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Abstract:  
 Let R be an associative ring with center Z(R). A well known results proved by 

Bell and kappe concering derivations in prime rings have been extensively studied by 

many authors, several of these outhers extended these result for - derivation like 

Yenigual and Argac and some of them extended these results for a () – derivations 

like M. Asharf. 

 The main purpose of this paper is to study the action of a () – (J,R) – 

derivation and a left () – (J,R) – derivation and () – (J,R) – derivation on Jordan 

ideals. 

  

Keyword: Z(R): center of R, R: prime ring, d: derivation,  left derivation, F: 

generalized. 

 

§ 1 Basic Concepts:  

Definition 1.1: [3] 
 A ring R is called a prime if for 

any a,bR,  

aRb = {0} , implies that either a 

= 0 or b = 0.  

Definition 1.2: [4] 
A ring R is called a semiprime 

ring if for any aR,  

aRa = {0} , implies that a = 0.  

 

Definition 1.3: [3] 
 Let R be a ring. Define a Jordan 

product on R as follows  

aob = ab + ba , for all a,bR.  

Definition 1.4: [3] 
 An additive subgroup A R is 

called a Jordan subring of R if a,bA. 

implies that aob = ab + baA.  

Definition 1.5: [3] 
 Let A be a Jordan subring of R 

and J A is an additive subgroup such 

that aA, bJ implies that ab + 

baJ, then J is called a Jordan ideal of 

A.  

Definition 1.6: [3] 
 A ring R is said to be n-torsion-

free, where n 0 is an integer such that 

whenever na = 0 with aR, then a = 0. 

Definition 1.7: [3] 
 Let R be a ring. Define a lie 

product [ , ] on R as follows.  

[x,y] = xy – yx , for all x,yR. 

Properties 1.8: [8] 
 Let R be a ring, then for all 

x,y,zR, we have  

(1) [x,yz] = y[x,z] + [x,y]z 

(2) [xy,z] = x[y,z] + [x,z]y 

(3) [x + y,z] =[x,z] + [y,z] 

(4) [x,y + z] = [x,y] + [x,z] 

Definition 1.9: [4] 
 Let R be a ring. An additive 

mapping d:RR is called a derivation 

if d(xy) = d(x)y + xd(y), for all x,yR 

and we say that d is a Jordan derivation 

if d(x2) = d(x)x + xd(x) , for all xR.  
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Definition 1.10: [8]   
 Let R be a ring. An additive 

mapping :RR is called a left  

derivation if  

(xy) = x(y) + y(x), for all x,yR 

and we say that  is a Jordan left 

derivation if  

(x2) = 2x(x) for all xR.  

Definition 1.11: [8]   
 Let R be a ring. An additive 

mapping d:RR is called a () – 

derivation where :RR are two 

mappings of R, if d(xy) = d(x) (y) + 

(y) d(y), for all x,yR, and we say 

that d is a Jordan () – derivation if  

d(x2) = d(x) (x) + (x) d(x) ,    for all 

xR.  

Definition 1.12: [8]   
 Let R be a ring. An additive 

mapping :RR is called a left () – 

derivation where :RR are two 

mapping of R,  

if(xy) = (x) (y) + (y) (x), for all 

x,yR and we say that  is a Jordan 

left () – derivation  

if (x2) = (x) (x) + (x) (x) , for all 

xR.  

Definition 1.13: [6]   
 Let R be a ring. An additive 

mapping F:RR is called a 

generalized () derivation associated 

with d, where :RR are two 

mappings of R, if there exists a () – 

derivation d:RR such that F(xy) = 

F(x) (y) + (x) d(y), for all x,yR. 

§ 2 () – (J,R) – Derivations:  
In this section first we will 

extend A.D. HAMDI, [5, Theorem 

2.2.6] for a () - (J,R) derivation 

which acts as a homomorphism or as 

an anti-homomorphism on a nonzero 

Jordan ideal and a subring J of a 2-

torsion-free prime ring R, second we 

will generalize the above extension for 

a generalized () - (J,R) derivation. 

Finally we will extend the above result 

for () - (J,R) derivation which acts 

as a homomorphism on a nonzero 

Jordan ideal and a subring J of a 2-

torsion-free orime ring R.  

Now we introduce the 

following new definition which a 

generalize of definition 1.11.   

Definition 2.1:  
 Let J be a Jordan ideal of a ring 

R. An additive mapping d:RR is 

called a() – (J,R) derivation where 

:RR are two mappings of R, if  

d(xy) = d(x) (y) + (x) d(y), for all 

xJ, yR,  

and we ay that d is a Jordan () – 

(J,R) derivation if  

d(a2) = d(a) (a) + (a) d(a) for all 

aR. 

Example 2.2:  
 Let R be the ring of all 2x2 

materices over commutative ring S of 

characteristic two.  

Let J = 

















Sb,a:

ab

ba
 

It is clear that J is a Jordan ideal of R. 

Define  

d:RR, by d 






 









0c

b0

dc

ba
, 

for all R
dc

ba








  

Let :RR be two mappings, such 

that  




































dc

ba

dc

ba
,

dc

ba

dc

ba

, 

For all  R
dc

ba
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Then d is () – (J,R) – derivation.   

 The following lemmas help us 

to prove the main theorems of this 

section: 

Lemma 2.3: [8] 
If R is a ring, J a nonzero 

Jordan ideal of R, then  

2[R, R] J J and 2J[R, R] J. 

Lemma 2.4: [8] 
Let R be a prime ring, J a 

nonzero Jordan ideal of R. if aR and 

aJ = {0} (or Ja = {0}) , then a = 0 . 

Lemma 2.5: [8] 
Let R be a 2-trosion-free prime 

ring, J a nonzero Jordan ideal of R. if 

aJb = {0} then a = 0 or b = 0. 

Lemma 2.6: [8]  
Let R be a 2-trosion-free prime 

ring, J a nonzero Jordan ideal of R. if J 

is a commutative Jordan ideal, then J 

  Z(R). 

Lemma 2.7:  
 Let R be a 2-torsion-free prime 

ring, J a nonzero Jordan ideal and a 

subring of R. Suppose that are 

automorphisms of R. if R admits a 

() – (J,R) derivation d such that  

d(J) = {0} , then   d = 0 or J Z(R). 

Proof: 
We have d(u) = 0, for all uJ. This 

yields that d(uor) = 0, for all uJ and 

rR. Now using the fact that d(u) = 0, 

the above expression yields that  

(u) d(r) + d(r) (u) = 0, for all 

uJ and rR …(1) 

Replacing r by vr, vJ in (1) 

and using (1), we get  

(u) d(vr) + d(vr) (u) = 0 

(u) [d(v) (r) + (v) d(r)] + 

[d(v) (r) + (v) d(r)] (u) =0 

(u) (v) d(r) (v) d(r) (u) = 0 

(u) (v) d(r) (v) (u) d(r) = 0 

(u) (v) (v) (u)) d(r) = 0 

(u) o (v) d(r) = 0, for all u,vJ, 

rR. 

Hence [u o v]-1 (d(r)) = 0 , for all 

u,vJ and rR. 

This implies that J-1 (d(r)) = {0}, for 

all u,vJ and rR. 

Hence by lemma (2.4), we get  

d(r) = 0 , for all rR 

Thus d = 0 on R  

Now, we will prove the main 

theorems of this section. 

Theorem 2.8: 
 Let R be a 2-torsion-free prime 

ring, J a nonzero Jordan ideal and a 

subring of R. If that  is an 

automorphism of R and d:RR is a 

() – (J,R) derivation then  

(i) if d acts as a homomorphism on J, 

then either d = 0 on R or J Z(R). 

(ii) if d acts as an anti-homomorphism 

on J, then either d = 0 on R or 

J Z(R). 

Proof: 
Suppose that J Z(R).  

(i) if d acts as a homomorphism on J, 

then we have  

d(uv) =  d(u) (v) + (u)d(v) = d(u) 

d(v), for all u,vJ …(1) 

Replacing v by vw, wJ in (1), we 

get. 

d(u) (v) (w) + (u) (d(v) (w) + 

(v) d(w)) 

  = d(u) (d(v) (w) + (v) 

d(w)) 

Using (1), the above relation yields 

that  

(d(u) – (u)) (v) d(w) = 0 , for all 

u,v,wJ. 
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That is , -1 (d(u) – (u)) v-1 (d(w)) = 

0 , for all u,v,wJ. 

and hence -1 (d(u) – (u)) J-1 (d(w)) 

= {0},  

For all u,v,wJ. By Lemma (2.5), we 

get  

either d(u) – (u) = 0 or d(w) = 0 , for 

all u,wJ. 

if d(w) = 0 , for all wJ , then by using 

lemma (2.7) ,  

we get d = 0 on R.  

if d(u) – (u) = 0 , for all uJ, then 

relation (1) implies that (u) d(v) = 0 , 

for all u,vJ.  

Now replace u by uw, to get (u) (w) 

d(v) = 0 ,  

for all u,v,wJ.  

that is, uw-1 (d(v)) = 0 , for all 

u,w,vJ. 

and hence uJ-1(d(v)) = {0} , for all 

u,vJ. 

Thus by lemma (2.5), we get either u = 

0 or d(v) = 0 ,  

for all u,vJ, But since J is a nonzero 

Jordan ideal of R, we find that d(v) = 0 

, for all vJ and hence by Lemma 

(2.7), we get the required result.  

(ii) If d acts as an anti-homomorphism 

on J, then we have  

d(uv) = d(u) (v) + (u) d(v) = d(v) 

d(u), for all u,vJ..(2) 

Replacing u by uv in (2), we get  

(d(u) (v) + (u) d(v)) (v) + (u) 

(v) d(v) 

    = d(v) 

(d(u) (v) + (u) d(v)) 

Using (2), the above relation yields 

that.  

(u) (v) d(v) = d(v) (u) d(v), for all 

u,vJ ………(3)  

Again replace u by wu, wJ, in (3), 

we get  

(w) (u) (v) d(v) = d(v) (w) (u) 

d(v), for all u,v,wJ..(4) 

in view of (3), the relation (4) yields 

that  

[d(v), (w)] (u) d(v) = 0 , for all 

u,v,wJ, 

That is, -1([d(v), (w)]) u-1 (d(v)) = 

0 , for all u,v,wJ 

and hence -1 ([d(v), (w)]) J-1 (d(v)) 

= {0} , for all v,wJ. 

By using lemma (2.5), we get either  

[d(v), (w)] = 0 or d(v), for all v,wJ. 

if d(v) = 0 , for all vJ, then by using 

lemma (2.7),  

we get d = 0 on R . 

if [d(v), (w)] = 0, for all v,wJ. 

Replacing v by vw in the above 

relation, we get  

0 = [d(vw), (w)]  

   = [d(v) (w) + (v) d(w), (w)]  

   = [d(v) (w), (w)] + [(v) d(w), 

(w)]  

   = (v) [d(w), (w)] + [(v), (w)] 

d(w)  

for all v,wJ, this implies that  

(v) [d(w), (w)] + [(v), (w)] d(w) 

= 0 for all v,wJ.. (5) 

Replace  v by v1v, v1J in (5), and 

using (5), to get  

[(v1), (w)] (v) d(w) = 0 , for all 

v,v1,wJ.  

That is [v1,w] v-1(d(w)) = 0 , for all 

v,v1,wJ.  

and hence [v1,w] J-1 (d(w)) = {0}, for 

all v1,wJ.  

By lemma (2.5), we get either [v1,w] = 

0  

or d(w) = 0 , for all v1,wJ. 

Now let  

J1 = {wJ/[v1,w] = 0 , for all v1J} 

and  

J2 = {wJ/d(w) = 0 } 

Clearly, J1 and J2 are additive proper 

subgroups of J whose union is J.  

Since a group can not be the set 

theoretic union of two proper 

subgroups.    

hence J=J1 or J=J2  
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if J=J1 , that is, [v1,w] = 0 , for all 

v1,wJ.  

if follows that J is commutative, then 

by Lemma (2.6),  

we get J Z(R), which is a 

contradiction.  

On the other hand if  J=J2 , we get then 

by lemma (2.7), 

the required result.  

 Now we introduce the 

following new definition which a 

generalize of definition 2.1 

Definition 2.9: 
 Let J be a Jordan ideal of a ring 

R, An additive mapping F:RR is 

called a generalized () – (J,R) 

associated with d, where :RR are 

two mappings of R, if there exists a 

() – (J,R) derivation d:RR such 

that  

F(xy) = F(x) (y) + (x) d(y) , for all 

xJ, yR. 

Example 2.10: 
Let 

R=

















 integers of ring  theis N  whereN,   wz, y,  x,:

wz

yx

  

be a ring of 2x2 matrices with respect 

to the usual addition and 

multiplication.  

Let J=

















N y   x,:

xy

yx
  

it is clear that J is a Jordan ideal of R.  

Let F:RR, defined by 










wz

yx
F = 









0z

0x
 ,  

For all R
wz

yx








, and let d:RR 

defined by 








wz

yx
d = 









0z

0x
 , for 

all R
wz

yx








. 

Suppose that :RR are two 

mappings such that  











wz

yx
= 









00

0x
 , 











wz

yx
= 









w0

y0
 , for all 

R
wz

yx








. 

it is clear that d is a () – (J,R) 

derivation .  

Then F is a generalized () – (J,R) 

derivation associated with d.   

We generalize the theorem 2.8 as 

follows:  

Theorem 2.11: 
Let R be a 2-torsion-free prime 

ring, J a nonzero Jordan ideal and a 

subring of R. Suppose that  is an 

automorphism of R and F:RR is a 

generalized () – (J,R) derivation 

associated with a derivation d.  

(i) if F acts as a homomorphism on J, 

then either d = 0 on R J Z(R). 

(ii) if F acts as anti-homomorphism on 

J, then either d = 0 on R or 

J Z(R). 

Proof:  

Suppose that J Z(R) 

(i) if F acts as a homomorphism on J, 

then we have 

F(uv) =  F(u) (v) + (u)d(v) = F(u) 

F(v), for all u,vJ …(1) 

Replacing v by vw, wJ in (1), we 

get. 

F(u) (v) (w) + (u) (d(v) (w) + 

(v) d(w)) 
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  = F(u) (F(v) (w) + 

(v) d(w)) 

using (1), the above relation yields that  

(F(u) – (u)) (v) d(w) = 0 , for all 

u,v,wJ. 

that is , -1 (F(u) – (u)) v-1 (d(w)) = 

0 , for all u,v,wJ. 

and hence -1 (F(u) – (u)) J-1 (d(w)) 

= {0}, for all u,v,wJ. 

hence by Lemma (2.5), we get either  

F(u) – (u) = 0 or d(w) = 0 , for all 

u,wJ. 

if d(w) = 0 , for all wJ , then by using 

lemma (2.7) ,  

we get d = 0 on R.  

if F(u) – (u) = 0 , for all uJ, then 

relation (1) implies that (u) d(v) = 0 , 

for all u,vJ.  

Now replace u by uw, to get  

(u) (w) d(v) = 0 , for all u,v,wJ.  

This implies that uw-1 (d(v)) = 0  and 

hence  

uJ-1(d(v)) = {0} , for all u,vJ. 

Thus by lemma (2.5), we get either u = 

0  

or d(v) = 0 , for all u,vJ.  

But since J is a nonzero Jordan ideal of 

R, we find that  

d(v) = 0 , for all vJ and hence by 

Lemma (2.7), we get the required 

result.  

(ii) If F acts as an anti-homomorphism 

on J, then we have  

F(uv) = F(u) (v) + (u) d(v) = F(v) 

F(u), for all u,vJ..(2) 

Replacing u by uv in (2), we get  

(F(u) (v) + (u) d(v)) (v) + (u) 

(v) d(v) 

    = F(v) 

(F(u) (v) + (u) d(v)) 

Using (2), the above relation yields 

that.  

(u) (v) d(v) = F(v) (u) d(v), for all 

u,vJ ………(3)  

Again replace u by wu, wJ, in (3), to 

obtain  

(w) (u) (v) d(v) = F(v) (w) (u) 

d(v), 

for all u,v,wJ..……… ……(4) 

in view of (3), the relation (4) yields 

that  

[F(v), (w)] (u) d(v) = 0 , for all 

u,v,wJ, 

This implies that is, -1([F(v), (w)]) 

u-1 (d(v)) = 0 ,  

for all u,v,wJ  and hence  

-1 ([F(v), (w)]) J-1 (d(v)) = {0} , for 

all v,wJ. 

By using Lemma (2.5), we get either  

[F(v), (w)] = 0 or d(v), for all v,wJ. 

if d(v) = 0 , for all vJ, then by using 

Lemma (2.7),  

we get d = 0 on R . 

if [F(v), (w)] = 0, for all v,wJ. 

Replacing v by vw in the above 

relation, we get  

0 = [F(vw), (w)]  

   = [F(v) (w) + (v) d(w), (w)]  

   = [F(v) (w), (w)] + [(v) d(w), 

(w)]  

   = (v) [d(w), (w)] + [(v), (w)] 

d(w)  

for all v,wJ, this implies that  

(v) [d(w), (w)] + [(v), (w)] d(w) 

= 0  

for all v,wJ..………… (5) 

Now, replace  v by v1v, v1J in (5), 

and using (5), to get  

[(v1), (w)] (v) d(w) = 0 , for all 

v,v1,wJ.  

That is, [v1,w] v-1(d(w)) = 0 , for all 

v,v1,wJ.  

and hence [v1,w] J-1 (d(w)) = {0}, for 

all v1,wJ.  

By lemma (2.5), we get either  

[v1,w] = 0 or d(w) = 0 , for all v1,wJ. 

Now let  

J1 = {wJ/[v1,w] = 0 , for all 

v1J} 
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and  

J2 = {wJ/d(w) = 0 } 

Clearly, J1 and J2 are additive 

proper subgroups of J whose union is J.  

Since a group can not be the set 

theoretic union of two proper 

subgroups, hence J=J1 or J=J2 . 

if J=J1 , that is, [v1,w] = 0 , for all 

v1,wJ.  

if follows that J is commutative, so 

by Lemma (2.6), we get J Z(R), 

which is a contradiction on the other 

hand if  J=J2 ,  

then by lemma (2.7), we get the 

required result.   

 In the following theorem our 

objective is to extend theorem 2.8 to 

a ()–(J,R) derivation of a 2-

torsion-free prime ring R which acts 

as a homomorphism on a Jordan 

ideal J of R.   

Theorem 2.12: 
 Let R be a 2-torsion-free prime 

ring, J a nonzero Jordan ideal and a 

subring of R. Suppose that  are 

automorphism of R and d:RR is a 

() – (J,R) derivation. If d acts as a 

homomorphism on J, then d = 0 on R.  

Proof:  
Since d acts as a homomorphism on J, 

then  

we have  

d(uv) = d(u) (v) + (u) d(v) = d(u) 

d(v),  

for all u,vJ ……………………(1) 

Replacing v by vw, wJ in (1), we get  

d(u) (v) (w) + (u) (d(v) (w) + (v) 

d(w)) 

    = d(u) 

(d(v) (w) + (v) d(w)) 

using (1), the above relation yields that  

(d(u) – (u)) (v) d(w) = 0 , for all 

u,v,wJ, 

This implies that -1 (d(u) – (u))v -

1(d(w)) = 0 ,  

for all u,v,w  and hence  

-1(d(u) – (u)) J-1(d(w)) = {0} , for all 

u,wJ. 

By using Lemma (2.5), we get either  

d(u) – (u) = 0 or d(w) = 0 , for all 

u,wJ. 

if d(w) = 0 , for all wJ, then by 

lemma (2.7), we get d = 0 on R. 

if d(u) – (u) = 0 , for all uJ , we get  

d(u) (u), for all uJ.  

Then the relation (1) implies that  

d(u) (v) + d(u) d(v) = d(u) d(v), for 

all u,vJ,  

and this implies that  

d(u) (v) = 0, for all u,vJ.  

Replacing v by vw, wJ, we get  

d(u) (v) (w) = 0 , for all u,v,wJ,  

that is, -1 (d(u)) vw = 0 , for all 

u,v,wJ, and hence  

-1 (d(u)) Jw = {0} , for all u,v,wJ.  

Hence by lemma (2.5), we get either  

d(u) = 0 or w = 0 , for all u,wJ. 

Since J is a nonzero Jordan ideal of R 

we have d(u) = 0 ,  

for all uJ, then by lemma a (2.7), we 

get d = 0 on R.  

 

 
§ 3 Left () – (J,R) 

Derivations:  
 We will study the behaviour of 

a left () – (J,R) derivation which 

acts either as a homomorphism or as an 

anti-homomorphism on a nonzero 

Jordan ideal and a subring J of a 2-

torsion-free prime ring.  

Now we introduce the following new 

definition which a generalize of 

definition 1.12   

Definition 3.1:  
 Let J be a Jordan ideal of a ring 

R. An additive mapping :RR is 

called a left () – (J,R) derivation 

where :RR are two mappings of 

R, if  
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(xy) = (x) (y) + (y) (x) , for all 

xJ, yR and we say that  is a 

Jordan left () – (J,R) derivation if 

(x2) = (x) (x) + (x) (x) , for all 

xR. 

Example 3.2:  

 Let R=  








00

yx
: x, y N  

where N is the ring of integers  

be a ring of 2x2 matrices with respect 

to the usual addition and 

multiplication.  

Let J=
















 
Ny:

00

y0
  

It is clear that J is a Jordan ideal of R. 

Let :RR, defined by 



















00

y0

00

yx
, for all 

R
00

yx








. 

and let :RR be two mappings, 

such that  








 
















 










00

x0

00

yx
,

00

yx

00

yx

. 

For all .R
00

yx








 

Then  is a left () – (J,R) derivation. 

The following lemmas help us 

to prove the main theorems of this 

section: 

 
Lemma 3.3: [8]  
 Let R be a 2-torsion-free ring, J 

a Jordan ideal and a subring of R. 

Suppose that  is an endomorphism of 

R and :RR is an additive mapping 

satisfying (u2) = 2(u) (u), 

for all uJ, then  

(i) (uv + vu) = (u) (v) + 2(v) 

(u) for all u,vJ. 

(ii) (uvu) = (u2) (v) + 3 (u) (v) 

(u) – (v) (u) (u) ,  

for all u,vJ. 

(iii) (uvw + wvu) = (u) w) + 

(w) (u)) (w) 

          + 3 (u) (v) (w) + 3 (w) (v) 

(u)  

           (v) (u) (w) – (v) (w) 

(u) , 

for all u,vJ. 

(iv) [(u), (v)] (u) (u) = (u) [(u) 

, (v)] (u),  

       for all u,vJ. 

(v) [(u), (v)] (uv) – (u) (u) 

(v)  (u) = 0   

       for all u,vJ. 

 

Lemma 3.4: [8] 
Let R be a 2-torssion-free 

prime ring, J a Jordan ideal and a 

subring of R. Suppose that  is an 

endomorphism of R and :RR is an 

additive mapping satisfying  

(u2) = 2(u) (u) , for all uJ, 

then  

(i)  [(u),(v)] ([u,v]) = 0 , for 

all u,vJ.  

(ii) (u2)(v) – 2(u) (v) 

(u) (u2)) (v) = 0 ,  

       for all u,vJ.  

Lemma 3.5: [8] 
Let R be a 2-torssion-free 

prime ring, J a Jordan ideal and a 

subring. Suppose that  is an 

endomorphism of R and :RR is an 

additive mapping satisfying  

(u2) = 2(u) (u) , for all uJ, 

then  

(i)  (u2v) = (u2) (v) + ((u) 

(v) + (v) (v)) (u)  

            + (u) ([u,v]) , for all 

u,vJ.  

(ii)  (vu2) = (u2) (v) + 

((v) (u) (u) (v)) (u)  

            (u) ([u,v]) , for all 

u,vJ.  
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Lemma 3.6: [8]  
Let R be a 2-torssion-free 

prime ring, J a Jordan ideal and a 

subring of R. Such that [u,v]2 = 0 , for 

all u,vJ. Then J is commutative and 

hence central.   

In the next theorem, we 

attempt to generalize the above 

mentioned result for Jordan left 

()- (J,R) derivation which acts a 

Jordan ideal and a subring J of R.   

 

Theorem 3.7: [8] 
Let R be a 2-torssion-free 

prime ring, J a Jordan ideal and a 

subring. Suppose that  is an 

automorphism of R and :RR is an 

additive mapping satisfying (u2) = 

2(u) (u) for all uJ, then either 

J Z(R) or (J) = {0}.  

Corollary 3.8: [8] 
Let R be a 2-torssion-free 

prime ring, if :RR is a nonzero 

additive mapping satisfying (x2) = 

2x(x) for all xR, then R is 

commutative.  

Now, let us take the following 

theorem: 

Theorem 3.9: [8] 

Let R be a 2-torssion-free 

prime ring, J a Jordan ideal and a 

subring of R. Suppose that  is an 

automorphism of R and :RR is a 

left () – (J,R) derivation  

(i) if  acts as a homomorphism on J, 

then  = 0 on R.  

(ii) if  acts as anti-homomorphism on 

J, then  = 0 on R.  

 In the following theorem we 

will extend the above theorem to a 

left () – (J,R) derivation of a 2-

torsion-free prime ring R which acts 

as a homomorphism or as an anti-

homomorphism on a nonzero 

Jordan ideal and a subring J of R. 

 

Theorem 3.10:  
Let R be a 2-torssion-free 

prime ring, J a nonzero Jordan ideal 

and a subring of R. Suppose that  is 

are automorphism of R and :RR is 

a left () – (J,R) derivation  

(i) if  acts as a homomorphism on J, 

then either  = 0 on R or J Z(R).  

(ii) if  acts as anti-homomorphism on 

J, then either  = 0 on R or 

J Z(R).  

Proof: 
Suppose that J Z(R). 

(i) if  acts as a homomorphism on J, 

then we have  

(uv) = (u) (v) = (u) (v) + (v) 

(u),   

for all u,vJ ………………(1)  

replacing u by uv in (1), we get  

(u) (v) + (v) (u)) (v) = (u) 

(v) (v) + (v) (u) (v),   

for all u,vU. 

This implies that  

(u) (v) (v) = (u) (v) (v), for 

all u,vJ, 

This implies that (u) ((v) - (v)) 

(v) = 0 , 

for all u,vJ  

and hence (J) ((v) – (v)) (v) = 

{0} , for all vJ. 

Since  is an automorphism of R 

and J is a nonzero Jordan ideal of 

R, (J) is also a nonzero Jordan 

ideal of R. 

Application of Lemma (2.4) yields 

that  

((v) (v)) (v) = 0 , for all vJ 

and hence (v2) = (v) (v) , for all 

vJ. 

Since  is a left () – (J,R) 

derivation, we have  
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(v)(v) + (v) (v) = (v) (v) , 

for all vJ, 

this implies that (v) (v) =  , for 

all vJ, 

on linearzing the latter relation, we 

find that  

0 = (v + u) (v + u) 

   = ((v) + (u)) (v) +( u)) 

   = (v) (v)(v) (u) +(u) (v) 

+ (u) (u) 

   = (v) (u)(u) (v) , for all 

u,vJ. ……(2) 

Replacing u by vu in (2), we get  

0 = (v) (v) (u) + (v) (u) (v) 

   = (v) (u) (v) , for all u,vJ,  

That is, vu-1 ((v)) = 0 , for all 

u,vJ,  

and hence vJ-1 ((v)) = {0} , for 

all u,vJ. 

By Lemma (2.5), we get either v = 

0  or  

(v) = 0 , for all vJ. 

Since J is a nonzero Jordan ideal of 

R and  is an automorphism of R, 

we get  

(v) = 0 , for all vJ.  

Replacing v by vor, rR in the 

above relation, we have 

0 = (vor) = (vr + rv)  

       = (vr) + (rv)  

       = (v) (r) + (r) 

(v) + (r) (v) + (v) (r) 

       = (v) (r) (v) 

(r) 

       = (v) (v)) (r) , 

for all vJ and rR. 

Hence we get (J) (J)) (r) = 

{0} , for all rJ. 

Since  are automorphisms of R 

and J is a nonzero Jordan ideal of 

R, we get (J) and (J) are a 

nonzero Jordan ideals of R, and 

hence we get (J) + (J) is a 

nonzero Jordan ideal of R , thus by 

lemma (2.4) we get (r) = 0 , for all 

rR,  

this implies that is ,  = 0 on R.  

(ii) If  acts as an anti-homomorphism 

on J, then we have  

(uv) = (v) (u) = (u) (v) + (v) 

(u) ,  

 for all u,vJ ………………(3) 

Replacing v by uv in (3) , we get   

(uv) (u) = (u) (v) (u) + (v) 

(u) (u) 

      = (u) (v) (u) + 

(u) (v) (u) , 

for all u,vJ, 

or equivalently . 

(v) (u) (u) = (u) (v) (u) for 

all u,vJ ………(4) 

Replacing v by tv , tJ in (4), we 

get  

(t) (v) (u) (u) = (u) (t) (v) 

(u) 

for all u,v,tJ …………(5) 

in view of (4) , the relation (5) 

yields that  

[(u) , (t)] (v) (u) = 0 , for all 

u,v,tJ. 

This implies that [u,t] v-1((u)) = 

0 , for all u,v,tJ 

and hence [u,t] J -1((u)) = {0} , 

for all u,tJ 

By Lemma (2.5), we get either [u,t] 

= 0 or  

(u) = 0 , for all u,tJ. 

Now let   

J1 = {uJ / [u,t] = 0 , for all 

tJ} 

and  

J2 = {uJ / (u) = 0} 

Clearly, J1 and J2 are additive 

proper subgroups of J whose union 

is J.  

Since a group can not be the set 

theoretic union of two proper 

subgroups, hence J = J1 or J = J2 . 
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If J = J1 , that is , [u,t] = 0 , for all 

u,tJ, 

This yields that J is commutative, 

and hence by lemma (2.6) 

J Z(R), which is a contradiction.  

Hence, we have remaining 

possibility that  

(u) = 0 , for all uJ. 

Replace u by uor , rR , in the 

above relation, we get  

0 = (uor) = (ur + ru) = (ur) + 

(ru)  

     = (u) (r) + (r) (u) 

(r) (u) (u) (r) 

     = (u) (r) (u) (r) 

     = (u) (u)) (r) , 

for all uJ and rR  

Hence, we have ((J) – (J)) (r) = 

{0} , for all rR.  

By a similar way in part (i) , we 

can get our result. 
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