
 

Published Online First: December, 2024 

https://doi.org/10.21123/bsj.2024.11520  

P-ISSN: 2078-8665 - E-ISSN: 2411-7986 
 

Baghdad Science Journal 

Solution of Wave Equation by Linear Regression Artificial Neural 

Network 

Nahdh S. M. Al-Saif *1 , Mahmood A. Shamran 2 , Samah Mohammed Ali 2 , Saad 

Naji Al-Azzawi2  

1Department of Mathematics, College of Science, University of Anbar, Iraq. 
2Department of Mathematics, College of Science for Women, University of Baghdad, Iraq. 
*Corresponding author. 

Received 80/80/2024, Revised 12/80/2024, Accepted 12/80/2024, Published Online First 20/21/2024 

 © 2022 The Author(s). Published by College of Science for Women, University of Baghdad. 

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

Introduction 

Wave partial differential equations (WPDE) 

are one of the foremost important topics that 

represent, for example, the wave motion of ground 

vibrations, the motion of a tsunami wave, or the 

propagation of heat waves. Therefore, finding 

approximate solutions to such equations with high 

accuracy faster than difficult and complex analytical 

solutions has become possible by using Artificial 

Neural Networks (ANN) and machine learning 

methods. Accordingly, the researchers could now use 

the ANN to find approximate solutions to many 

partial differential equations representing many 

physical, chemical, and life phenomena. 

For example.  In 1 they used the functional 

variable method to find approximate solutions of 

some nonlinear PDF, such as the Klein-Gordon 

equation, and the higher order nonlinear Schrödinger 

equation. The solutions resulting from this method 

represent single-wave solutions and periodic wave 

solutions.  

In 2 an (ANN) has been adopted to solve 

high-order partial differential equations based on the 
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initial condition and boundary conditions of these 

equations. In 3 a solution to a system of PDF has 

been suggested by proposing a new type of artificial 

neural network called Fourier network. Experiments 

were conducted on the Burger and Darcy equations 

and the Navier - Burger equations. 

 In 4 this work presents a neural network for 

solving integro PDE. In 5 it was able to interpret the 

solve as a superposition of k-wave solutions of quasi-

linear systems of PDEs. 

 In 6 analytical and numerical methods are 

proposed for solutions of multidimensional linear 

and nonlinear wave equations. In 7 artificial 

intelligence, especially ANNs, is used to solve PDFs 

that represent physical problems, by building an 

artificial neural network based on some physical 

specifications of the differential equation that 

represents the wave, to improve the results from 

approximate solutions. Resulting. They studied the 

KdV–Burgers equation.  

In 8 a solution to the heat wave differential 

equation is proposed using the fourth-order Runge-

Kutta method. In 9 the heat flow was modeled using 

one- and two-dimensional differential equations. In 10 

a new technique built on the principle of ANNs is 

proposed to study the problem of natural heat load 

generated in some mechanical engineering problems. 

 In 11 a comparison was made between three 

methods for creating artificial neural networks 

(ANNs) to simulate low- and high-order differential 

equations and the preference between them was 

determined.  

In 12, they presented a review of three 

methods for creating ANNs which are used to solve 

higher-order PDEs. The philosophy of creating each 

method and its preference is explained. In 13, the 

researchers discussed the use of ANN networks to 

solve wave differential equations, such as the heat 

equation, and provided some approximate solutions 

to them.  

In 14, the researchers proposed a new type of 

ANN to recognize the boundary conditions and 

initial values of PDEs, which helps shorten the time 

for learning and reduces the size of the data used in 

teaching the network while giving approximate 

solutions with a very small amount of error. In 15, 

they used the fractional series to solve fractional 

Burger’s equation.  

In 16 the researchers found the exact and 

approximate solution of fractional Burger’s equation. 

In17, the Haar wavelet is developed for the solution of 

non-linear and linear delay fractional order 

differential equations.  

In18, solution nonlinear fractional integro-

differential Equation Theoretical and computational 

analysis. Also using the collocation method based on 

Haar wavelet to develop the combination of Caputo 

derivative. 

 In19, the researchers have presented various 

forms of feedback artificial neural networks and have 

also provided solutions to some of the problems and 

obstacles facing the designer of such networks while 

maintaining the general structure of this type of 

network. 

In20, the shear strength of deep concrete 

blocks was simulated using artificial neural networks 

(ANNs) by using four methods to train these 

networks, relying on 70% of the input data as 

training data and 30% to match the obtained results, 

and comparing the results by using different 

statistical methods and thus determining the most 

efficient training method. 

 

Materials and Methods 

In recent times, artificial neural networks 

(ANNs) have garnered significant interest from 

academics in several subjects. ANNs are being used 

to enhance conventional approaches for identifying 

optimum solutions. Additionally, ANNs are utilized 

to forecast efficient solutions with minimal costs and 

to prevent prospective issues. This study has 

emphasized the use of ANN in various scientific 

applications. Furthermore, the emphasis was placed 

on the advantages of ANNs, which enable their use 

in addressing diverse challenges across numerous 

domains in the next few years. 

https://doi.org/10.21123/bsj.2024.11520
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Artificial Neural Network 19 

The architecture of ANN is derived from the 

organization and operation of the biological neural 

network. Artificial Neural Networks (ANN) has 

similarities with the neurons found in the brain since 

they are composed of neurons organized in different 

layers. 

A feed-forward A common kind of neural network is 

one that consists of an input layer that receives 

outside data to recognize patterns, an output layer 

that offers a solution, and a hidden layer that acts as a 

middle layer and divides the other layers. Acyclic 

routes connect the neurons within the output layer to 

the neurons within the input layer. By altering the 

weights of its neurons in response to differences 

between the expected and actual outputs, the (ANN) 

uses a training technique to learn from the datasets. 

Fig 1 depicts the general structure of an (ANN). 

 
Figure 1. Structure of ANN. 

 

Tanh-sigmoid function 

The activation function that regularly achieves better 

performance than the sigmoid function is called the 

tangent hyperbolic function. The function in question 

is a sigmoid function that has been mathematically 

calibrated. Both are analogous and may be deduced 

from each other. 

𝑓(𝑠) = tanh(𝑠) =
2

1+𝑒−2𝑠 − 1.  

 

 Levenberg_Marquardt _Training (ANN-

LM) 20 

The Levenberg_M (LM) training, otherwise 

known as the wet least squares approach, is used for 

the resolution of nonlinear least squares problems. 

This approach eschews the computation of the 

precise Hessian matrix and instead utilizes the 

Jacobian matrices and the slope vector. The damage 

function is represented mathematically as the sum of 

the squares errors.   

𝑓 = ∑ 𝑢𝑖
2

𝑎

𝑖=1

 . 

The variable "a" represents the digit of 

occurrences of data, whereas the variable "𝑢" 

represents the array of errors. The Jacobian_M of the 

slop function is known as: 

𝐴𝑖,𝑗 =
𝜕𝑢𝑖

𝜕𝑤𝑖
 . 

Let i range from 1 to a and j range from 1 to 

b. Here, a represents the digit of cases at data, b 

represents the digit of parameters in the ANN, and A 

represents the Jacobian _M. The dimensions of the 

Jacobian_M  are [a, b]. The calculation of the slope 

vector of the lost function is performed: 

 

∇𝑓 = 2𝐴𝑇𝑢  . 
 

The approximation of the Hessian matrix is 

calculated:  

𝐵𝑓 ≅ 2𝐴𝑇𝐴 +  𝛽Í   . 
 

The variable B represents the Hessian-M, β 

represents the factor that guarantees the positivity of 

the Hessian, and I is the identity_matrix. The first 

selection is made for the substantial parameter β. 

Furthermore, in the event of an error occurring 

during any iteration, the value of β will be 

augmented by a certain factor. In contrast, as the loss 

reduces, the value of β will be reduced to bring the 

LM algorithm closer to the Newton technique. The 

process of improving the parameters through the LM 

method is defined as follows: 

𝜔(𝑘+1) = 𝜔(𝑘) − (𝐴(𝑘)𝑇𝐴𝑗 + 𝛽(𝑘)𝐼) (2𝐴(𝑘)𝑇𝑢(𝑘)  ,           

For k = 0, 1, …,n. 

 

In this section, the analytical solution was 

evaluated, and then the solution was found by using 

ANNs. Also, a comparison is given to ensure the 

efficiency of the ANNs using tables and graphs. 

 

Analytic Solution for the problem  

𝑢𝒯𝒯 − 𝑐2𝑢𝑥𝑥 = 0  ,                                      1  

With  𝐼𝑐1:   𝑢(𝑥, 0) = 𝜑(𝑥) ,   

         𝐼𝑐2:    𝑢𝑡(𝑥, 0) = 𝜓(𝑥) . 

The general solution is: 

https://doi.org/10.21123/bsj.2024.11520
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 𝐴𝑢𝑥𝑥 + 2𝐵𝑢𝑥𝑦 + 𝐶𝑢𝑦𝑦 = 𝐹(𝑥, 𝑦, 𝑢, 𝑢𝑥 , 𝑢𝑦) . 

There for this example: 

𝐴 = 1 , 𝐵 = 0 , 𝐶 = −𝑐2 ,  

𝐵2 − 𝐴𝑐 = 𝑐2   > 0  . 

It is of hyperbolic type: 

𝑑𝑥

𝑑𝑡
= ∓𝐶 [

𝐵∓√𝐵2−𝐴𝐶

𝐴
]  ,    

𝜉(𝑥, 𝒯) = 𝑥 + 𝑐 𝒯 , 

𝜂(𝑥, 𝒯) = 𝑥 − 𝑐 𝒯 , 

𝜉𝑥 = 𝜂𝑥 = 1  , 𝜉𝑡 = 𝑐 , 𝜂𝑡 = −𝑐 ,   𝜉𝑥𝑥 = 𝜉𝑥𝑡 = 𝜉𝑡𝑡 =

𝜂𝑥𝑥 = 𝜂𝑥𝑡 = 𝜂𝑡𝑡 = 0,  

𝑢𝑥 = 𝑢𝜉𝜉𝑥 + 𝑢𝜂𝜂𝑥 = 𝑢𝜉 + 𝑢𝜂  ,  

𝑢𝑡 = 𝑢𝜉𝜉𝑡 + 𝑢𝜂𝜂𝑡 = 𝑐 𝑢𝜉 − 𝑐 𝑢𝜂 ,  

𝑢𝑥𝑥 = 𝑢𝜉𝜉 + 2𝑢𝜉𝜂 + 𝑢𝜂𝜂  ,   

𝑢𝑡𝑡 = 𝑐2𝑢𝜉𝜉 − 2𝑐2𝑢𝜉𝜂 + 𝑐2𝑢𝜂𝜂 . 

Substitution in Eq   1  gets: 

⇒  𝑐2𝑢𝜉𝜉 − 2𝑐2𝑢𝜉𝜂 + 𝑐2𝑢𝜂𝜂 − 𝑐2[𝑢𝜉𝜉 + 2𝑢𝜉𝜂 +

𝑢𝜂𝜂] = 0   , 

⇒  𝑢𝜉𝜂 = 0 . 

Integrate w.r.t   ξ to get: 

  𝑢𝜂 = 𝑓1(𝜂)   ,   𝑓1𝑖𝑠 𝑎𝑟𝑏𝑖𝑡𝑎𝑟𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 . 

Again Integrate w.r.t η to get: 

𝑢(𝜉, 𝜂) = 𝑓(𝜉) +  ∫ 𝑓1(𝜂)𝑑𝜂 , 

            = 𝑓(𝜉) +  𝑔(𝜂) , 

𝑢(𝑥, 𝒯) = 𝑓(𝑥 + 𝑐 𝒯) +  𝑔(𝑥 − 𝑐 𝒯) .                                             
2  

Is the condition: 

  I𝐶1 ⇒ 𝑓(𝑥) +  𝑔(𝑥) =  𝜑(𝑥)  ,                                                         
3  

I𝐶2 :   𝑢𝑡(𝑥, 0) = 𝜓(𝑥)  , 

⇒ 𝑐𝑓′(𝑥) − 𝑐 𝑔′(𝑥) =  𝜓(𝑥)  .                                      

4  

Integrate Eq. (4) from 0 to x to get: 

𝑓(𝑥) −  𝑔(𝑥) =
1

𝑐
  ∫ 𝜓(𝑟)𝑑𝑟 + 𝑓(0) − 𝑔(0)

𝑥

0
  .                                 

5  

Eq   3  + Eq  5    ⇒       𝑓(𝑥) =
1

2
 𝜑(𝑥) +

1

2
 [𝑓(0) − 𝑔(0) +

1

𝑐
∫ 𝜓(𝑟)𝑑𝑟

𝑥

0
] .      6  

Eq  3  - Eq.  5    ⇒      𝑔(𝑥) =
1

2
 𝜑(𝑥) −

1

2
 [𝑔(0) − 𝑓(0) −

1

𝑐
∫ 𝜓(𝑟)𝑑𝑟

𝑥

0
] .             7  

Substations   Eq  6  and Eq   7     in Eq   2  we get:  

𝑢(𝑥, 𝒯) = 𝑓(𝑥 + 𝑐 𝒯) +  𝑔(𝑥 − 𝑐 𝒯)  ,    

              =
1

2
 𝜑(𝑥 + 𝑐 𝒯) +

1

2𝑐
 ∫ 𝜓(𝑟)𝑑𝑟 

𝑥+𝑐𝑡

0
+

 
1

2
 𝜑(𝑥 − 𝑐 𝒯) −

1

2𝑐
 ∫ 𝜓(𝑟)𝑑𝑟 

𝑥−𝑐𝑡

0
 , 

             =  
1

2
𝜑(𝑥 + 𝑐 𝒯) + 𝜑(𝑥 − 𝑐 𝒯) +

1

2𝑐
 ∫ 𝜓( 𝑟)𝑑𝑟

𝑥

0
  . 

As a Special case   let: 

𝜑(𝑥, 𝒯) = 𝐾𝑒−(𝑥+𝑐 𝒯) sin(𝑥 + 𝑐 𝒯),  

𝜓(𝑥, 𝒯) = cos (𝑥 + 𝑐 𝒯) , 

𝑢(𝑥, 𝒯) =
1

2
[𝑒−(𝑥+𝑐 𝒯) sin( 𝑥 + 𝑐 𝒯)

+  𝑒−(𝑥−𝑐.𝒯) sin( 𝑥 − 𝑐 𝒯)]

+  
1

2
[sin(𝑥 + 𝑐 𝒯) − sin(𝑥 − 𝑐 𝒯)] . 

Results and Discussion 

The Matlab ANNs tools and the "feed-

forward neural net" (FFNN) module were used in 

this study to construct an FFNN. The selection of the 

degree of layers and neurons, as well as the training 

procedure ("TANSING"—LM t training approach), 

aimed to achieve a harmonious balance between 

simplicity and accuracy. The output value of the 

neural network was evaluated by comparing it with 

the theoretical value to validate the correctness and 

efficiency of this technology, as seen in Fig 2. 

https://doi.org/10.21123/bsj.2024.11520
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 Figure 2. Structure of ANN in Matlab 

 

The approximate function of the structure has the 

form: 

𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑜𝑢𝑡𝑝𝑢𝑡
= ( 𝑤2 ∗ tanh  ( 𝑤1 ∗ [𝑥, 𝑦] + 𝑏1)  
+  𝑏2) 

 After applying the neural network saturation to the 

problem, the obtained results are shown in Table 1 

when C = 0.1 

 

 

 

 

Table 1. Theoretical, neural value, and Accuracy of example. 
Х↓ t Theoretical  𝐮𝐚(𝐱, 𝐲) Trainlm 𝐮𝐭(𝐱, 𝐲) Error = |𝐮𝐚 − 𝐮𝐭| 

0 0 0.000 1.33129721365e-002 

 

1.33129721365e-002 

 0 0.5 4.74791694442e-002 

 

5.71473017104e-002 

 

9.66813226611e-003 

 1 1 3.61507282645e-001 

 

3.61154991472e-001 

 

3.52291172383e-004 

 1 1.5 3.61019452487e-001 

 

3.61965892074e-001 

 

9.46439587427e-004 

 2 2 4.26043293452e-002 

 

4.42288874693e-002 

 

1.62455812402e-003 

 2 2.5 2.35433399532e-002 

 

2.48871056180e-002 

 

1.34376566481e-003 

 3 3 -2.8111072561e-001 

 

-2.8185862312e-001 

 

7.47897508035e-004 

 3 3.5 -3.2642100232e-001 

 

-3.2660257033e-001 

 

1.81568003578e-004 

 4 4 -2.6642803923e-001 

 

-2.6595291707e-001 

 

4.75122167868e-004 

 4 4.5 -2.9565583834e-001 

 

-2.9560974878e-001 

 

4.60895628375e-005 

 5 5 1.29123515675e-001 

 

1.28268993223e-001 

 

8.54522451544e-004 

 6 6 5.40619704312e-001 

 

5.27156592342e-001 

 

1.34631119701e-002 

 MSE 6.16e-006 

  
After applying the neural network saturation to the 

problem, the result shown in Fig 3 when C = 0.5 with 

MSE = 6.91e-003 

         

 A B 
Figure 3.  A- The exact solution, B- The neural network result 

https://doi.org/10.21123/bsj.2024.11520
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After applying the neural network saturation to the 

problem, the result is shown in Fig 4 when C = 1 

with MSE= 6.29e-003 

          

 A B 

Figure 4.  A- The exact solution, B- The neural network result 

Conclusion 

The main goal of modeling is to give a 

reasonable interpretation of the situation (physical, 

chemical, biological, medical, etc.), and this 

interpretation is given by finding the solution of the 

model. Solutions are in closed form, approximate, or 

numerical. Surely the best one if possible, is the 

closed form, but there are difficulties in finding it. 

Therefore, they go to find the solution approximately 

or numerically by a certain method, such as Sumuda 

Adomain Decomposition, the Runge Kutte method, 

the Artificial Neural Networks method, etc. 

This paper solves the model theoretically to 

find the closed-form solution by classification of the 

partial differential equation and also by the artificial 

neural network method, which is efficient in finding 

the solution and takes a very short time to find the 

solution from the complex analytical method. 
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 الخطي للانحدار الاصطناعية العصبية الشبكة بواسطة يةالموجالمعادلة  حل

 2العزاوي سعد ناجي, 2سماح محمد علي   ،2محمود عريبي شمران ،1ناهض سليم السيف

 
 قسم الرياضيات، كلية العلوم ، جامعة الانبار، العراق . 2
 قسم الرياضيات، كلية العلوم البنات، جامعة بغداد، بغداد، العراق . 1

 

 

 ةالخلاص

التي تمثل على سبيل المثال الحركة الموجية للاهتزازات الأرضية . ومن هنا  عتعتبر المعادلات التفاضلية الموجية من اهم المواضي

عادلات بدقة وسرعه عالية وبشكل اسرع من الحلول التحليلية والمعقدة , اصبح ممكنا من خلال مفان ايجاد  حلول تقريبيه لمثل هذه ال

ي هذا البحث هناك ثلاثة أهداف الأول هو تحويل مشكلة القيمة الأولية للمعادلة ف ناعي واساليب  التعلم  الالي.طصاستخدام الذكاء الا

للانحدار الخطي. النتيجة الثالثة  الاصطناعية الموجية إلى شكلها القانوني وإيجاد حلها الدقيق. والثاني هو كتابة خوارزمية الشبكة العصبية

هو مقارنة الحل بواسطة جدول وأشكال لقيم معينة  وأخيرا. الدراسةي تطبيق هذه الخوارزمية لإيجاد حل عددي لمسألة القيمة الأولية قيد ه

تم الحصول على نتائج الحلول التقريبية ذات الخطأ  .الاصطناعية بيان كفاءة طريقة الشبكة العصبيةمن المعلمات والشروط الأولية ل

مقارنة بالحل الحقيقي للمعادلة التفاضلية الموجية من خلال تطبيق الشبكة العصبية الاصطناعية التي تمثل معادلة الانحدار  البسيط جدا  

 . الخطي والتي تعطي ميزة السرعة العالية في الحصول على حل هذا النوع من التفاضلية

  .معادلة الموجة المعادلات التفاضلية الجزئية،  (،L.Mي، تدريب )الشبكات العصبية الاصطناعية، الانحدار الخط الكلمات المفتاحية:

https://doi.org/10.21123/bsj.2024.11520

