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Introduction 

          Many researchers study generalizations of duo 

modules like Ozcan1, Hadi2 and Ahmed3. A 

submodule 𝒩 of ℳ is called fully invariant, for 

simply, it is indicated by 𝒩 ≤𝑓𝑢 ℳ, if for each f ∈ 

End(ℳ), f(𝒩) ⊆  𝒩, where End(ℳ) is the 

endomorphism ring of ℳ4. An R-module ℳ is said 

to be duo if every submodule of ℳ is fully invariant1. 

A module ℳ is called a weak duo if every direct 

summand of ℳ is fully invariant1. A pure submodule  

𝒩 of ℳ is defined as Iℳ ∩ 𝒩 = I𝒩 for each ideal 

I of R5. P-duo is a module whose every pure 

submodule is fully invariant2. A submodule 𝒩 of ℳ 

is termed essential (simply,  ≤𝑒 ℳ), if the 

intersection between 𝒩 and any non-zero submodule 

of ℳ is not zero6. A submodule 𝒩 of ℳ is called 

closed (briefly  ≤𝑐 ℳ), if 𝒩 has no proper essential 

extension in ℳ, i.e., if 𝒩 ≤𝑒  ℋ ≤ ℳ, then 𝒩 = 

ℋ4,7. CL-duo is a module ℳ such that each closed 

submodule of ℳ is fully invariant3.  

          This paper considers another generalization of 

the duo module named the Stc-duo module. A 

submodule 𝒩 of a module ℳ is called semi-

essential (shortly, 𝒩 ≤𝑠𝑒𝑚 ℳ), if whenever 𝒩 ∩ P 

= (0), then P = (0) for each prime submodule P of 

ℳ8,9 as well as10-12. 𝒩 is St-closed in ℳ (shortly, 𝒩 

≤𝑆𝑡𝑐 ℳ), if 𝒩 has no proper semi-essential 

extension in ℳ, i.e., if 𝒩 ≤𝑠𝑒𝑚 ℋ ≤ ℳ, then 
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𝒩=ℋ13,14. This article consists of two sections, in the 

first section, several properties of the Stc-duo 

modules are presented, for instance; in Proposition 2, 

the authors proved that if  ℳ is an Stc-duo module, 

then every St-closed submodule of ℳ is Stc-duo 

provided  that ℳ be Stc-transitive and quasi Stc-

injective module. Furthermore, For any Stc-duo and 

Stc-transitive module ℳ. If 𝒩 ≤𝑆𝑡𝑐 ℳ and 𝒩 is 

Stc-summand submodule of ℳ, then the intersection 

of 𝒩 with any direct summand of ℳ is St-closed. 

Also, Let ℳ be Stc-transitive, and each St-closed 

submodule of  ℳ is Stc-summand. If ℳ is Stc-duo, 

then the sum of any St-closed submodule of ℳ with 

a direct summand of ℳ is fully invariant. 

           In Theorem 1, a characterization of Stc-duo 

modules is given. In the second section, the 

relationships of Stc-duo modules with some other 

classes of modules are investigated, for instance; 

 ℳ is Stc-duo if and only if ℳ is a CL-duo 

module, provided that every semi-essential 

extension of any submodule of a module 

ℳ is a fully essential module. 

 In the class of semi-extending modules, 

every weak duo module is an Stc-duo 

module. 

 Let ℳ be a fully prime over a principal ideal 

ring (simply, PIR). Consider these 

assertions: 

1. ℳ is a duo module. 

2. ℳ is an Stc-duo module. 

3. ℳ is a CL-duo module. 

4. ℳ is a P-duo module. 

5. ℳ is a weak duo module. 

Then 1⟹ 2 ⟹ 3 ⟹ 4, and if ℳ is semisimple then 

5 ⟹ 1.  

 Take an almost semi-extending module ℳ 

over PIR. Consider the conditions below: 

1. ℳ is a duo module. 

2. ℳ is a CL-duo module.  

3. ℳ is a P-duo module. 

4. ℳ is an Stc-duo module.  

Then 1⟹ 2 ⟹ 3 ⟹ 4. Moreover, if ℳ is an St-

semisimple module, then 4 implies 1.  
 

          Finally, it should be noted that ℛ is indicated 

to a commutative ring with identity and ℳ is a 

unitary ℛ-module. 

Stc-duo Modules 

          This section introduced and studied the 

concept of Stc-duo modules as a proper 

generalization of duo modules. 

Definition 1: If every St-closed submodule of an ℛ-

module ℳ is fully invariant then ℳ said to be Stc-

duo. Any ring ℛ is Stc-duo if ℛ as an ℛ-module is 

Stc-duo. 

Remark 1: It is clear that every duo module is Stc-

duo. The converse is not always true such as the Z-

module Q is Stc-duo since the only St-closed 

submodule in Q is itself which is fully invariant. Note 

that <0> ≰𝑆𝑡𝑐 Q since Q has only prime submodule 

which is <0>, so that <0> ≤𝑆𝑒𝑚Q. In contrast, Q is 

not duo module, since the submodule Z of Q is not 

fully invariant in Q because there is a 

homomorphism f: Q⟶Q defined by: 

 f(s) = 
1 

4
s   for all s∈Z  

It is obvious that f(Z) ⊈ 𝑍. 

Examples and Properties: 

1. ℳ = Z2 ⊕ Z2 is not Stc-duo, since the St-closed 

submodule <0̅, 1̅> of ℳ is not fully invariant. 

Indeed, ∃ homo f: ℳ → ℳ defined by:  

f(�̅�, �̅�) = (�̅�, �̅�)     for all (�̅�, �̅�) ∈ Z2 ⊕ Z2 

     Therefore: 

f(<0̅, 1̅>) = <1̅, 0̅> ≰ <0̅, 1̅> 

 

            An ℛ-module ℳ is multiplication if every 

submodule 𝒩 of ℳ is of form 𝒩 = Iℳ for some 

ideal I of ℳ15. It is known that any multiplication 

module is a duo module. 

2. Any multiplication module is Stc-duo. 

3. Each commutative ring is an Stc-duo ring. 

Proof: This follows directly by point 2. 
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       A non-zero module ℳ is termed uniform (semi-

uniform) if every non-zero submodule of ℳ is 

essential4 (semi-essential)8 

4. Obviously, each uniform module is an Stc-duo 

module. 

5. Every semi-uniform module is Stc-duo. 

Proof: Take a semi-uniform module ℳ. Either ℳ 

has only proper St-closed submodule (0) which is 

fully invariant in  ℳ. Or ℳ hasn't a proper St-closed 

submodule, in fact, if ℳ has only a prime 

submodule, then (0) is not St-closed13.  

6. ZP∞ as Z-module is an Stc-duo module, because 

ZP∞ is uniform and by point 4 it is Stc-duo. 

 

A module ℳ is named St-semisimple if every 

submodule of ℳ is St-closed16. 

 

7. Let ℳ be an St-semisimple module. If ℳ is Stc-

duo then it is a duo module. 

8. Every simple module is an Stc-duo module. 

Proof: The only prime submodule in any simple 

module ℳ is (0), so (0) ≰𝑆𝑡𝑐 ℳ. Hence ℳ is the 

only St-closed submodule in ℳ. Thus, ℳ is Stc-duo. 

Remark 2: For any simple ℛ-module U, the direct 

sum U ⊕ U is not Stc-duo. 

Proof : Take a submodule U ⊕ (0) in U⊕U. 

Clearly, U ⊕ (0) ≰𝑠𝑒𝑚 𝑈 ⊕  𝑈 and there is no 

proper (hence semi-essential) submodule in 

U ⊕ U contains U ⊕ (0) properly. Thus, U ⊕ 

(0) ≤𝑆𝑡𝑐 U ⊕ U. In contrast, U ⊕ (0) ≰𝑓𝑢 U 

⊕ U. In fact, ∃ f: U ⊕ U → U ⊕ U defined 

by: 

f (x,y) = (y,x)   ∀ (x,y) ∈ U ⊕ U     

Note that:  

         f(<a,0>) = <0,a  > ⊈ < a,0  > 

        Next, Stc-duo module is not closed under 

arbitrary submodules, to verify that consider the 

following example. 

Example 1: Consider a field F and a vector space U 

over F. Let T= F ⨁ U. Define a multiplication on T 

by:  

(a,u)(b,v) = (ab, av+bu)    ∀ (a,u), (b,v)T 

T is a commutative ring implying that T is an Stc-duo 

T-module. In contrast, the submodule ℋ = (0) ⊕ U 

of T is not Stc-duo. In fact, ℋ is a direct sum of two 

simple modules, so by Remark 2, ℋ is not Stc-duo 

module. 

        The following definitions are needed to be 

introduced. 

Definition 2: If every direct summand of a module 

ℳ is an St-closed submodule, then ℳ is said to be 

Stc-summand 

Definition 3: If all St-closed submodules of a 

module ℳ satisfy the transitive property, then ℳ is 

named Stc-transitive. Thus means if A ≤𝑆𝑡𝑐 B ≤𝑆𝑡𝑐 

ℳ then A ≤𝑆𝑡𝑐 ℳ. 

Remark 3:  If ℳ is a chain module, then ℳ is Stc-

transitive, where an R-module ℳ is called chain, if 

every pair of submodules A and B in ℳ are 

comparable. i.e., either A≤ B or B≤A4. 

        Under certain conditions, a submodule of Stc-

duo module is Stc-duo as shown in the result below. 

Proposition 1: Take ℳ to be an Stc-summand and 

Stc-transitive module. Then every direct summand of 

ℳ is Stc-duo whenever ℳ is Stc-duo. 

Proof: Assume ℋ ≤⊕ ℳ , and 𝒩 ≤𝑆𝑡𝑐 ℋ. 

Consider the projection homomorphism ρ: ℳ→ℋ, 

and f ∈ End(ℋ), where End(ℋ) indicates to the 

endomorphism ring of ℋ. So, h = jfρ ∈ End(ℳ), 

where j: ℋ → ℳ. Since ℋ ≤⊕ ℳ  and ℳ is Stc-

summand, then ℋ ≤𝑆𝑡𝑐 ℳ. By transitivity of St-

closed, this yield 𝒩  ≤Stc ℳ. But ℳ is Stc-duo, 

thus, h(𝒩) belong to 𝒩, hence (jfρ)( 𝒩) = f(𝒩)⊆ 

𝒩. That is ℋ is Stc-duo. 

        It is now possible to deduce the following using 

Remark 3 and Proposition 1. 

https://doi.org/10.21123/bsj.2024.11434
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Corollary 1: Let ℳ be a chain Stc-summand 

module. If ℳ is Stc-duo then every direct summand 

of ℳ is Stc-duo. 

        Another condition can be applied to make Stc-

duo modules closed under submodules as follows. 

Before that, an ℛ-module ℳ is called Stc-self-

injective, if every homomorphism from any St-

closed submodule of ℳ to ℳ can be extended to a 

homomorphism θ: ℳ ⟶ ℳ17. 

Proposition 2: Let ℳ be an Stc-transitive and Stc-

self-injective module. If ℳ is an Stc-duo module, 

then every St-closed submodule of ℳ is Stc-duo. 

Proof: Take 𝒩 ≤𝑆𝑡𝑐 ℳ and  ≤𝑆𝑡𝑐 𝒩. Assume that f 

∈ End(𝒩), so Fig 1 is considered below:  

 

where i: 𝒩 ⟶ ℳ is the inclusion. Because 𝒩 ≤𝑆𝑡𝑐 

ℳ and ℳ is Stc-self-injective then there is a 

homomorphism h ∈ End(ℳ) with h∘i = i∘f. Now, 

(h∘i) (𝒦)= h(𝒦), but 𝒦 ≤𝑆𝑡𝑐  𝒩 and 𝒩 ≤𝑆𝑡𝑐 ℳ and 

since ℳ is Stc-transitive, then 𝒦 ≤𝑆𝑡𝑐 ℳ. 

Moreover, ℳ is Stc-duo,  therefore, h(𝒦) ⊆ 𝒦. 

Beside that: 

(h∘i) (𝒦) = (i∘f) (𝒦) = f(𝒦), thus h(𝒦) = f(𝒦) ⊆ 𝒦 

Thus, 𝒩 is Stc-duo. 

          According to 13, the intersection of any two St-

closed submodules may not be St-closed. 

Nonetheless, the class of the Stc-duo module plays 

an important role in satisfying that. Before that, the 

following lemma is needed. 

Lemma 11 : 

          Let ℳ = ⊕
i∈ I 

 ℳi be a direct sum of submodules 

 ℳi, i∈I, and 𝒩 ≤fu ℳ, then 𝒩 = ⊕
i∈ I 

(𝒩 ∩   ℳi). 

Proposition 3: For any Stc-duo and Stc-transitive 

module ℳ. If 𝒩 ≤𝑆𝑡𝑐 ℳ and 𝒩 is Stc-summand 

submodule of ℳ, then the intersection of 𝒩 with any 

direct summand of ℳ is St-closed. 

Proof:  Take 𝒩1 ≤⨁ ℳ, so ℳ=𝒩1⨁ 𝒦 for 

some 𝒦 ≤ ℳ. Since ℳ is Stc-duo then ≤𝑓𝑢 

ℳ. By Lemma 1, 𝒩 =

(𝒩 ⋂ 𝒩1)  ⨁  (𝒩 ⋂ 𝒦). That is 𝒩 ∩

𝒩1 ≤⊕ 𝒩. But 𝒩 is Stc-summand, therefore 

𝒩 ∩ 𝒩1 ≤𝑆𝑡𝑐 𝒩. Since 𝒩 ≤𝑆𝑡𝑐 ℳ and ℳ is 

Stc-transitive, then (𝒩 ∩ 𝒩1)  ≤𝑆𝑡𝑐 ℳ.  

Proposition 4: Let ℳ be Stc-transitive, and each St-

closed submodule of  ℳ is Stc-summand. If ℳ is 

Stc-duo, then the sum of any St-closed submodule of 

ℳ with a direct summand of ℳ is fully invariant. 

Proof: Take an St-closed submodule 𝒩1 of ℳ and a 

direct summand 𝒩2 of ℳ, so ℳ = 𝒩2⨁ 𝒦 for some 

𝒦 ≤ ℳ. Now, 𝒩1 ≤𝑆𝑡𝑐 ℳ, by assumption 𝒩1 ≤𝑓𝑢 

ℳ. By Lemma 1, 𝒩1= (𝒩2⋂ 𝒩1) ⨁ (𝒦 ⋂ 𝒩1 ). 

Thus, 𝒩1+𝒩2 = (𝒩2⋂𝒩1) ⨁ (𝒦 ⋂ 𝒩1)+𝒩2. Now, 

(𝒦 ⋂ 𝒩1) is a direct summand of 𝒩1 and 𝒩1 ≤𝑆𝑡𝑐 

ℳ, Also, since ℳ is Stc-transitive, then 

(𝒦 ⋂ 𝒩1) ≤𝑆𝑡𝑐 ℳ. Thus, ⋂ 𝒩1 ≤𝑓𝑢 ℳ. On the 

other hand, 𝒩2 ≤⨁ ℳ  and ℳ is Stc-summand, 

thus, 𝒩2 ≤𝑓𝑢 ℳ. This implies that 

(𝒦 ⋂ 𝒩1)+𝒩2 ≤𝑓𝑢 ℳ, hence 𝒩1+𝒩2 ≤𝑓𝑢 ℳ. 

         The following theorem gives a characterization 

of the definition of Stc-duo module. 

Theorem 1: A module ℳ is Stc-duo if and only if 

for every f ∈ End(ℳ) and every cyclic St-closed 

<m> of ℳ, ∃r ∈ ℛ with f(m) = rm. 

Proof: ⇒) Let f ∈ End(ℳ) and ℛm ≤Stc ℳ. Since 

ℳ is Stc-duo then ℛm ≤𝑓𝑢 ℳ, so f(m) ℛm. Thus, 

∃ r ∈ ℛ such that f(m) = rm. 

https://doi.org/10.21123/bsj.2024.11434
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⇐) Take 𝒩 ≤𝑆𝑡𝑐 ℳ, and fEnd(ℳ). Note that n 

∈ 𝒩, f(n)∈ ℳ. By the hypothesis, ∃r ∈ ℛ with f(n) 

= r n ∈ 𝒩. Therefore, f(n)𝒩. This means ℳ is Stc- 

duo module. 

          As an application of Theorem 1, one can show 

the following, before that, a module ℳ is said to be 

countably generated if it can be generated by a 

countable set3. 

Proposition 5: A module ℳ is Stc-duo if each 

countably generated submodule of  ℳ is Stc-duo. 

Proof: Let ℛx ≤𝑆𝑡𝑐 ℳ  and 𝑓: ℳ ⟶ ℳ. Consider 

the following sum of cyclic submodules: 

ℋ = ℛx + ℛf(x) +ℛ𝑓2(𝑥) + ℛ𝑓3(x) + …….. 

ℋ is a countably generated submodule of ℳ. 

Restrict f on ℋ, this obtains f|H∈ End(ℋ), hence ℛx 

≤𝑆𝑡𝑐 ℋ13. But ℋ is Stc-duo, so by Theorem 1, ∃t ∈ 

ℛ such that f(x) = tx. By Theorem 1 ℳ is an Stc-duo 

module. 

           In general, the direct sum of two Stc-duo 

modules need not be Stc-duo, for example, Z2 is Stc-

duo Z-module, but Z2⨁Z2 is not Stc-duo as shown in 

Examples and Properties, point (1). 

Lemma 21:  

          Consider the direct sum ℳ = ℳ1⨁ℳ2 of 

submodules ℳ1 and ℳ2. Then ℳ1  ≤𝑓𝑢  ℳ if and 

only if Hom (ℳ1 , ℳ2) = 0. 

Proposition 6: Assume that ℳ = ℳ1⨁ℳ2 is an Stc-

summand module where ℳ1 and ℳ2 are 

submodules of ℳ. If ℳ1 is Stc-duo then Hom 

(ℳ1, ℳ2) = 0. 

Proof: Since ℳ is Stc-summand then ℳ1  ≤𝑆𝑡𝑐  ℳ. 

But ℳ is Stc-duo, therefore ℳ1  ≤𝑓𝑢 ℳ. By 

Lemma 2, Hom (ℳ1, ℳ2) = 0. 

Example 2: The contrapositive of Proposition 6 can 

be used to verify that the Z-module Z ⨁ Z is not St-

duo even though Z is Stc-duo. 

The Relationships of Stc-duo with Other 

Modules 

          Some types of modules are related to Stc-duo 

modules for instance CL-duo, weak duo and P-duo 

modules. This section studies these relationships. 

Remark 4: Every CL-duo module is Stc-duo. 

Proof: Take a CL-duo module ℳ and 𝒩 ≤𝑆𝑡𝑐 ℳ, 

then ≤𝑐 ℳ. But ℳ is CL-duo, therefore 𝒩 ≤𝑓𝑢 ℳ. 

           The converse of Remark 4 seems not true, 

since closed need not be St-closed13, but the authors 

haven't an example for that. 

          Now, the relationship between Stc-duo and 

CL-duo modules has been discussed. Remember 

that, if every proper submodule of a module ℳ is a 

prime submodule then ℳ is called fully prime18. 

Proposition 7: Let ℳ be a fully prime module, then 

ℳ is Stc-duo if and only if CL-duo. 

Proof: ⟹) Assume that ℳ is Stc-duo and 𝒩 ≤𝑐 ℳ. 

There are two cases: if 𝒩 = 0, then clearly 

𝒩 ≤𝑓𝑢 ℳ Otherwise, ℳ is fully prime implies that 

𝒩 ≤𝑆𝑡𝑐 ℳ [Remark 1.8]13. But ℳ is Stc-duo, thus 

𝒩 ≤𝑓𝑢 ℳ. 

⟸ ) It is followed by Remark 4. 

           An R-module ℳ is called fully essential if 

every semi-essential submodule  of ℳ is essential13. 

Proposition 8: ℳ is Stc-duo if and only if ℳ is a 

CL-duo module, provided that every semi-essential 

extension of any submodule of a module ℳ is a fully 

essential module. 

Proof: Suppose that ℳ is Stc-duo and 𝒩 ≤𝑐 ℳ. 

There are two cases: if 𝒩 = 0, then clearly 

𝒩 ≤𝑓𝑢 ℳ Otherwise, ℳ is fully prime implies that 

𝒩 ≤𝑆𝑡𝑐 ℳ [Proposition 1.7]13. Since ℳ is Stc-duo, 

therefore, 𝒩 ≤𝑓𝑢 ℳ. 

          Recall that an ℛ-module is termed semi-

extending if every submodule of ℳ is semi-essential 

in a direct summand of ℳ. Equivalently, ℳ is semi-

https://doi.org/10.21123/bsj.2024.11434
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extending if every St-closed submodule of ℳ is a  

summand of ℳ14, 16.  

          Stc-duo and week duo are thought to be 

independent, unfortunately, no example could be 

found to demonstrate that. Under certain conditions, 

the weak duo module can be Stc-duo as shown 

below. 

Proposition 9: In the class of semi-extending 

modules, every weak duo module is an Stc-duo 

module. 

Proof: Assume that ℳ is semi-extending and 𝒩 

≤𝑆𝑡𝑐 ℳ. Since ℳ is semi-extending then 𝒩 ≤⨁ ℳ. 

On the other hand, ℳ is a weak duo so 𝒩 ≤𝑓𝑢  ℳ. 

          It is thought that the two types of modules, Stc-

duo and P-duo, are independent, however, no 

example was identified. Under certain conditions P-

duo modules can be Stc-duo as shown in the 

following before, remember that an R-module ℳ is 

named almost semi-extending if every submodule of 

ℳ is semi-essential in a pure submodule of ℳ. 

Equivalently, every St-closed submodule of ℳ is 

pure16. 

Proposition 10: Take an almost semi-extending 

module ℳ, If ℳ is a P-duo module then it is Stc-

duo. 

Proof: Let 𝒩 ≤𝑆𝑡𝑐 ℳ. Since ℳ is almost semi-

extending then 𝒩 is pure in ℳ. Also, ℳ is P-duo, 

therefore  𝒩 ≤𝑓𝑢 ℳ. Thus, ℳ is Stc-duo. 

          Remember that a module ℳ is semisimple if 

every submodule of ℳ is a direct summand 6. 

Theorem 2: Let ℳ be a fully prime over a principal 

ideal ring (simply, PIR). Consider these assertions: 

6. ℳ is a duo module. 

7. ℳ is an Stc-duo module. 

8. ℳ is a CL-duo module. 

9. ℳ is a P-duo module. 

10. ℳ is a weak duo module. 

Then 1⟹ 2 ⟹ 3 ⟹ 4. Furthermore, if ℳ is 

semisimple then 5 ⟹ 1.  

Proof: 

1⇒ 𝟐:  It is clear. 

2 ⟹ 𝟑: Since ℳ is fully prime, then by Proposition 

7, the result follows.  

3 ⟹ 𝟒: Since ℳ is defined over PIR, so by 

[Proposition 5.4]3, ℳ is P-duo. 

4 ⟹ 𝟓: It is followed by 2 

5 ⟹ 𝟏: Assume that 𝒩 ≤ ℳ. Because ℳ is 

semisimple then  ≤⨁ ℳ. Besides that ℳ is a weak 

duo, thus, 𝒩 ≤𝑓𝑢 ℳ. 

         A module ℳ is named purely extending if each 

submodule of ℳ is essential in a pure submodule of 

ℳ19. 

Theorem 3: For a semisimple fully prime module 

ℳ, the following are equivalent:  

1. ℳ is a duo module. 

2. ℳ is an Stc-duo module. 

3. ℳ is a CL-duo module. 

4. ℳ is a weak duo module.  

 
 

Proof:  

1 ⇒ 𝟐: it is straightforward.  

2 ⇒ 𝟑: It follows from Proposition 7. 

3 ⇒ 𝟒: Take  ≤⨁ ℳ, so 𝒩 ≤𝑐 ℳ. Since ℳ is CL-

duo, then 𝒩 ≤𝑓𝑢 ℳ. 

4 ⇒ 𝟏: Let 𝒩 ≤ ℳ. Since ℳ is semisimple, then 𝒩 

≤⨁ ℳ. But ℳ is a weak duo, therefore, 𝒩 ≤𝑓𝑢 ℳ. 

Theorem 4: Take an almost semi-extending module 

ℳ over PIR. Consider the conditions below: 

5. ℳ is a duo module. 

6. ℳ is a CL-duo module.  

7. ℳ is a P-duo module. 

8. ℳ is an Stc-duo module.  

Then 1⟹ 2 ⟹ 3 ⟹ 4. Moreover, if ℳ is an St-

semisimple module, then 4 implies 1.  
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Proof:  

1 ⟹ 2: Clear. 

2 ⟹ 3: Let 𝒩 be pure in ℳ. Since R is PIR, then 𝒩 

≤𝑐 ℳ [Exersies 15, P.242]20. On the other hand, ℳ 

is CL-duo, therefore 𝒩 ≤𝑓𝑢 ℳ. 

3 ⟹ 4: Let  ≤𝑆𝑡𝑐 ℳ. Since ℳ is almost semi-

extending then 𝒩 is pure. On contrast, ℳ is P-duo, 

so 𝒩 ≤𝑓𝑢 ℳ. 

4 ⟹ 1: Let 𝒩 ≤ ℳ. Since ℳ is St-semisimple, then 

𝒩 ≤𝑆𝑡𝑐 ℳ. Additionally, ℳ is Stc-duo, therefore 𝒩 

≤𝑓𝑢 ℳ. 

         Remember that an R-module ℳ is named FI-

extending if every fully invariant submodule is 

essential in a direct summand of ℳ21,22. It is known 

that every extending module is FI-extending but not 

conversely. In the following proposition, a duo 

module is used as a condition under which the 

converse becomes true. 

Proposition 11: Take a duo module ℳ, then ℳ is 

extending. If it is an FI-extending module. 

Proof: Suppose that 𝒩 ≤ ℳ. Since ℳ is a duo then 

𝒩 ≤𝑓𝑢  ℳ. On the other hand, ℳ is FI-extending, 

so 𝒩 is essential in a direct summand of ℳ. Thus, 

ℳ is extending. 

         A module ℳ is called semi-extending if every 

St-closed submodule of ℳ is a direct summand16. 

The last proposition led us to introduce the 

following. 

Definition 4: A module ℳ is said to be FI-semi-

extending if every fully invariant submodule of ℳ is 

essential in a direct summand of ℳ. 

         Obviously, every semi-extending module is FI-

semi-extending. 

Proposition 12: In the class of Stc-duo modules, 

every FI-extending module is semi-extending. 

Proof: Assume that ℳ is an Stc-duo and FI-

extending module, take 𝒩 ≤𝑆𝑡𝑐 ℳ. Since ℳ is an 

Stc-duo module, then 𝒩 ≤𝑓𝑢 ℳ. As well as ℳ is 

FI-semi-extending, therefore, 𝒩 is essential in a 

direct summand of ℳ. Thus, ℳ is a semi-extending 

module. 

        At the end of this section, the relationships of 

the Stc-duo module among other related modules can 

be summarized in Table 1. Moreover, the role of the 

Stc-duo module in the relationship between FI-

extending and semi-extending modules is 

considered. 

 

Table 1. The relationships of the Stc-duo module among other related modules 

Then 𝓜 is With Conditions If an 𝓡-module 

𝓜 is 

Results 

 

 

Stc-duo module 

 

 

- duo Remark 1 

- CL-duo Remark 4 

ℳ is a semi-extending module weak duo Proposition 9 

ℳ is an almost semi-extending module 
 

P-duo 
Proposition 10 

 

CL-duo module 

 

ℳ is a fully prime module  
Stc-duo 

 

Proposition 7 

Every semi-essential extension of any submodule 

of ℳ is fully essential module 

 

Proposition 8 

Duo module ℳ is an St-semisimple module Example and 

Properties 7 

semi-extending module 

 

ℳ is an Stc-duo module FI-extending Proposition 12 
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Results and Discussion 

The main results in this paper are the following: 

1. For any Stc-duo and Stc-transitive module ℳ. If 

𝒩 ≤Stc ℳ and Stc-summand submodule of ℳ, 

then the intersection of 𝒩 with any direct 

summand of ℳ is St-closed. 

2. Let ℳ be Stc-transitive, and every St-closed 

submodule of ℳ is Stc-summand. If ℳ is Stc-

duo, then the sum of any St-closed submodule of 

ℳ with any direct summand of ℳ is fully 

invariant. 

3. A module ℳ is Stc-duo if and only if ∀ f ∈ 

End(ℳ) and for each cyclic <m> ≤𝑆𝑡𝑐 ℳ, ∃t ∈ 

R ∋ 𝑓(𝑚) = t𝑚. 

4. Given ℳ = ℳ1⨁ ℳ2 is an Stc-summand module 

where ℳ1 and ℳ2 are submodules of ℳ. If ℳ1 

is Stc-duo then Hom (ℳ1, ℳ2) = 0. 

5. In the class of semi-extending modules, every 

weak duo module is an Stc-duo module. 

6. For almost semi-extending modules, every P-duo 

module is Stc-duo. 

7. Let ℳ be a fully prime module, then ℳ is Stc-

duo if and only if CL-duo. 

8.  ℳ is Stc-duo if and only if ℳ is a CL-duo 

module, provided that every semi-essential 

extension of any submodule of a module ℳ is a 

fully essential module. 

9. Let ℳ be a fully prime over a principal ideal ring 

(simply, PIR). These assertions are considered: 

1.  ℳ is a duo module. 2. ℳ is Stc-duo. 3. ℳ is CL-

duo. 4. ℳ is P-duo. 5. ℳ is a weak duo. 

Then 1⟹ 2 ⟹ 3 ⟹ 4, and when ℳ is semisimple 

then 5 ⟹ 1 

10.  The following statements are equivalent for a 

semisimple fully prime module ℳ:  

1. ℳ is a duo module. 2. ℳ is Stc-duo. 3. ℳ is CL-

duo. 4. ℳ is a weak duo. 

11.  Let ℳ be almost semi-extending over PIR. The 

following are considered:  

1. ℳ is a duo module. 2. ℳ is CL-duo. 3. ℳ is P-

duo. 4. ℳ is Stc-duo. Then 1⇒ 2 ⟹ 3 ⟹ 4. And 

if ℳ is St-semisimple, then 4 implies 1. 

12.  Each FI-extending is a semi-extending module in 

the class of  Stc-duo modules. 

 

          The above results created a new class of 

modules and named Stc-duo modules. Many 

properties of this kind of module were given and 

discussed in detail. All relationships between Stc-

duo and related modules were studied using certain 

conditions.  

Conclusion 

         By using the concept of an St-closed 

submodule, the authors introduced a new kind of 

module named the Stc-duo module in which all St-

closed submodules are fully invariant. It contains a 

duo and CL-duo module but it is independent of the 

weak duo and P-duo. The main features of the Stc-

duo modulexamplee as analogues of those in the duo 

module are investigated. Some of these properties 

need certain conditions added to Stc-duo. Conditions 

under which (submodule of the Stc-duo module is 

also Stc-duo) are given. The intersection of the St-

closed submodule with other submodules is 

considered. Another characterization of the 

definition of the Stc-duo module is given. The 

relationships of the Stc-duo module with CL-duo, 

weak duo and P-duo modules are established. The 

author discovered that Stc-duo contains CL-duo and 

is independent of the concepts of weak duo and P-

duo modules. 
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 تماما   ةكون ثابتت St-ة المغلقة من النمطجزئيال اتهاي كل مقاستال اتالمقاس

 ميساء رياض عباس، منى عباس احمد

 الرياضيات، كلية العلوم للبنات، جامعة بغداد، بغداد، العراق.قسم 

 

 ةالخلاص

فيه  -Stcالمقاس الثنائي يكون كل مقاس جزئي فيه ثابت تماماً. هذا البحث يتناول دراسة المقاس الذي كل مقاس مغلق من النمط في 

يحوي المقاس الثنائي بشكل  -Stcان المقاس الثنائي من النمط  .-Stcيكون ثابت تماماً، ويسمى هذا المقاس بالمقاس الثنائي من النمط 

ان سلوك هذا النوع من المقاسات سيتم دراستهُ بشكل  الذي قدُم من قبل منى عباس احمد. -CLفعلي فضلاً عن المقاس الثنائي من النمط 

قد  P ,CL, weakبالمقاسات الثنائية من الانماط  -Stcمفصل مع اعطاء تشخيصاً اخر له. كما ان العلاقة بين المقاس الثنائي من النمط 

 درُست بالتفصيل.

ً ، المقاس الثنائي ،المقاس الجزئي المغلق الكلمات المفتاحية: المقاس الثنائي  ،-Stcالمقاس المغلق من النمط  ،المقاس الجزئي الثابت تماما

 .Stcمن النمط 
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