abstract

: The purpose of this paper is to prove the following result: Let R be a 2-torsion free ring and $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ an additive mapping such that T is left (right) Jordan θ centralizers on R. Then T is a left (right) θ-centralizer of R, if one of the following conditions hold (i) R is a semiprime ring has a commutator which is not a zero divisor . (ii) R is a non commutative prime ring . (iii) R is a commutative semiprime ring, where θ be surjective endomorphism of R. It is also proved that if $T(x o y)=T(x) o \theta(y)=\theta(x) o T(y)$ for all $x, y \in R$ and θ-centralizers of R coincide under same condition and $\theta(\mathrm{Z}(\mathrm{R}))=\mathrm{Z}(\mathrm{R})$.

Key words: prime ring, semiprime ring, left (right) centralizer, centralizer, Jordan centralizer, left (right) θ-centralizer, θ-centralizer, Jordan θ-centralizer.

Introduction:

Throughout this paper, R will represent an associative ring with the center Z. R is called prime if $a R b=(0)$ implies $\mathrm{a}=0$ or $\mathrm{b}=0$ and semiprime if $\mathrm{aRa}=(0)$ implies $\mathrm{a}=0$. A mapping D : $\mathrm{R} \rightarrow \mathrm{R}$ is called derivation if $\mathrm{D}(\mathrm{xy})=$ $\mathrm{D}(\mathrm{x}) \mathrm{y}+\mathrm{xD}(\mathrm{y})$ holds for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$. A left (right) centralizer of R is an additive mapping $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ which satisfies $T(x y)=T(x) y(T(x y)=x T(y))$ for all $x, y \in R$. A centralizer of R is an additive mapping which is both left and right centralizer . If $a \in R$, then $\mathrm{L}_{\mathrm{a}}(\mathrm{x})=\mathrm{ax}$ is a left centralizer and $\mathrm{R}_{\mathrm{a}}(\mathrm{x})$ $=x a$ is a right centralizer.

A mapping $\mathrm{D}: \mathrm{R} \rightarrow \mathrm{R}$ is called (θ, θ) derivation if $\mathrm{D}(\mathrm{xy})=\mathrm{D}(\mathrm{x}) \theta(\mathrm{y})+$ $\theta(x) D(y)$ holds for all $x, y \in R[1]$. A left (right) θ-centralizer of R is an additive mapping $T: R \rightarrow R$ which satisfies $T(x y)=T(x) \theta(y)(T(x y)=$ $\theta(x) T(y))$ for all $x, y \in R$. A θ centralizer of R is an additive mapping
which is both left and right θ centralizer. If $a \in R$, then $L_{a}(x)=a \theta(x)$ is a left θ-centralizer and $\mathrm{R}_{\mathrm{a}}(\mathrm{x})=\theta(\mathrm{x}) \mathrm{a}$ is a right θ-centralizer[2][3].

A mapping $\mathrm{D}: \mathrm{R} \rightarrow \mathrm{R}$ is called Jordan (θ, θ) derivation if $D\left(x^{2}\right)=$ $\mathrm{D}(\mathrm{x}) \theta(\mathrm{x})+\theta(\mathrm{x}) \mathrm{D}(\mathrm{x})$ holds for all $\mathrm{x} \in$ R[7]. A Jordan left (right) θ-centralizer of R is an additive mapping $T: R \rightarrow R$ which satisfies $T\left(x^{2}\right)=T(x) \theta(x)\left(T\left(x^{2}\right)\right.$ $=\theta(x) T(x))$ for all $x \in R$. A Jordan θ centralizer of R is an additive mapping which is Jordan both left and right θ centralizer $[2,3]$.

If R is a ring with involution *, then every additive mapping $\mathrm{E}: \mathrm{R} \rightarrow \mathrm{R}$ which satisfies $\mathrm{E}\left(\mathrm{x}^{2}\right)=\mathrm{E}(\mathrm{x}) \mathrm{x}^{*}+\mathrm{xE}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{R}$ is called Jordan *derivation. These mappings are closely connected with a question of representability of quadratic forms by bilinear forms. Some algebraic properties of Jordan ${ }^{*}$-derivations are

[^0]considered in [4], where further references can be found. For quadratic forms see [5].

Brešar and Zalar obtained a representation of Jordan *-derivations in terms of left and right centralizers on the algebra of compact operators on a Hilbert space. They arrived at a problem whether an additive mapping T which satisfies a weaker condition $T\left(x^{2}\right)=T(x) x$ is automatically a left centralizer. They proved that this is in fact so if R is a prime ring (generally without involution). In [6] Zalar generalize this result on semiprime rings. In [7] A. H. Majeed and H. A. Shaker extended the results of Zalar [6].

An easy computation shows that every centralizer T is satisfies $\mathrm{T}(\mathrm{xoy})=\mathrm{T}(\mathrm{x}) \mathrm{oy}=\mathrm{xoT}(\mathrm{y})$. B. Zalar in [6] prove that every additive mapping $\mathrm{T}: \quad \mathrm{R} \rightarrow \mathrm{R} \quad$ which satisfies $\mathrm{T}(\mathrm{xoy})=\mathrm{T}(\mathrm{x}) \mathrm{oy}=\mathrm{xoT}(\mathrm{y})$ of a semiprime ring is a centralizer.

An easy computation shows that every θ-centralizer T satisfies $T(x o y)=T(x) o \theta(y)=\theta(x) o T(y)$.

In the present paper we generalize results of Zalar[6] to θ centralizer .

1. The first result.

To prove our first result, we need two lemmas which we now state.

Lemma 1.1.[6]

Let R be a semiprime ring. If $a, b \in R$ such that $a x b=0$ for all $x \in R$, then $a b=b a=0$.

Lemma 1.2.[6]

Let R be a semiprime ring and
$A, B: R \times R \rightarrow R$ biadditive mappings. If $A(x, y) w B(x, y)=0$ for all $x, y, w \in R$, then $A(x, y)$ w $B(u, v)=0$ for all x, y, u, $\mathrm{v}, \mathrm{w} \in \mathrm{R}$.

Theorem 1.3

Let R be a 2 -torsion free ring, Then every Jordan left (right) θ centralizer is a left (right) θ-centralizer, if one of the following statements hold:-
(i) R is a semiprime ring has a commutator which is not a zero divisor.
(ii) R is a non commutative prime ring.
(iii) R is a commutative semiprime ring .
Where θ be surjective endomorphism of R

Proof:

$T\left(x^{2}\right)=T(x) \theta(x)$ for all $x \in R$
If we replace x by $x+y$, we get
$T(x y+y x)=T(x) \theta(y)+T(y) \theta(x) \ldots(2)$
By replacing y with $x y+y x$ and using (2), we arrive at
$T(x(x y+y x)+(x y+y x) x)=T(x) \theta(x y)+2 T$
(x) $\theta(\mathrm{yx})+\mathrm{T}(\mathrm{y}) \theta(\mathrm{x} 2)$

But this can also be calculated in a different way.
$T\left(x^{2} y+y x^{2}\right)+2 T(x y x)=T(x) \theta(x y)+$
$\mathrm{T}(\mathrm{y}) \theta\left(\mathrm{x}^{2}\right)+2 \mathrm{~T}(\mathrm{xyx}) \quad . . .(4)$
Comparing (3) and (4), we obtain
$\mathrm{T}(\mathrm{xyx})=\mathrm{T}(\mathrm{x}) \theta(\mathrm{yx})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$

If we linearize (5), we get
$T(x y z+z y x)=T(x) \theta(y z)+T(z) \theta(y x)$

Now we shall compute $\mathrm{j}=\mathrm{T}$ (xyzyx $+y x z x y$) for all $x, y, z \in R$ in two different ways. Using (5), we have $j=T(x) \theta(y z y x)+T(y) \theta(x z x y) \ldots(7)$

Using (6), we have
$j=T(x y) \theta(z y x)+T(y x) \theta(z x y) \ldots(8)$
Comparing (7) and (8) and introducing a biadditive mapping $B(x, y)=T(x y)-T(x) \theta(y)$, we arrive at

$$
\begin{aligned}
& B(x, y) \theta(z y x)+B(y, x) \theta(z x y)=0 \\
& \quad \text { for all } x, y, z \in R \ldots(9)
\end{aligned}
$$

Equality (2) can be rewritten in this notation as $B(x, y)=-B(y, x)$ for all $x, y \in R$. Using this fact and equality (9), we obtain

$$
\begin{aligned}
& \mathrm{B}(\mathrm{x}, \mathrm{y}) \quad \theta(\mathrm{z})[\theta(\mathrm{x}), \theta(\mathrm{y})]=0 \\
& \text { for all } \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{R} \ldots(10)
\end{aligned}
$$

Using Lemma 1.2, we have
$B(x, y) \quad \theta(z) \quad[\theta(u), \theta(v)]=0$
for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u}, \mathrm{v} \in \mathrm{R}$
Using Lemma 1.1, we have
$B(x, y)[\theta(u), \theta(v)]=0 \quad$ for \quad all
$\mathrm{x}, \mathrm{y}, \mathrm{u}, \mathrm{v} \in \mathrm{R}$
If R has a commutator which is not a zero divisor
Using (12) and θ is onto, we have

$$
B(x, y)=0 \quad \text { for all } x, y \in R
$$

If R is a non commutative prime ring
Using (11) and θ is onto, we have $B(x, y)=0 \quad$ for all $x, y \in R$

If R is a commutative semiprime ring

Now we shall compute $\mathrm{j}=$ T (xyzyx) in two different ways. Using (5) we have

$$
\begin{align*}
& j=T(x) \theta(y z y x) \ldots(13) \\
& j=T(x y) \theta(z y x) \ldots(14) \tag{14}
\end{align*}
$$

Comparing (13) and (14) , we arrive at
$B(x, y) \theta(z) \theta(y x)=0 \quad$ for all
$\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{R} \quad \ldots \quad$ (15)
Let $\Psi(x, y)=\theta(x) \theta(y)$, it's clear that Ψ is a biadditive mapping, therefore

$$
\begin{gathered}
\mathrm{B}(\mathrm{x}, \mathrm{y}) \theta(\mathrm{z}) \Psi(\mathrm{y}, \mathrm{x})=0 \text { for all } \\
\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{R}
\end{gathered}
$$

Using Lemma 1.2, we have

$$
\begin{gathered}
\mathrm{B}(\mathrm{x}, \mathrm{y}) \theta(\mathrm{z}) \Psi(\mathrm{u}, \mathrm{v})=0 \quad \text { for all } \\
\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u}, \mathrm{v} \in \mathrm{R}
\end{gathered}
$$

Implies that

$$
\begin{equation*}
\mathrm{B}(\mathrm{x}, \mathrm{y}) \theta(\mathrm{z}) \theta(\mathrm{uv})=0 \text { for } \text { all } \tag{16}
\end{equation*}
$$

$\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u}, \mathrm{v} \in \mathrm{R}$
By replacing $\theta(\mathrm{v})$ with $\mathrm{B}(\mathrm{x}, \mathrm{y}) \theta(\mathrm{z})$,
θ is onto, and R is a semiprime ring, we have

$$
B(x, y)=0 \quad \text { for all } x, y \in R
$$

If $T\left(x^{2}\right)=\theta(x) T(x)$, we obtain the assertion of the theorem with similar approach as above, the proof is complete.

Corollary 1.4

Let R be a 2-torsion free prime ring .Then every Jordan left (right) θ centralizer is a left (right) θ-centralizer, where θ be surjective endomorphism of R.

2. The second result.

We again divide the proof in few lemmas.

Lemma 2.1.

Let R be a semiprime ring, D a θ-derivation of R and $\mathrm{a} \in \mathrm{R}$ some fixed element. Where θ be surjective endomorphism of R
(i) $\quad \mathrm{D}(\mathrm{x}) \mathrm{D}(\mathrm{y})=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$ implies $\mathrm{D}=0$.
(ii) $a \theta(x)-\theta(x) a \in Z$ for all $x \in R$ implies $a \in Z(R)$.
Proof :
(i) $\quad \mathrm{D}(\mathrm{x}) \theta(\mathrm{y}) \mathrm{D}(\mathrm{x})=\mathrm{D}(\mathrm{x}) \mathrm{D}(\mathrm{yx})-$
$D(x) D(y) \theta(x)=0 \quad$ for all $x, y \in R$
But θ is onto, and R is a semiprime ring, we have $\mathrm{D}=0$
(ii) Define $D(x)=a \theta(x)-\theta(x) a$. It is easy to see that D is a (θ, θ) derivation. Since $D(x) \in Z(R)$ for all $x \in R$, we have $D(y) \theta(x)=$ $\theta(x) D(y)$ and also $D(y z) \theta(x)=$ $\theta(x) \mathrm{D}(\mathrm{yz})$.

Hence

$$
\begin{gathered}
\mathrm{D}(\mathrm{y}) \theta(\mathrm{zx})+\theta(\mathrm{y}) \mathrm{D}(\mathrm{z}) \theta(\mathrm{x})= \\
\theta(\mathrm{x}) \mathrm{D}(\mathrm{y}) \theta(\mathrm{z})+\theta(\mathrm{xy}) \mathrm{D}(\mathrm{z}) \\
\mathrm{D}(\mathrm{y})[\theta(\mathrm{z}), \theta(\mathrm{x})]=\mathrm{D}(\mathrm{z})[\theta(\mathrm{x}), \theta(\mathrm{y})]
\end{gathered}
$$

Since θ is surjective take $a=\theta(z)$.
Obviously $\mathrm{D}(\mathrm{z})=0$, so we obtain

$$
\begin{gathered}
0=\mathrm{D}(\mathrm{y})[\mathrm{a}, \theta(\mathrm{x})]=\mathrm{D}(\mathrm{y}) \mathrm{D}(\mathrm{x}) \text { for all } \mathrm{x}, \mathrm{y} \\
\\
\in \mathrm{R}
\end{gathered}
$$

From (i) we get $\mathrm{D}=0$ and hence $\mathrm{a} \in$ $\mathrm{Z}(\mathrm{R})$.

Lemma 2.2.

Let R be a semiprime ring and $a \in R$ some fixed element. If $T(x)=$ $\mathrm{a} \theta(\mathrm{x})+\theta(\mathrm{x}) \mathrm{a}$, and $\mathrm{T}(\mathrm{xoy})=\mathrm{T}(\mathrm{x}) \mathrm{o} \theta(\mathrm{y})=$ $\theta(x) o T(y)$ for all $x, y \in R$ then $a \in Z$. Where θ be surjective endomorphism of R

Proof :
$T(x y+y x)=T(x) \theta(y)+\theta(y) T(x)$
for all $x, y \in R$
gives us

$$
\begin{gathered}
a \theta(x y)+a \theta(y x)+\theta(x y) a+\theta(y x) a= \\
(a \theta(x)+\theta(x) a) \theta(y)+\theta(y)(a \theta(x)+ \\
\theta(x) a)
\end{gathered}
$$

Implies that

$$
\begin{aligned}
& \mathrm{a} \theta(\mathrm{yx})+\theta(\mathrm{xy}) \mathrm{a}-\theta(\mathrm{x}) \mathrm{a} \theta(\mathrm{y})-\theta(\mathrm{y}) \mathrm{a} \theta(\mathrm{x}) \\
& \quad=0=(\mathrm{a} \theta(\mathrm{y})-\theta(\mathrm{y}) \mathrm{a}) \theta(\mathrm{x})-\theta(\mathrm{x})(\mathrm{a} \theta(\mathrm{y})
\end{aligned}
$$

$$
-\theta(y) a) \quad \text { for all } x, y \in R
$$

The second part of Lemma 2.1 now
gives us $a \in Z(R)$.

Lemma 2.3.

Let R be a semiprime ring, and $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ an additive mapping which satisfies $T(x o y)=T(x) \circ \theta(y)=$ $\theta(x) o T(y)$ for all $x, y \in R$. Then T maps from $Z(R)$ into $Z(R)$. Where θ be surjective endomorphism of R

Proof :

Take any $\mathrm{c} \in \mathrm{Z}$ and denote $\mathrm{a}=\mathrm{T}(\mathrm{c})$.

$$
\begin{gathered}
2 \mathrm{~T}(\mathrm{cx})=\mathrm{T}(\mathrm{cx}+\mathrm{xc})=\mathrm{T}(\mathrm{c}) \theta(\mathrm{x})+ \\
\theta(\mathrm{x}) \mathrm{T}(\mathrm{c})=\mathrm{a} \theta(\mathrm{x})+\theta(\mathrm{x}) \mathrm{a}
\end{gathered}
$$

A straightforward verification shows that $S(x)=2 T(c x)$ is satisfies $S(x o y)=$ $S(x) o \theta(y)=\theta(x) o S(y)$ for all $x, y \in R$

By Lemma 2.2, we have $T(c) \in Z(R)$.

Theorem 2.4.

Let R be a 2-torsion free ring and $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ an additive mapping which satisfies $T(x o y)=T(x) o \theta(y)=$ $\theta(x) o T(y)$ for all $x, y \in R$. Then T is a θ-centralizer of R, if one of the following statements hold :-
(i) $\quad \mathrm{R}$ is a semiprime ring has a commutator which is not a zero divisor .
(ii) R is a non commutative prime ring.
(iii) R is a commutative semiprime ring.

Where θ be surjective endomorphism of R , and $\theta(\mathrm{Z}(\mathrm{R}))=\mathrm{Z}(\mathrm{R})$

Proof :

$\mathrm{T}(\mathrm{xy}+\mathrm{yx})=\mathrm{T}(\mathrm{x}) \theta(\mathrm{y})+\theta(\mathrm{y}) \mathrm{T}(\mathrm{x})=$ $\theta(x) T(y)+T(y) \theta(x)$ for all $x, y \in R$

If we replace y by $x y+y x$, we get
$T(x) \theta(x y+y x)+\theta(x y+y x) T(x)=$
$T(x y+y x) \theta(x)+\theta(x) T(x y+y x)=$ $(\mathrm{T}(\mathrm{x}) \theta(\mathrm{y})+\theta(\mathrm{y}) \mathrm{T}(\mathrm{x})) \theta(\mathrm{x}) \quad+$ $\theta(\mathrm{x})(\mathrm{T}(\mathrm{x}) \theta(\mathrm{y})+\theta(\mathrm{y}) \mathrm{T}(\mathrm{x})) \quad$ for all $x, y \in R$

Now it follows that $[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})] \theta(\mathrm{y})=$ $\theta(y)[T(x), \theta(x)]$ holds for all $x, y \in R$, but θ is surjective, then we get $[T(x)$, $\theta(\mathrm{x})] \in \mathrm{Z}(\mathrm{R})$

The next goal is to show that $[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]=0$ holds. Take any $\mathrm{c} \in$ Z(R).

$$
2 \mathrm{~T}(\mathrm{cx})=\mathrm{T}(\mathrm{cx}+\mathrm{xc})=\mathrm{T}(\mathrm{c}) \theta(\mathrm{x})
$$

$+\theta(x) T(c)=2 T(x) \theta(c)$, for all $x \in R$
Using Lemma 2.3, we get
$\mathrm{T}(\mathrm{cx})=\mathrm{T}(\mathrm{x}) \theta(\mathrm{c})=\mathrm{T}(\mathrm{c}) \theta(\mathrm{x})$ for all x $\in \mathrm{R}$,
$[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})] \theta(\mathrm{c})=\mathrm{T}(\mathrm{x}) \theta(\mathrm{x}) \theta(\mathrm{c})-$
$\theta(\mathrm{x}) \mathrm{T}(\mathrm{x}) \theta(\mathrm{c})=\mathrm{T}(\mathrm{c}) \theta(\mathrm{x} 2) \quad-$
$\theta(\mathrm{x}) \mathrm{T}(\mathrm{c}) \theta(\mathrm{x})=0$
Since R is semiprime, $\theta(Z(R))=Z(R)$, and $[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]$ itself is central element , our goal is achieved.
$2 \mathrm{~T}\left(\mathrm{x}^{2}\right)=\mathrm{T}(\mathrm{xx}+\mathrm{xx})=(\mathrm{x}) \theta(\mathrm{x})+\theta(\mathrm{x}) \mathrm{T}(\mathrm{x})$ $2 T(x) \theta(x)=2 \theta(x) T(x)$ for all $x \in R$

Theorem 1.3 now concludes the proof.

Corollary 2.5.

Let R be a 2 -torsion free prime ring and $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ an additive mapping which satisfies $T(x o y)=T(x) o \theta(y)=$ $\theta(x) o T(y)$ for all $x, y \in R$. Then T is a θ-centralizer of R, where θ be surjective endomorphism of R, and $\theta(\mathrm{Z}(\mathrm{R}))=\mathrm{Z}(\mathrm{R})$ or $\theta(\mathrm{Z}(\mathrm{R})) \neq 0$.

References:

1. Zaidi, S. M. A. Ashraf, M. and Ali S. 2004. On Jordan ideals and left (θ, θ)-derivation in prime rings, IJMMS. 37: 1957-1964 .
2. Daif, M. N., Tammam El-Sayiad, M. S. and Muthana N. M.2008. An Equation Related to θ-Centralizers in Semiprime Rings, Int. math. forum 3(24): 1165 - 1177.
3. Daif, M. N., Tammam El-Sayiad, M. S. and Muthana N. M.2008. An Identity on θ-Centralizers of Semiprime Rings, Int. math. Forum 3(19): 937 - 944 .
4. Majeed, A.H. and Shaker, H.A. 2008. Some Results on Centralizers, Dirasat, Pure Sciences 35(1): 23-26.
5. Šemrl, P. 1991. Quadratic functionals and Jordan *derivations, Studia Math. 97:157165.
6. Zalar, B. 1991. On centralizers of semiprime rings .Comment. Math. Univ.Carolinae 32(4): 609-614.
7. Brešar, M. and Vukman, J. 1989. On some additive mapping in rings with involution, Aequationes Math. 38 : 178-185.

تمركزات جوردنө في الحلقات الأولية وشبه الأولية

عبا الرحمن حميا مجيد* مشرق اببراهيم مفتن*
*جامعة بغداد / كلية العلوم / قسم الرياضيات

Abstract

الخلاصة: T: حققة طليقة الالتواء من الارجـة الثانيـة و R R الهـة يساري (يميني) على R R إذا تحقق أحد الشروط الآتية:- R (ii) تكون حلقة شبه أولية تحتوي على مبادل غير قاسم . $\theta(Z(R))=Z(R)$ تكون تمركز θ تحت الشروط نفسها أعلاه و

[^0]: *Department of Mathematics, College of Science, Baghdad University, Iraq

