$(\sigma, \tau) - (J, R) - DERIVATIONS ON$ JORDAN IDEALS

Ikram A. Saed*

Date of acceptance 16 /10 / 2008

Abstract:

Let R be an associative ring with center Z(R). A well known results proved by Bell and kappe concering derivations in prime rings have been extensively studied by many authors, several of these outhers extended these result for α - derivation like Yenigual and Argac and some of them extended these results for a (σ , τ) – derivations like M. Asharf.

The main purpose of this paper is to study the action of a $(\sigma,\tau) - (J,R) - derivation$ and a left $(\sigma,\tau) - (J,R) - derivation$ and $(\sigma,\tau) - (J,R) - derivation$ on Jordan ideals.

Keyword: Z(R): center of R, R: prime ring, d: derivation, δ : left derivation, F: generalized.

§ 1 Basic Concepts: Definition 1.1: [3]

A ring R is called a prime if for any $a, b \in R$,

 $aRb = \{0\} \text{ , implies that either a} \\ = 0 \text{ or } b = 0.$

Definition 1.2: [4]

A ring R is called a semiprime ring if for any $a \in R$, $aRa = \{0\}$, implies that a = 0.

Definition 1.3: [3]

Let R be a ring. Define a Jordan product on R as follows aob = ab + ba, for all $a,b \in R$.

Definition 1.4: [3]

An additive subgroup $A \subset R$ is called a Jordan subring of R if $a,b \in A$. implies that $aob = ab + ba \in A$.

Definition 1.5: [3]

Let A be a Jordan subring of R and $J \subset A$ is an additive subgroup such that $a \in A$, $b \in J$ implies that $ab + ba \in J$, then J is called a Jordan ideal of A.

Definition 1.6: [3]

A ring R is said to be n-torsionfree, where $n \neq 0$ is an integer such that whenever na = 0 with $a \in R$, then a = 0.

Definition 1.7: [3]

Let R be a ring. Define a lie product [,] on R as follows. [x,y] = xy - yx, for all $x,y \in R$.

Properties 1.8: [8]

Let R be a ring, then for all $x,y,z \in R$, we have (1) [x,yz] = y[x,z] + [x,y]z(2) [xy,z] = x[y,z] + [x,z]y

- (3) [x + y,z] = [x,z] + [y,z]
- (4) [x,y+z] = [x,y] + [x,z]

Definition 1.9: [4]

Let R be a ring. An additive mapping d:R \rightarrow R is called a derivation if d(xy) = d(x)y + xd(y), for all x,y \in R and we say that d is a Jordan derivation if d(x²) = d(x)x + xd(x), for all x \in R.

^{*}University of Technology

Definition 1.10: [8]

Let R be a ring. An additive mapping $\delta: R \rightarrow R$ is called a left derivation if

 $\delta(xy) = x\delta(y) + y\delta(x)$, for all $x,y \in R$ and we say that δ is a Jordan left derivation if

 $\delta(x^2) = 2x\delta(x)$ for all $x \in \mathbb{R}$.

Definition 1.11: [8]

Let R be a ring. An additive mapping d:R \rightarrow R is called a (σ , τ) – derivation where σ , τ :R \rightarrow R are two mappings of R, if d(xy) = d(x) σ (y) + τ (y) d(y), for all x,y \in R, and we say that d is a Jordan (σ , τ) – derivation if d(x²) = d(x) σ (x) + τ (x) d(x), for all x \in R.

Definition 1.12: [8]

Let R be a ring. An additive mapping $\delta: \mathbb{R} \rightarrow \mathbb{R}$ is called a left (σ, τ) – derivation where $\sigma, \tau: \mathbb{R} \rightarrow \mathbb{R}$ are two mapping of R,

if $\delta(xy) = \sigma(x) \ \delta(y) + \tau(y) \ \delta(x)$, for all $x, y \in \mathbb{R}$ and we say that δ is a Jordan left (σ, τ) – derivation

if $\delta(x^2) = \sigma(x) \ \delta(x) + \tau(x) \ \delta(x)$, for all $x \in \mathbf{R}$.

Definition 1.13: [6]

Let R be a ring. An additive mapping $F:R \rightarrow R$ is called a generalized (σ, τ) derivation associated with d, where $\sigma, \tau:R \rightarrow R$ are two mappings of R, if there exists a (σ, τ) – derivation d:R $\rightarrow R$ such that F(xy) = $F(x) \sigma(y) + \tau(x) d(y)$, for all $x, y \in R$.

§ 2 (σ , τ) – (J,R) – Derivations:

In this section first we will extend A.D. HAMDI, [5, Theorem 2.2.6] for a (σ,σ) - (J,R) derivation which acts as a homomorphism or as an anti-homomorphism on a nonzero Jordan ideal and a subring J of a 2torsion-free prime ring R, second we will generalize the above extension for a generalized $(\sigma, \sigma) - (J, R)$ derivation. Finally we will extend the above result for $(\sigma, \tau) - (J, R)$ derivation which acts as a homomorphism on a nonzero Jordan ideal and a subring J of a 2torsion-free orime ring R.

Now we introduce the following new definition which a generalize of definition 1.11.

Definition 2.1:

Let J be a Jordan ideal of a ring R. An additive mapping $d: R \rightarrow R$ is called a $(\sigma, \tau) - (J, R)$ derivation where $\sigma, \tau: R \rightarrow R$ are two mappings of R, if

 $\begin{aligned} &d(xy) = d(x) \ \sigma(y) + \tau(x) \ d(y), \ for \ all \\ &x \in J, \ y \in R, \end{aligned}$

and we ay that d is a Jordan (σ,τ) – (J,R) derivation if $d(a^2) = d(a) - \sigma(a) + \sigma(a) - d(a)$ for all

 $d(a^2) = d(a) \ \sigma(a) + \tau(a) \ d(a) \ for \ all \\ a \in \mathbf{R}.$

Example 2.2:

Let R be the ring of all 2x2 materices over commutative ring S of characteristic two.

Let
$$J = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} : a, b \in S \right\}$$

It is clear that J is a Jordan ideal of R.

Define

d:R→R, by d
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & -b \\ c & 0 \end{pmatrix}$$
,
for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in R$

Let $\sigma,\tau:R \rightarrow R$ be two mappings, such that

$$\sigma \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \tau \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

For all
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbf{R}$$

Then d is $(\sigma, \tau) - (J, R)$ – derivation.

The following lemmas help us to prove the main theorems of this section:

Lemma 2.3: [8]

If R is a ring, J a nonzero Jordan ideal of R, then $2[R, R] J \subseteq J$ and $2J[R, R] \subseteq J$.

Lemma 2.4: [8]

Let R be a prime ring, J a nonzero Jordan ideal of R. if $a \in R$ and $aJ = \{0\}$ (or $Ja = \{0\}$), then a = 0.

Lemma 2.5: [8]

Let R be a 2-trosion-free prime ring, J a nonzero Jordan ideal of R. if $aJb = \{0\}$ then a = 0 or b = 0.

Lemma 2.6: [8]

Let R be a 2-trosion-free prime ring, J a nonzero Jordan ideal of R. if J is a commutative Jordan ideal, then J \subseteq Z(R).

Lemma 2.7:

Let R be a 2-torsion-free prime ring, J a nonzero Jordan ideal and a subring of R. Suppose that σ,τ are automorphisms of R. if R admits a $(\sigma,\tau) - (J,R)$ derivation d such that $d(J) = \{0\}$, then d = 0 or $J \subseteq Z(R)$.

Proof:

We have d(u) = 0, for all $u \in J$. This yields that d(uor) = 0, for all $u \in J$ and $r \in R$. Now using the fact that d(u) = 0, the above expression yields that

 $\begin{aligned} \tau(u) \ d(r) + d(r) \ \sigma(u) &= 0, \text{ for all} \\ u \in J \text{ and } r \in R \dots (1) \\ \text{Replacing } r \text{ by } vr, \ v \in J \text{ in } (1) \\ \text{and using } (1), \text{ we get} \end{aligned}$

$$\begin{split} \tau(u) \ d(vr) + d(vr) \ \sigma(u) &= 0 \\ \tau(u) \ [d(v) \ \sigma(r) + \ \tau(v) \ d(r)] \ + \\ [d(v) \ \sigma(r) + \tau(v) \ d(r)] \ \sigma(u) &= 0 \end{split}$$

$$\begin{split} \tau(u) \ \tau(v) \ d(r) + \tau(v) \ d(r) \ \sigma(u) = 0 \\ \tau(u) \ \tau(v) \ d(r) + \tau(v) \ \tau(u) \ d(r) = 0 \\ (\tau(u) \ \tau(v) + \tau(v) \ \tau(u)) \ d(r) = 0 \\ \tau(u) \ o \ \tau(v) \ d(r) = 0, \ for \ all \ u, v \in J, \\ r \in R. \end{split}$$

Hence $[u \circ v]\tau^{-1} (d(r)) = 0$, for all $u,v \in J$ and $r \in R$. This implies that $J\tau^{-1} (d(r)) = \{0\}$, for all $u,v \in J$ and $r \in R$. Hence by lemma (2.4), we get

> d(r) = 0, for all $r \in R$ Thus d = 0 on R

Now, we will prove the main theorems of this section.

Theorem 2.8:

Let R be a 2-torsion-free prime ring, J a nonzero Jordan ideal and a subring of R. If that σ is an automorphism of R and d:R \rightarrow R is a (σ , σ) – (J,R) derivation then

- (i) if d acts as a homomorphism on J, then either d = 0 on R or $J \subseteq Z(R)$.
- (ii) if d acts as an anti-homomorphism on J, then either d = 0 on R or $J \subseteq Z(R)$.

Proof:

Suppose that $J \not\subseteq Z(R)$.

(i) if d acts as a homomorphism on J, then we have $d(uv) = d(u) \ \sigma(v) + \sigma(u)d(v) = d(u)$ $d(v), \text{ for all } u, v \in J \dots(1)$ Replacing v by vw, w \epsilon J in (1), we get. $d(u) \ \sigma(v) \ \sigma(w) + \sigma(u) \ (d(v) \ \sigma(w) + \sigma(v) \ d(w))$ $= d(u) \ (d(v) \ \sigma(w) + \sigma(v) \ d(w))$

Using (1), the above relation yields that $(d(u) - \sigma(u)) \sigma(v) d(w) = 0$, for all $u,v,w \in J$. That is, $\sigma^{-1} (d(u) - \sigma(u)) v \sigma^{-1} (d(w)) =$ 0, for all $u, v, w \in J$. and hence $\sigma^{-1}(d(u) - \sigma(u)) J\sigma^{-1}(d(w))$ $= \{0\},\$ For all $u, v, w \in J$. By Lemma (2.5), we get either $d(u) - \sigma(u) = 0$ or d(w) = 0, for all $u, w \in J$. if d(w) = 0, for all $w \in J$, then by using lemma (2.7), we get d = 0 on R. if $d(u) - \sigma(u) = 0$, for all $u \in J$, then relation (1) implies that $\sigma(u) d(v) = 0$, for all $u, v \in J$. Now replace u by uw, to get $\sigma(u) \sigma(w)$ d(v) = 0, for all $u, v, w \in J$. that is, $uw\sigma^{-1}(d(v)) = 0$, for all $u.w.v \in J.$ and hence $uJ\sigma^{-1}(d(v)) = \{0\}$, for all $u, v \in J$.

Thus by lemma (2.5), we get either u = 0 or d(v) = 0, for all $u, v \in J$, But since J is a nonzero Jordan ideal of R, we find that d(v) = 0, for all $v \in J$ and hence by Lemma (2.7), we get the required result.

(ii) If d acts as an anti-homomorphism on J, then we have $d(uv) = d(u) \sigma(v) + \sigma(u) d(v) = d(v)$ d(u), for all $u, v \in J..(2)$ Replacing u by uv in (2), we get $(d(u) \sigma(v) + \sigma(u) d(v)) \sigma(v) + \sigma(u)$ $\sigma(v) d(v) = d(v)$

 $(d(u) \sigma(v) + \sigma(u) d(v))$ Using (2), the above relation yields that. $\sigma(u) \sigma(v) d(v) = d(v) \sigma(u) d(v), \text{ for all } u, v \in J \dots(3)$

Again replace u by wu, $w \in J$, in (3), we get $\sigma(w) \sigma(u) \sigma(v) d(v) = d(v) \sigma(w) \sigma(u)$ d(v), for all u,v,w $\in J$..(4) in view of (3), the relation (4) yields that $[d(v), \sigma(w)] \sigma(u) d(v) = 0$, for all $u, v, w \in J$, That is, $\sigma^{-1}([d(v), \sigma(w)]) u\sigma^{-1}(d(v)) =$ 0, for all $u, v, w \in J$ and hence $\sigma^{-1}([d(v), \sigma(w)]) J\sigma^{-1}(d(v))$ $= \{0\}$, for all $v, w \in J$. By using lemma (2.5), we get either $[d(v), \sigma(w)] = 0$ or d(v), for all $v, w \in J$. if d(v) = 0, for all $v \in J$, then by using lemma (2.7), we get d = 0 on R. if $[d(v), \sigma(w)] = 0$, for all $v, w \in J$. Replacing v by vw in the above relation, we get $0 = [d(vw), \sigma(w)]$ $= [d(v) \sigma(w) + \sigma(v) d(w), \sigma(w)]$ $= [d(v) \sigma(w), \sigma(w)] + [\sigma(v) d(w),$ $\sigma(w)$] $= \sigma(v) [d(w), \sigma(w)] + [\sigma(v), \sigma(w)]$ d(w)for all $v, w \in J$, this implies that $\sigma(v) [d(w), \sigma(w)] + [\sigma(v), \sigma(w)] d(w)$ = 0 for all v,w \in J.. (5) Replace v by v_1v , $v_1 \in J$ in (5), and using (5), to get $[\sigma(v_1), \sigma(w)] \sigma(v) d(w) = 0$, for all $v,v_1,w \in J$. That is $[v_1,w] v\sigma^{-1}(d(w)) = 0$, for all $v,v_1,w \in J$. and hence $[v_1, w] J\sigma^{-1} (d(w)) = \{0\}$, for all $v_1, w \in J$. By lemma (2.5), we get either $[v_1,w] =$ 0 or d(w) = 0, for all $v_1, w \in J$. Now let $J_1 = \{ w \in J/[v_1,w] = 0 , \text{ for all } v_1 \in J \}$ and $J_2 = \{ w \in J/d(w) = 0 \}$ Clearly, J_1 and J_2 are additive proper subgroups of J whose union is J. Since a group can not be the set theoretic union of two proper subgroups.

hence $J=J_1$ or $J=J_2$

if $J=J_1$, that is, $[v_1,w] = 0$, for all $v_1,w \in J$. if follows that J is commutative, then by Lemma (2.6), we get $J \subseteq Z(R)$, which is a contradiction. On the other hand if $J=J_2$, we get then by lemma (2.7), the required result.

Now we introduce the following new definition which a generalize of definition 2.1

Definition 2.9:

Let J be a Jordan ideal of a ring R, An additive mapping $F:R \rightarrow R$ is called a generalized $(\sigma,\tau) - (J,R)$ associated with d, where $\sigma,\tau:R \rightarrow R$ are two mappings of R, if there exists a $(\sigma,\tau) - (J,R)$ derivation d:R $\rightarrow R$ such that

$$\label{eq:F(xy) = F(x) } \begin{split} F(xy) &= F(x) \ \sigma(y) + \tau(x) \ d(y) \ , \ for \ all \\ x \in J, \ y \in R. \end{split}$$

Example 2.10:

Let R= $\begin{cases} \begin{pmatrix} x & y \\ z & w \end{pmatrix} : x, y, z, w \in N, \text{ where N is the ring of integers} \end{cases}$

be a ring of 2x2 matrices with respect to the usual addition and multiplication.

Let
$$J = \left\{ \begin{pmatrix} x & y \\ y & x \end{pmatrix} : x, y \in N \right\}$$

it is clear that J is a Jordan ideal of R.

Let
$$F:R \rightarrow R$$
, defined by
 $F\begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} x & 0 \\ z & 0 \end{pmatrix}$,
For all $\begin{pmatrix} x & y \\ z & w \end{pmatrix} \in R$, and let $d:R \rightarrow R$

defined by
$$d\begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} x & 0 \\ z & 0 \end{pmatrix}$$
, for
all $\begin{pmatrix} x & y \\ z & w \end{pmatrix} \in \mathbf{R}$.

Suppose that $\sigma,\tau:R \rightarrow R$ are two mappings such that

$$\sigma \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} , ,$$

$$\tau \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} 0 & y \\ 0 & w \end{pmatrix} , \text{ for all}$$

$$\begin{pmatrix} x & y \\ z & w \end{pmatrix} \in \mathbf{R} .$$

it is clear that d is a (σ,τ) – (J,R) derivation .

Then F is a generalized $(\sigma, \tau) - (J,R)$ derivation associated with d.

We generalize the theorem 2.8 as follows:

Theorem 2.11:

Let R be a 2-torsion-free prime ring, J a nonzero Jordan ideal and a subring of R. Suppose that σ is an automorphism of R and F:R \rightarrow R is a generalized (σ , σ) – (J,R) derivation associated with a derivation d.

(i) if F acts as a homomorphism on J, then either d = 0 on R J \subseteq Z(R).

(ii) if F acts as anti-homomorphism on J, then either d = 0 on R or $J \subseteq Z(R)$.

Proof:

Suppose that $J \not\subseteq Z(R)$ (i) if F acts as a homomorphism on J, then we have $F(uv) = F(u) \sigma(v) + \sigma(u)d(v) = F(u)$ F(v), for all $u, v \in J$...(1) Replacing v by vw, $w \in J$ in (1), we get. $F(u) \sigma(v) \sigma(w) + \sigma(u) (d(v) \sigma(w) + \sigma(v) d(w))$

 $= F(u) (F(v) \sigma(w) +$ $\sigma(v) d(w)$ using (1), the above relation yields that $(F(u) - \sigma(u)) \sigma(v) d(w) = 0$, for all $u.v.w \in J.$ that is, $\sigma^{-1}(F(u) - \sigma(u)) v \sigma^{-1}(d(w)) =$ 0, for all $u, v, w \in J$. and hence $\sigma^{-1}(F(u) - \sigma(u)) J\sigma^{-1}(d(w))$ $= \{0\}$, for all $u, v, w \in J$. hence by Lemma (2.5), we get either $F(u) - \sigma(u) = 0$ or d(w) = 0, for all $u.w \in J.$ if d(w) = 0, for all $w \in J$, then by using lemma (2.7), we get d = 0 on R. if $F(u) - \sigma(u) = 0$, for all $u \in J$, then relation (1) implies that $\sigma(u) d(v) = 0$, for all $u, v \in J$. Now replace u by uw, to get $\sigma(u) \sigma(w) d(v) = 0$, for all $u, v, w \in J$. This implies that $uw\sigma^{-1}(d(v)) = 0$ and hence $uJ\sigma^{-1}(d(v)) = \{0\}$, for all $u, v \in J$. Thus by lemma (2.5), we get either u =0 or d(v) = 0, for all $u, v \in J$. But since J is a nonzero Jordan ideal of R, we find that d(v) = 0, for all $v \in J$ and hence by Lemma (2.7), we get the required result. (ii) If F acts as an anti-homomorphism on J, then we have $F(uv) = F(u) \sigma(v) + \sigma(u) d(v) = F(v)$ F(u), for all $u, v \in J..(2)$ Replacing u by uv in (2), we get $(F(u) \sigma(v) + \sigma(u) d(v)) \sigma(v) + \sigma(u)$ $\sigma(v) d(v)$ = F(v) $(F(u) \sigma(v) + \sigma(u) d(v))$ Using (2), the above relation yields that. $\sigma(u) \sigma(v) d(v) = F(v) \sigma(u) d(v)$, for all $u, v \in J$ (3)

Again replace u by wu, $w \in J$, in (3), to obtain $\sigma(w) \sigma(u) \sigma(v) d(v) = F(v) \sigma(w) \sigma(u)$ d(v). for all $u, v, w \in J$(4) in view of (3), the relation (4) yields that $[F(v), \sigma(w)] \sigma(u) d(v) = 0$, for all $u,v,w \in J$, This implies that is, $\sigma^{-1}([F(v), \sigma(w)])$ $u\sigma^{-1}(d(v)) = 0$. for all $u, v, w \in J$ and hence σ^{-1} ([F(v), $\sigma(w)$]) $J\sigma^{-1}(d(v)) = \{0\}$, for all $v, w \in J$. By using Lemma (2.5), we get either $[F(v), \sigma(w)] = 0$ or d(v), for all $v, w \in J$. if d(v) = 0, for all $v \in J$, then by using Lemma (2.7), we get d = 0 on R. if $[F(v), \sigma(w)] = 0$, for all $v, w \in J$. Replacing v by vw in the above relation, we get $0 = [F(vw), \sigma(w)]$ $= [F(v) \sigma(w) + \sigma(v) d(w), \sigma(w)]$ $= [F(v) \sigma(w), \sigma(w)] + [\sigma(v) d(w),$ $\sigma(w)$] $= \sigma(v) [d(w), \sigma(w)] + [\sigma(v), \sigma(w)]$ d(w)for all $v, w \in J$, this implies that $\sigma(v) [d(w), \sigma(w)] + [\sigma(v), \sigma(w)] d(w)$ = 0for all $v, w \in J$(5) Now, replace v by v_1v , $v_1 \in J$ in (5), and using (5), to get $[\sigma(v_1), \sigma(w)] \sigma(v) d(w) = 0$, for all $v,v_1,w \in J$. That is, $[v_1,w] v \sigma^{-1}(d(w)) = 0$, for all $v, v_1, w \in J$. and hence $[v_1, w] J\sigma^{-1} (d(w)) = \{0\}$, for all $v_1, w \in J$. By lemma (2.5), we get either $[v_1,w] = 0$ or d(w) = 0, for all $v_1, w \in J$. Now let $J_1 = \{w \in J/[v_1, w] = 0, \text{ for all } \}$ $v_1 \in J$

and

 $J_2 = \{w \in J/d(w) = 0 \}$ Clearly, J₁ and J₂ are additive proper subgroups of J whose union is J.

Since a group can not be the set theoretic union of two proper subgroups, hence $J=J_1$ or $J=J_2$.

if $J=J_1$, that is, $[v_1,w] = 0$, for all $v_1,w \in J$.

if follows that J is commutative, so by Lemma (2.6), we get $J \subseteq Z(R)$, which is a contradiction on the other hand if $J=J_2$,

then by lemma (2.7), we get the required result.

In the following theorem our objective is to extend theorem 2.8 to a $(\sigma,\tau)-(J,R)$ derivation of a 2-torsion-free prime ring R which acts as a homomorphism on a Jordan ideal J of R.

Theorem 2.12:

Let R be a 2-torsion-free prime ring, J a nonzero Jordan ideal and a subring of R. Suppose that σ,τ are automorphism of R and d:R \rightarrow R is a $(\sigma,\tau) - (J,R)$ derivation. If d acts as a homomorphism on J, then d = 0 on R.

Proof:

Since d acts as a homomorphism on J, then

we have

 $d(uv) = d(u) \sigma(v) + \tau(u) d(v) = d(u) d(v),$

for all $u, v \in J$ (1) Replacing v by vw, $w \in J$ in (1), we get $d(u) \sigma(v) \sigma(w) + \tau(u) (d(v) \sigma(w) + \tau(v) d(w))$

= d(u)

 $(d(v) \ \sigma(w) + \tau(v) \ d(w))$

using (1), the above relation yields that $(d(u) - \tau(u)) \tau(v) d(w) = 0$, for all $u,v,w \in J$, This implies that $\tau^{-1} (d(u) - \tau(u))v \tau^{-1}$

 $^{1}(d(w)) = 0$,

for all $u,v,w \in$ and hence

 $\tau^{\text{-1}}(d(u)-\tau(u))$ $J\tau^{\text{-1}}(d(w))=\{0\}$, for all $u,w\!\in\!J.$

By using Lemma (2.5), we get either $d(u) - \tau(u) = 0$ or d(w) = 0, for all $u, w \in J$. if d(w) = 0, for all $w \in J$, then by lemma (2.7), we get d = 0 on R. if $d(u) - \tau(u) = 0$, for all $u \in J$, we get $d(u) = \tau(u)$, for all $u \in J$.

Then the relation (1) implies that $\begin{array}{l} d(u) \ \sigma(v) + d(u) \ d(v) = d(u) \ d(v), \ for \\ all \ u,v \in J, \\ and this implies that \\ d(u) \ \sigma(v) = 0, \ for \ all \ u,v \in J. \\ Replacing \ v \ by \ vw, \ w \in J, \ we \ get \\ d(u) \ \sigma(v) \ \sigma(w) = 0, \ for \ all \ u,v,w \in J, \\ that \ is, \ \sigma^{-1} \ (d(u)) \ vw \ = 0, \ for \ all \\ u,v,w \in J, \ and \ hence \\ \sigma^{-1} \ (d(u)) \ Jw = \{0\}, \ for \ all \ u,v,w \in J. \end{array}$

Hence by lemma (2.5), we get either d(u) = 0 or w = 0, for all $u, w \in J$.

Since J is a nonzero Jordan ideal of R we have d(u) = 0, for all $u \in J$, then by lemma a (2.7), we get d = 0 on R.

§ 3 Left (σ, τ) – (J,R) Derivations:

We will study the behaviour of a left $(\sigma,\tau) - (J,R)$ derivation which acts either as a homomorphism or as an anti-homomorphism on a nonzero Jordan ideal and a subring J of a 2torsion-free prime ring.

Now we introduce the following new definition which a generalize of definition 1.12

Definition 3.1:

Let J be a Jordan ideal of a ring R. An additive mapping $\delta: \mathbb{R} \rightarrow \mathbb{R}$ is called a left $(\sigma, \tau) - (J, \mathbb{R})$ derivation where $\sigma, \tau: \mathbb{R} \rightarrow \mathbb{R}$ are two mappings of R, if

$$\begin{split} \delta(xy) &= \sigma(x) \ \delta(y) + \tau(y) \ \delta(x) \ , \ for \ all \\ x &\in J, \ y &\in R \ and \ we \ say \ that \ \delta \ is \ a \\ Jordan \ left \ (\sigma, \tau) - (J, R) \ derivation \ if \\ \delta(x^2) &= \sigma(x) \ \delta(x) + \tau(x) \ \delta(x) \ , \ for \ all \\ x &\in R. \end{split}$$

Example 3.2:

Let
$$R = \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix}$$
: $x, y \in N$

where N is the ring of integers be a ring of 2x2 matrices with respect to the usual addition and multiplication.

Let
$$J = \left\{ \begin{pmatrix} 0 & -y \\ 0 & 0 \end{pmatrix} : y \in N \right\}$$

It is clear that J is a Jordan ideal of R.

Let
$$\delta: \mathbb{R} \to \mathbb{R}$$
, defined by
 $\delta \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix}$, for all
 $\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} \in \mathbb{R}$.

and let $\sigma, \tau: R \rightarrow R$ be two mappings, such that

$$\sigma \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} x & -y \\ 0 & 0 \end{pmatrix}, \tau \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -x \\ 0 & 0 \end{pmatrix}$$

For all
$$\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} \in \mathbf{R}$$
.

Then δ is a left $(\sigma, \tau) - (J, R)$ derivation.

The following lemmas help us to prove the main theorems of this section:

Lemma 3.3: [8]

Let R be a 2-torsion-free ring, J a Jordan ideal and a subring of R. Suppose that σ is an endomorphism of R and $\delta: R \rightarrow R$ is an additive mapping satisfying $\delta(u^2) = 2\sigma(u) \delta(u)$, for all $u \in J$, then

(i) $\delta(uv + vu) = 2\sigma(u) \delta(v) + 2\sigma(v) \delta(u)$ for all $u, v \in J$.

(ii)
$$\delta(uvu) = \sigma(u^2) \ \delta(v) + 3 \ \sigma(u) \ \sigma(v)$$

 $\delta(u) - \sigma(v) \ \sigma(u) \ \delta(u),$
for all $u, v \in J$.
(iii) $\delta(uvw + wvu) = (\sigma(u) \ \sigma(w) + \sigma(w) \ \sigma(u)) \ \delta(w)$
 $+ 3 \ \sigma(u) \ \sigma(v) \ \delta(w) + 3 \ \sigma(w) \ \sigma(v)$
 $\delta(u)$
 $- \sigma(v) \ \sigma(u) \ \delta(w) - \sigma(v) \ \sigma(w)$
 $\delta(u),$
for all $u, v \in J$.
(iv) $[\sigma(u), \ \sigma(v)] \ \sigma(u) \ \delta(u) = \sigma(u) \ [\sigma(u), \ \sigma(v)] \ \delta(u),$
for all $u, v \in J$.
(v) $[\sigma(u), \ \sigma(v)] \ (\delta(uv) - \sigma(u) \ \delta(u) - \sigma(v) \ \delta(u) - \sigma(v) \ \delta(u) = 0$
for all $u, v \in J$.

Lemma 3.4: [8]

Let R be a 2-torssion-free prime ring, J a Jordan ideal and a subring of R. Suppose that σ is an endomorphism of R and $\delta: R \rightarrow R$ is an additive mapping satisfying

 $\delta(u^2) = 2\sigma(u) \; \delta(u) \; , \; \text{for all} \; u \! \in \! J,$ then

(i) $[\sigma(u), \sigma(v)] \; \delta([u,v]) = 0$, for all $u, v \! \in \! J.$

 $\begin{array}{ll} (ii) & (\sigma(u^2) \ \sigma(v) \ - \ 2 \sigma(u) \ \sigma(v) \\ \sigma(u) \ \sigma(u^2)) \ \delta(v) = 0 \ , \end{array}$

for all $u, v \in J$.

Lemma 3.5: [8]

Let R be a 2-torssion-free prime ring, J a Jordan ideal and a subring. Suppose that σ is an endomorphism of R and $\delta: R \rightarrow R$ is an additive mapping satisfying

 $\delta(u^2)=2\sigma(u)\;\delta(u)\;,\;\text{for all}\;u\!\in\!J,$ then

(i)
$$\delta(u^2v) = \sigma(u^2) \ \delta(v) + (\sigma(u) \ \sigma(v) + \sigma(v) \ \sigma(v)) \ \delta(u)$$

$$+ \ \sigma(u) \ \delta([u,v]) \ , \ for \ all u,v \in J.$$

(ii)
$$\delta(vu^2) = \sigma(u^2) \delta(v) + (3\sigma(v) \sigma(u) - \sigma(u) \sigma(v)) \delta(u)$$

 $-\,\sigma(u)\,\,\delta([u,v])$, for all

u,v∈J.

Lemma 3.6: [8]

Let R be a 2-torssion-free prime ring, J a Jordan ideal and a subring of R. Such that $[u,v]^2 = 0$, for all $u,v \in J$. Then J is commutative and hence central.

In the next theorem, we attempt to generalize the above mentioned result for Jordan left (σ,τ) - (J,R) derivation which acts a Jordan ideal and a subring J of R.

Theorem 3.7: [8]

Let R be a 2-torssion-free prime ring, J a Jordan ideal and a subring. Suppose that σ is an automorphism of R and $\delta: R \rightarrow R$ is an additive mapping satisfying $\delta(u^2) =$ $2\sigma(u) \ \delta(u)$ for all $u \in J$, then either $J \subseteq Z(R)$ or $\delta(J) = \{0\}$.

Corollary 3.8: [8]

Let R be a 2-torssion-free prime ring, if $\delta: R \rightarrow R$ is a nonzero additive mapping satisfying $\delta(x^2) = 2x\delta(x)$ for all $x \in R$, then R is commutative.

Now, let us take the following theorem: Theorem 3.9: [8]

Let R be a 2-torssion-free prime ring, J a Jordan ideal and a subring of R. Suppose that σ is an automorphism of R and $\delta: R \rightarrow R$ is a left $(\sigma, \sigma) - (J, R)$ derivation

(i) if δ acts as a homomorphism on J, then $\delta = 0$ on R.

(ii) if δ acts as anti-homomorphism on J, then $\delta = 0$ on R.

In the following theorem we will extend the above theorem to a left $(\sigma,\tau) - (J,R)$ derivation of a 2-torsion-free prime ring R which acts as a homomorphism or as an anti-

homomorphism on a nonzero Jordan ideal and a subring J of R.

Theorem 3.10:

Let R be a 2-torssion-free prime ring, J a nonzero Jordan ideal and a subring of R. Suppose that σ, τ is are automorphism of R and $\delta: R \rightarrow R$ is a left $(\sigma, \tau) - (J, R)$ derivation

- (i) if δ acts as a homomorphism on J, then either $\delta = 0$ on R or $J \subseteq Z(R)$.
- (ii) if δ acts as anti-homomorphism on J, then either $\delta = 0$ on R or $J \subseteq Z(R)$.

Proof:

Suppose that $J \not\subseteq Z(R)$.

(i) if δ acts as a homomorphism on J, then we have $\delta(uv) = \delta(u) \ \delta(v) = \sigma(u) \ \delta(v) + \tau(v)$ δ(u), for all $u, v \in J$ (1) replacing u by uv in (1), we get $(\sigma(u) \ \delta(v) + \tau(v) \ \delta(u)) \ \delta(v) = \sigma(u)$ $\sigma(v) \delta(v) + \tau(v) \delta(u) \delta(v)$, for all $u, v \in U$. This implies that $\sigma(u) \delta(v) \delta(v) = \sigma(u) \sigma(v) \delta(v)$, for all $u, v \in J$, This implies that $\sigma(u) (\delta(v) - \sigma(v))$ $\delta(\mathbf{v}) = 0$, for all $u, v \in J$ and hence $\sigma(J) (\delta(v) - \sigma(v)) \delta(v) =$ $\{0\}$, for all $v \in J$. Since σ is an automorphism of R and J is a nonzero Jordan ideal of R, $\sigma(J)$ is also a nonzero Jordan ideal of R. Application of Lemma (2.4) yields that $(\delta(v) - \sigma(v)) \delta(v) = 0$, for all $v \in J$ and hence $\delta(v^2) = \sigma(v) \delta(v)$, for all $v \in J$. Since δ is a left $(\sigma, \tau) - (J, R)$ derivation, we have

 $\begin{aligned} \sigma(v) \, \delta(v) + \tau(v) \, \delta(v) &= \sigma(v) \, \delta(v) ,\\ \text{for all } v \in J,\\ \text{this implies that } \tau(v) \, \delta(v) &= 0 , \text{ for all } v \in J,\\ \text{on linearzing the latter relation, we find that}\\ 0 &= \tau(v + u) \, \delta(v + u)\\ &= (\tau(v) + \tau(u)) \, (\delta(v) + \delta(u))\\ &= \tau(v) \, \delta(v) + \tau(v) \, \delta(u) + \tau(u) \, \delta(v)\\ &+ \tau(u) \, \delta(u)\\ &= \tau(v) \, \delta(u) + \tau(u) \, \delta(v) , \text{ for all } u, v \in J, \dots ...(2) \end{aligned}$ Replacing u by vu in (2), we get $0 = \tau(v) \, \delta(v) \, \delta(u) + \tau(v) \, \tau(u) \, \delta(v)\\ &= \tau(v) \, \delta(v) \, \delta(u) + \tau(v) \, \tau(u) \, \delta(v)\\ &= \tau(v) \, \tau(u) \, \delta(v) , \text{ for all } u, v \in J, \end{aligned}$

 $= t(v) t(u) b(v), \text{ for all } u, v \in J,$

That is, $vu\tau^{-1}(\delta(v)) = 0$, for all $u, v \in J$,

and hence $vJ\tau^{-1}~(\delta(v))=\{0\}$, for all $u,v\!\in\!J.$

By Lemma (2.5), we get either v = 0 or $\delta(v) = 0$, for all $v \in J$.

Since J is a nonzero Jordan ideal of R and τ is an automorphism of R, we get

 $\delta(v)=0$, for all $v\!\in\!J.$

Replacing v by vor, $r \in R$ in the above relation, we have

 $0 = \delta(vor) = \delta(vr + rv)$ = $\delta(vr) + \delta(rv)$ = $\sigma(v) \ \delta(r) + \tau(r)$ $\delta(v) + \sigma(r) \ \delta(v) + \tau(v) \ \delta(r)$ = $\sigma(v) \ \delta(r) + \tau(v)$ $\delta(r)$

 $= (\sigma(v) + \tau(v)) \ \delta(r) ,$ for all $v \in J$ and $r \in R$.

Hence we get $(\sigma(J) - \tau(J)) \delta(r) = \{0\}$, for all $r \in J$.

Since σ,τ are automorphisms of R and J is a nonzero Jordan ideal of R, we get $\sigma(J)$ and $\tau(J)$ are a nonzero Jordan ideals of R, and hence we get $\sigma(J) + \tau(J)$ is a

nonzero Jordan ideal of R, thus by lemma (2.4) we get $\delta(\mathbf{r}) = 0$, for all $r \in R$. this implies that is, $\delta = 0$ on R. (ii) If δ acts as an anti-homomorphism on J, then we have $\delta(uv) = \delta(v) \ \delta(u) = \sigma(u) \ \delta(v) + \tau(v)$ $\delta(u)$. for all $u, v \in J$ (3) Replacing v by uv in (3), we get $\delta(uv) \ \delta(u) = \sigma(u) \ \delta(v) \ \delta(u) + \tau(v)$ $\delta(u) \delta(u)$ $= \sigma(u) \delta(v) \delta(u) +$ $\tau(u) \tau(v) \delta(u)$, for all $u, v \in J$, or equivalently. $\tau(v) \, \delta(u) \, \delta(u) = \tau(u) \, \tau(v) \, \delta(u)$, for all $u, v \in J \dots (4)$ Replacing v by tv, $t \in J$ in (4), we get $\tau(t) \tau(v) \delta(u) \delta(u) = \tau(u) \tau(t) \tau(v)$ $\delta(u)$. for all $u, v, t \in J$ (5) in view of (4), the relation (5) yields that $[\tau(u), \tau(t)] \tau(v) \delta(u) = 0$, for all $u,v,t \in J$. This implies that $[u,t] v \tau^{-1}(\delta(u)) =$ 0, for all $u, v, t \in J$ and hence [u,t] J $\tau^{-1}(\delta(u)) = \{0\}$, for all $u, t \in J$ By Lemma (2.5), we get either [u,t]= 0 or $\delta(\mathbf{u}) = 0$, for all $\mathbf{u}, \mathbf{t} \in \mathbf{J}$. Now let $J_1 = \{u \in J / [u,t] = 0, \text{ for all }$ $t \in J$ and $J_2 = \{ u \in J / \delta(u) = 0 \}$

Clearly, J_1 and J_2 are additive proper subgroups of J whose union is J.

Since a group can not be the set theoretic union of two proper subgroups, hence $J = J_1$ or $J = J_2$.

If $J = J_1$, that is, [u,t] = 0, for all $u,t \in J$,

This yields that J is commutative, and hence by lemma (2.6) $J \subset Z(R)$, which is a contradiction.

Hence, we have remaining possibility that $\delta(\mathbf{u}) = 0$, for all $\mathbf{u} \in \mathbf{J}$. Replace u by uor , $r \in R$, in the above relation, we get $0 = \delta(uor) = \delta(ur + ru) = \delta(ur) + \delta($ $\delta(ru)$ $= \sigma(u) \delta(r) + \tau(r) \delta(u)$ $+ \sigma(r) \delta(u) + \tau(u) \delta(r)$ $= \sigma(u) \delta(r) + \tau(u) \delta(r)$ $= (\sigma(u) + \tau(u)) \delta(r)$, for all $u \in J$ and $r \in R$ Hence, we have $(\sigma(J) - \tau(J)) \delta(r) =$ $\{0\}$, for all $r \in \mathbb{R}$. By a similar way in part (i), we can get our result.

REFERENCES:

1. Ashraf, M. 2005. On left (θ, ϕ) – derivations of prime rings. Archivum Mathematicum (Vron). Tomus 41:157 - 166.

- 2. Bell, H. E. and Kappe. L. C. 1989. Rings in which derivations satisfy certain algebraic conditions Acta Math. Hungar 53: 339 – 346.
- 3. Herestein, I. N. 1965. Topics in ring theory. The University of Chicago Press, ed. No.1, Chicago, PP. 74.
- 4. Herestein, I. N. 1976. Rings with involution. The University of Chicago Press, ed. No.2, Chicago, PP. 34.
- 5. HAMDI,A. D. 2007. (σ,τ) Derivations On prime rings. M. Sc. Thesis, Baghdad University.
- 6. Jung, Y. S. and Park. K. H. 2006. On generalized (α,β) – derivations and commutivity in prime rings. Bull Korean Math. Soc. 43: 10 -106.
- 7. Yengul, S. A. and Argac. N. A. 1994. On prime and semiprime rings with α – derivations. Turkish J. Math. 18: 280 – 284.
- 8. Zaid, S. M. A., Ashraf. M. and Ali. S. 2004. On Jordan ideals and left (θ, θ) – derivations in prime rings. IJMMS 37: 1957 - 1964.

مشتقات – $(J,R) = (\sigma,\tau)$ على مثالیات جوردان

*الجامعة التكنولوجية الخلاصة:

لتكن R حلقة تجميعية مركز ها (Z(R). نتائج Bell و Kappe المعروفة والمتعلقة بالمشتقات على lpha الحلقات الاولية درست بتوسع من قبل العديد من الباحثين، بعض هؤلاء الباحثين عمموا هذه النتائج لمشتقة - lphaمثلYenigual و Arguc والبعض الاخر عمموا هذه النتائج لمشتقة - (o, t) مثل M.Asharf.

ان الهدف الرئيسي لهذا البحث هو در اسة تأثير المشتقة – (J,R) – (σ,τ) والمشتقة من اليسار – جوردان. (σ,τ) – (J,R) على مثاليات جوردان.