S-Generalized supplemented modules

B. H. Al-Bahrany A. J. Al-Rikabiy**

Date of acceptance 28/2 / 2010

Abstract

Xue introduced the following concept: Let M be an R- module. M is called a generalized supplemented module if for every submodule N of M, there exists a submodule K of M such that $M = N + K$ and $N \cap K \subset Rad(K)$.

N. Hamada and B. AL- Hashimi introduced the following concept:

Let S be a property on modules. S is called a quasi – radical property if the following conditions are satisfied:

1. For every epimorphism f: $M \rightarrow N$, where M and N are any two R- modules. If the module M has the property S, then the module N has the property S.

2. Every module M contained the submodule S(M).

These observations lead us to introduce S- generalized supplemented modules. Let S be a quasi- radical property. We say that an R-module M is S- generalized supplemented module if for every submodule N of M, there exists a submodule K of M such that $M = N + K$ and $N \cap K \subset S(K)$.

The main purpose of this work is to develop the properties of S-generalized supplemented modules. Many interesting and useful results are obtained about this concept. We illustrate the concepts, by examples.

Keywords: quasi-radical property, generalized supplemented module, small submodule.

Introduction:

In this note all rings are commutative with identity and all modules are unitary left R-modules, unless otherwise specified.

An R-module M is called a GSmodule if for any submodule N of M , there exists a submodule K of M such that $M = N + K$ and $N \cap K \subset$ Rad(K). See [1], [2].

On the other hand, let S be a property on modules an R -module M is called a module of type S (briefly Smodule) if M has the property S. A submodule N of M is called

S- submodule if N has the property S as an R- module. If there exists a submodule of M has the property S and contained all submodules of M that having the property S, then this submodule is called the radical of M and denoted by S(M).

A property S defined on modules is called a quasi-radical property if the following conditions are satisfied:

- 1- Epimorphic image of an R-module of type S is an R- module of type S.
- 2- Every module M contained the submodule S(M).

These observations lead us to introduce the following concept :- Let S be a quasi-radical property and N be a submodule of an R- module M. A submodule K of M is called an Sgeneralized supplement of N in M, if $M=N+K$ and $N \cap K \subseteq S(K)$.

M is called an S- generalized supplemented module (briefly S- GS

*Department of Mathematics, College of Science, University of Baghdad

module), if every submodule of M has S- generalized supplement in M.

In this paper we investigate the properties of S- GS modules. In §1, we recall that the definition of quasiradical property and list some of their important properties that are relevant to our work.

In §2 of this paper we give the definition of S-GS modules with some examples and basic properties.

In §3, we study the sum of two S-GS module. Also we give a characterization of S- GS rings we prove that a ring R is S- GS ring if and only if every finitely generated

R- module is S- GS module. See(3.6)

In $§4$, we study $Soc(Z)$ -GS modules with some examples and basic properties. Also we give a characterization of Soc(Z)- GS module, we prove that an R- module M is

Soc(Z)- GS module if and only if for every submodule N of M, there exists a submodule K of M such that $M = N+K$ and $N \cap K \subseteq Soc(K)$, (respectively, $N \cap K \subset Z(K)$), See (prop.(4.6)).

Also we prove if M is a non $$ zero projective R- module, where R is an integral domain and not a field, then M is not Soc (respectively Z) -GS module (prop.(4.11)).

1. Quasi- radical Properties

Let S be a property and let M be an R- module. Recall that M is called a module of type S(briefly S- module) if M has the property S.A submodule N of M is called S- module if N has the property S as an R- module(i.e. N is Smodule).

If there exists a submodule of M has the property S and contained all submodules of M that having the property S, then this submodule called the radical of M and denoted by S(M).

M is called semisimple module of type S if $S(M)= 0$, See[3].

Let S be a property defined on modules. Recall that S is called a quasi-radical property if the following conditions are satisfied:

- 1- Epimorphic image of an R-module has the property S is also has the property S.
- 2- Every R- module M contained the submodule S(M)(radical M) See [3].

 Recall that quasi- radical property S is called a hereditary property if every submodule of an R- module has the property S is also has the property S.

(equivalentily) $S(N) = N \cap S(M)$, for every submodule N of a module M.see[3]

Example (1.1): [3]

 Define the property Soc as follows:

An R-module M has the property Soc{ Soc- module} if M is semisimple.

One can easily show that the socle property is a quasi - radical property:

Note: The Socle property is a hereditary property, where $Soc(N)$ $=N \cap$ Soc(M), for every submodule N of M [4, p.227].

Example (1.2): [3]

Let M be an R- module. Recall that the singular submodule of M (denoted by $Z(M)$) is defined by $Z(M)= \{ m \in M : Ann(m) \subset_R R \}$.See [4, p.138].

The module M is called a singular module if $Z(M) = M$, the module is called a non singular module if $Z(M)=0$, See [5]. Define the property Z as follows:

An R-module M has property Z(Zmodule) if M is singular(i.e $Z(M)=M$). It is easy to see that Z- property is a quasi- radical and hereditary property.

Let R be a ring and let $r \in R$. Recall that r is called a regular element if there is $s \in R$ such that $r = rsr$. A ring R is called regular ring, if each element of R is regular, See [6]

It is known that a ring R is regular if and only if every cyclic ideal is a direct summand, See [7].

An R- module M is called a regular module if for each $x \in M$ and for every $r \in R$, there is $s \in R$ such that $r = rsr$ x, See[6].

It is known that a projective Rmodule M is regular if and only if every cyclic submodule is a direct summand, See[7].

Example (1.3): [3]

Let B be an R- module, the Semi Brown-Mecoy radical of B(denoted by $M(B)$) is defined as follows:

 $M(B) = \{x \in B : \text{for each } r \in R, \exists$ $s \in R$ s.t r $x = rsrx$ }.

Let the regular property M be defined as follows:-

 An R-module B has the regular property M, if B is a regular module. It is clear that M is a quasi-radical and hereditary property, See [3, Exa. 3, 54, CH3]

Proposition (1.4) [3, Prop. 3.4, CH3]**:** Let S be a quasi-radical property and let f: $M \rightarrow N$ be an Rhomomorphism, then $f(S(M)) \subset S(N)$.

2. S-Generalized supplemented modules.

In this section we introduce the concept of the S- Generalized supplemented modules (or briefly S-GS module) and we illustrate it by some examples we also give some basic properties.

In this section S is a quasi radical property. Unless otherwise stated.

Definition (2.1):

Let M be an R-module and N be a submodule of M. A submodule K of M is called an S-generalized supplement of N in M, if $M = N+K$ and $N \cap K \subset S(K)$.

Let M be an R-module. Recall that if there exist maximal submodules in M, then the intersection of all maximal submodules of M is called the Jacobson radical of M and denoted by Rad(M). If there is no maximal submodule of M, then we define $Rad(M) = M$, see [4].

Examples (2. 2):

- 1. Consider the module Z_6 as a Z module. Let $A = \{0, 3\}$ and $B =$ ${0, 2, 4}$. It is clear that $Z_6 =$ A+ B and A \cap B = 0 \subset S(B), for each quasi – radical property S on modules, Thus B is S-generalized supplement of A in Z_6 .
- 2. It is known that the module Q as a Z- module has no maximal submodule and hence Rad $(Q) = Q$. Let A be any submodule of Q, then $Q = A + Q$ and $A \cap Q = A \subset Rad(Q) = Q$. Thus Q is generalized supplement of A. One can easily show that $Soc(Q) = 0$

and $Z(O)=0$. Now let A be a non- trivial submodule of Q and let B be

submodule of Q such that $Q = A + B$. Since Q is indecomposable as Z- module, then $A \cap B \neq 0$.

So $A \cap B \not\subset$ Soc(B) \subset Soc(Q) = 0 and $A \cap B \not\subset Z(B) \subseteq Z(Q) = 0$. Thus A has no Soc generalized supplement in Q. Also A has no Z- generalized supplement in Q.

Definition (2.3):

Let M be an R- module. M is called a S- generalized supplemented module (or briefly S-GS module), if every submodule of M has S- generalized supplement in M, where S is a quasi - radical property on modules.

Examples (2.4):

1. The module Z_6 as a Z-module is S-GS module, for each quasi – radical property S on modules.

2. The module Q as a Z- module is GS- module. But the module Q is not Soc-GS module Also Q is not Z - GS module.

3. Let X be an infinite set. Consider the ring (P(X), Δ , \cap), where A Δ B = $(A \cup B)$ – $(A \cap B)$. Since $A^2 = A \cap A =$ A, for each A subset of X, then every element A of $p(X)$ is an idempotent. So by[4] every cyclic ideal is a direct summand. So ($P(X)$, Δ , \cap) is a regular ring and hence J $(P(X)) = 0$, See[6]. Thus (P(X), Δ , \cap) is M- GS module, But $P(X)$ is not semisimple, See^[8], Example 1.2.19], therefore the ring $(P(X), \Delta, \cap)$ is not GS- module.

Let M be an R- module . Recall that a submodule N of M is called a small submodule of M, (denoted by $N \ll M$), if N+ K \neq M, for any proper submodule K of M, see [4].

Proposition (2.5): Let M be S- GS module, then $Rad(M) \subset S(M)$,

Proof:

Assume that M is S-GS module and $x \in Rad(M)$. By[4,coro.9.1.3, p.219] $Rx \ll M$. Since M is S - GS module, then there exists a submodule N of M such that $M = Rx + N$ and $Rx \cap N$ \subset S(N). But Rx << M, therefore N= M and hence $Rx \cap N = Rx \subset S(N) \subset S(M)$. Thus Rad $(M) \subset S(M)$.

Corollary (2.6): Let M be an Rmodule such that $Rad(M) = M$, if $S(M)$ \neq M, then M is not S -GS module.

Proof:

Suppose that M is S - GS module, then by (prop. 2.5) Rad(M) \subset S(M). But $Rad(M) = M$, therefore $M \subset S(M)$ which is a proper submodule of M . This is a contradiction. Thus M is not S - GS module.

Remark (2.7): Let M be an R- module such that $S(M) = M$, then M is S- GS module.

Proof:

Let N be a submodule of M, then $M = N+M$ and $N \cap M = N \subset M$ $=S(M)$

Remark(2.8): Every semisimple Rmodule M is S- GS module.

Proof:

Let N be a submodule of M since is semisimple, then $M = N \oplus K$, for some submodule K of M. Thus $M=$ $N + K$ and $N \cap K = 0 \subset S(K)$ and hence K is S- generalized supplement of N in M.

Proposition (2.9): Let M be an Rmodule such that $S(M)=0$, then M is S-GS module if and only if M is semisimple.

Proof:

Suppose that M is S-GS module. Let N be a submodule of M. So there exists a submodule K of M such that $M = N+K$ and $N \cap K \subset S(K) \subset$ $S(M)=0$. Thus $M=N \oplus K$, and we get so every submodule of M is a direct summand. Therefore M is semisimple. the converse from (remark (2.8)).

Proposition (2.10): Let S be a quasiradical and hereditary property, then every submodule of S-GS module is S- GS module.

Proof:

Let M be S-GS module and let A, N be a submodules of M, such that $N \subset A$. Since M is S- GS module, then there is a submodule K of M such that $M = N + K$ and $N \cap K \subset S(K)$, by Modular law $A = A \cap M = A \cap (N + K) =$ $N + (A \cap K)$.

Now $N \cap (A \cap K) = N \cap K \subseteq S(K) \cap$ $(A \cap K) = S(A \cap K)$ by [3, cor. 3.37, CH3].

Thus A is S - GS module.

Proposition (2.11): Let M be S- GS module and let K be a submodule of M such $K \cap S(M) =0$. Then K is semisimple submodule of M.

Proof:

Let N be a submodule of K. Since M is S-GS module, then there exists a submodule L of M such that M $=N + L$ and $N \cap L \subset S(L)$. By Modular law $K = K \cap M = K \cap (N+L) = N +$ $(K\cap L)$.But $N\cap L \cap K \subseteq S(L) \subseteq S(M)$ $K=$ 0, therefore $K = N \oplus (K \cap L)$. Thus K is semisimple.

Proposition (2.12): Let M be S-GS module. Then $M = N \oplus L$, where N is semisimple and $S(M) \oplus N$ is an essential submodule of M.

Proof:

Assume that M is S-GSmodule. By Zorn's lemma S(M) has relative complement N in M, by [5,prop.1.3, p.17]. Then $S(M) \oplus N$ is an essential submodule of M. Since M is S-GS module and $N \cap S(M) = 0$, then by (prop. (2.11)), N is semisimple. Since M is S-GS module, then there exists a submodule L of M such that $M = N+L$ and $N \cap L \subset S$ (L). But S (L) $\subset S$ (M), so $N \cap L \subset S$ (M) $\cap N = 0$. Thus $M = N$ \oplus L.

Corollary (2.13): Let M be an indecomposable and not simple Rmodule. If M is S-GS module, then $S(M) \subset_{e} M$.

Proof:

By (prop.(2.12)), $M = N \oplus L$, where N is a relative complement of S(M) in M. But M is indecomposable, therefore either $N = M$ or $N = \{0\}$. If N $=M$ then $S(M) = 0$ and hence M is semisimple by (ramark 2.9) which is a contradiction, so $N= 0$. But $N \oplus S(M) \subset_{e} M$ [5, prop. 1.3, p.17]. So $S(M)\subset\substack{\mathrm{e} \\ \mathrm{e} }} M$.

Let M be an R-module and let $a \in M$. Recall that the annihilator of a in M is the set:- Ann(a) = $\{r \in R; ra = 0\}$. It is clear that $Ann(a)$ is an ideal of R, See[5].

Recall that the annihilator of M is the set Ann $(M) = \{r \in R: rM = 0\}.$ It is clear that Ann (M) is an ideal of R, See [5].

Also recall that an R-module M called a prime R-module if Ann(x) $=Ann(y)$, for every nonzero elements x and y in M, See [9]

Proposition (2.14): Let M be a prime R- module. If M is S-GS module, then either M is semisimple or S(M) is an essential submodule of M.

Proof:

Let M be S- GS module, Since M is prime, then either $Soc(M) = 0$ or $Soc(M)$ =M by [10, lemma 3.18, CH1]. Assume that Soc(M) = 0. By (prop.(2.12)), $M = N \oplus$ L, Where N is semisimple and N \oplus $S(M) \subset_{e} M$. One can easily show that $N = Soc(N) \subseteq Soc(M) = 0$ and hence S(M) is essential submodule of M.

Corollary (2.15): Let R be an integral domain and let M be a torsion free Rmodule. If M is S- GS module, then either M is semisimple or S(M) is an essential submodule of M.

Proof: It is clear by (prop. (2.14)). **Corollary (2.16):** Let R be an integral domain and let M be a flat (or projective) R-module, if M is S- GS module, then either M is semisimple or S(M) is an essential submodule of M. **Proof:** Clear by proposition (2.14) .

3. Characterizations of S - GSmodules.

At the start of this section, we show that the sum of two S- GS modules is also S- GS module. And we give a characterization of the S - GS rings.

We start this section by the following proposition.

Proposition (3.1): Let f: $M \rightarrow N$ be an epimorphism. If M is S- GS module, then N is S-GS module.

Proof:

Let K be a submodule of N. Since M is S- GS module, then there is a submodule L of M such that $M = f^{-1}$ $(K)+L$ and $(f^{-1}(K)) \cap L \subseteq S(L)$. So N $= f(M)=f(f^{-1}(K)+L)=f(f^{-1}(K))+f(L).$ But f is an epimorphism, therefore $N =$ $K + f(L)$ by [4, lemma 3.1.8, p.44]

We only need to show that $K \cap f(L) \subset$ $S(f(L))$.

Now, $f(L) \cap K = f(L) \cap f(f^{-1}(K)) = f(L)$ \cap f⁻¹(K)) \subseteq f(S(L)) \subseteq S(f(L))

By (prop. (1.4)). Thus $f(L)$ is S generalized supplement of K in N.

Corollary (3.2): Let M be a S-GS $\frac{M}{N}$ is S-GS module, for

module, then N

every submodule N of M.

Before we give our next result, we need the following.

Lemma (3.3): Let M be an R- module and let M_1 , K be submodules of M. If M_1 is S-GS module and M_1 + K has Sgeneralized supplement in M, then K has S- generalized supplement in M. **Proof:**

Assume that M_1 is S- GS module. Since $M_1 + K$ has S-

generalized supplement in M, then there exists a submodule N of M such that $M = (M_1 + K) + N$ and $(M_1 + K) \cap$ $N \subset S(N)$. Since $(K + N) \cap M_1 \subset M_1$ and M_1 is S- GS module, then there exists a submodule L of M_1 such that $M_1 = L + ((K+N) \cap M_1)$ and $((K+N)$ $\cap M_1$) $\cap L \subseteq S(L)$, implies that $(K+N) \cap L \subseteq S(L)$. So $M = L+ ((K+N))$ $\bigcap M_1$) + K+N = L+ K+N. Now by [11, lemma 3.2.3,CH3],

 $K \cap (L+N) \subset (L \cap (K+N)) + (N \cap$ $(L+K)) \subset (L \cap (K+N)) + (N \cap (M_1+$ K)

Thus $K \cap (L+N) \subset S(L)$ + S(N). But $S(N) \subset S(N+L)$ and $S(L) \subset$ $S(N+L)$, so $S(N)+ S(L) \subset S(N+L)$. Thus K $\bigcap (N+L) \subset S$ (N+L). Thus N+L is Sgeneralized supplement of N in M.

Proposition (3.4): Let $M = M_1 + M_2$. If M¹ and M² are S- GS modules, then M is S-GS module.

Proof:

Assume that M_1 and M_2 are S-GS modules. Let N be a submodule of M. Since $M = M_1 + M_2 + N$ has S-generalized supplement in M, then by $(lemma(3.3))$ M_2 + N has S - generalized supplement in M. But M² is S-GS module, therefore by $(lamma (3.3))$ again, N has Sgeneralized supplement in M. Thus M is S- GS module.

Proposition (3.5): Let M be S- GS module, then every finitely M generated module is S-GS module.

Proof:

Assume that A is a finitely Mgenerated module, then there exists an epimorphism $f : \oplus M \to A$ n $i = 1$ $\oplus M \rightarrow$ $=$, for some $n \in N$. By (Prop.(3.4)), $\oplus M$ n $i=1$ \oplus M is S-

GSmodule and hence by (prop. (3.1)) A is S- GS module.

The following proposition gives a characterization of S- GS rings.

Proposition (3.6): Let R be a ring and let S be a quasi-radical hereditary property then the following statements are equivalent.

- 1. R is S-GS ring.
- 2. $R \oplus R$ is S-GS module.
- 3. Every finitely generated R module is S -GS module.
- 4. Every finitely generated projective R - module is S -GS module.
- 5. Every finitely generated free R module is S -GS module.

Proof: (1) \Rightarrow (2) Clear by (prop. (3.4)).

- $(2) \Rightarrow (1)$ Clear by (prop. (2.10)).
- $(1) \Rightarrow (3)$ Clear by (prop. (3.5)).
- $(3) \implies (4) \implies (5)$ It is clear
- $(5) \Rightarrow (1)$

Since R is isomorphic to a free Rmodule generated by one element, then R is S-GS ring.

Let us recall that , An R- module M is said to be π -projective if for every two submodules N, K of M with $M =$ N+K, there exists $f \in End(M)$ with Imf $\subset N$ and Im(I-f) $\subset K$, See [12]

Theorem (3.7):

Let M be a π - projective Rmodule. If M is S- GS module and $M =$ N+K, then N has S- generalized supplement contained in K.

Proof:

Assume that N and K are submodules of M such that $M = N+K$, Since M is π -projective, then there is an endomorphism e of M such that $e(M) \subseteq N$ and $(I-e)(M) \subseteq K$, see [12]. One can easily show that (I-e) (N) \subset N. Since M is S -GS module, then there exists a submodule L of M such that $M = N+L$ and $N \cap L \subset S(L)$. Now $M = e(M) + (I-e)$ (M), $M = e(M) + (I-e)(N+L) = e(M) + (I-e)(N+L)$ $e)(N) + (I-e)(L) \subset N + (I-e)(L) \subset M.$

Thus $M = N + (I-e)(L)$. It is clear that $(I-e)(L) \subset K$. Claim that $N \cap (I-e)(L) =$ (I-e) (N \cap L). To verify this, let y \in N \cap $(I-e)(L)$, then $y \in N$ and $y \in (I-e)$ (L). So there exists $x \in L$ such that $y = (I-e)(x)$ $=$ x –e (x) and hence $x = y + e(x) \in N$. Thus $y \in (I-e)$ (N \cap L). It is clear that $(I-e)$ $(N \cap L) \subset N \cap (I-e)$ (L) . Since $N \cap L \subseteq S(L)$,

Then $N \cap (I-e)(L) = (I-e)(N \cap L) \subset (I-e)(N \cap L)$ e) $(S(L)) \subset S((I-e)(L))$ by (prop. (1.4)). Thus (I-e) (L) is S-generalized supplement submodule of N in K.

Corollary (3.8): Let R be a ring and let N, K be two ideals of R. If R is S-GS ring and $R = N + K$, then N has

S- generalized supplement contained in K.

Proof: Clear.

The following theorem gives a characterization of S- generalized supplement submodule.

Theorem (3.9):

Let M be an R- module and U be a submodule of M. The following statements are equivalent.

- 1. There is a decomposition $M = N \oplus$ K with $N \subset U$ and $K \cap U \subset S(K)$.
- 2. There is an idempotent $e \in End$ (M) with e (M) \subseteq U and (I-e) (U) \subseteq $S((I-e)(M)).$
- 3. There is a direct summand N of M with $N \subseteq U$ and $\frac{0}{N} \subseteq S \Big| \frac{M}{N} \Big|$ $\bigg)$ $\left(\frac{M}{N}\right)$ \setminus \subseteq S $\left($ N $S\left(\frac{M}{N}\right)$ N $\frac{U}{\sqrt{2}} \subseteq S \left(\frac{M}{\sqrt{2}} \right)$.
- 4. U has S- generalized supplement V in M such that $U \cap V$ is a direct summand of U.

Proof: $(1) \implies (2)$

Assume that $M = N \oplus K$ with N \subset U and K \cap U \subset S(K)

Let e: $M \rightarrow M$ be a map defined as follows: $e(a+b)=a$, where $a \in N$ and $b \in K$. One can easily show that $e \in End$ (M) and $e^2 = e$. Let $x \in M$. Since $M=N\oplus K$. Then $x=a+b$, where $a \in N$ and $b \in K$. Now, $e(x)=e(a+b)=a$. Thus $e(M)$ $\subseteq N \subseteq U$. Now $(I-e)(M)= \{(I-e)(x),$ $x \in M$ $= \{ (I-e)(a+b), x = a+b,$ $a \in N, b \in K$ $=$ {a+b-a, $a \in N$, $b \in K$ }={b, b \ine K } = K. Thus $(I-e)(M)=K$. Claim that (I-e) (U) = U \cap (I-e) (M). To show that, let $x \in U \cap (I-e)$ (M). So $x \in U$ and $x \in (I-e)$ (M) and hence $x = (I-e)$ (y), for some $y \in M$. Now $x=(I-e)(y) = y$ e(y), $y=x +e(y) \in U$ So $x \in (I-e)$ (U)

and hence $U \cap (I-e)$ $(M) \subseteq (I-e)$ e)(U). Now, let $z \in (I-e)(U)$, so there is $y \in U$ such that $z=(I-e)(y) = y-e(y) \in U$. Thus $z \in U \cap (I-e)(M)$,

 $(I-e)(U) = U \cap (I-e)(M) = U \cap K$ $S(K) = S((I-e)(M))$

$$
(2) \Rightarrow (3)
$$

Since e is an idempotent element , then by [4, cor.7.2.4, p. 176] $M = e(M) \oplus (I-e)(M)$. Let $N = e(M)$ and $K = (I-e)(M)$. Since $(I-e)(U) = U \cap$ K and $S((1-e)(M)) = S(K)$, then $U \cap K \subseteq S(K)$, but by the second isomorphism theorem, $\frac{M}{N} = \frac{N \sqrt{N}}{N} \approx K$ N $N \oplus K$ N $\frac{M}{\gamma} = \frac{N \oplus K}{\gamma} \approx$ and $(N \oplus K)$ $N \oplus (K \cap U)$ N $\mathrm{N}\oplus (\mathrm{K}\cap \mathrm{U}$ N ${\rm U}\cap ({\rm N}\oplus {\rm K}$ N $\frac{U}{U} = \frac{U \cap (N \oplus K)}{V} = \frac{N \oplus (K \cap U)}{V} \cong$ K \cap U. Claim that $\frac{C}{N} \subseteq S \frac{M}{N}$ J $\left(\frac{M}{N}\right)$ \setminus \subseteq S $\Big($ N $S(\frac{M}{N})$ N $\frac{U}{\Sigma} \subseteq S \left(\frac{M}{\Sigma} \right)$. Let N $\phi: K \to \frac{M}{N}$ be an isomorphism. Since $U \cap K \subset S(K)$,

then $\phi(U\cap K) \subseteq \phi$ (S(K)). But S is a quasi-radical property,

therefore
$$
\phi(S(K)) \subseteq S(\phi(K)) =
$$

\n $S\left(\frac{M}{N}\right)$. Thus $\frac{U}{N} = \phi(U \cap K) \subseteq S\left(\frac{M}{N}\right)$.
\n $(3) \Rightarrow (1)$

Assume that M=N \oplus K, where N \subset U and $\frac{C}{N} \subseteq S \left| \frac{M}{N} \right|$ J $\left(\frac{M}{N}\right)$ \setminus \subseteq S $\Big($ N $S\left(\frac{M}{\sigma}\right)$ N U . Thus $\frac{M}{N} \cong K$ N $\frac{M}{N} \cong K$ and

 $U \cap K$ N $\frac{U}{N} \cong U \cap K$, by the second

isomorphism theorem. By the same argument of the proof of $(2) \implies (3)$, we get $K \cap U \subseteq S(K)$

 $(1) \Rightarrow (4)$ Let M= N \oplus K with N \subset U and $K \cap U \subseteq S(K)$, then $M= U+K$ and hence K is S-generalized supplement of U. By Modular law, $U = U \cap M = U \cap$ $(N \oplus K)$ thus $U = N \oplus (U \cap K)$ and hence $U \cap K$ is a direct summand of U.

 $(4) \Rightarrow (1)$

By our assumption, there exists a submodule V of M such that M=U+V and $U \cap V \subseteq S(V)$ and $U=(U \cap V)\oplus L$, for some submodule L of U. But $M =$ $U+V= (U \cap V) \oplus L + V =L+V$ and $L \cap V = (U \cap L)$ $\cap V = L \cap (U \cap V) = 0$, therefore M=L \oplus V, where L \subseteq U and $V \cap U \subset S(V)$.

Corollary (3.10): Let M be an Rmodule. Then the following statements are equivalent:

- 1- For every submodule U of M, there exists a decomposition $M = N \oplus K$ with $N \subset U$ and $K \cap U \subset S(K)$.
- 2- For every submodule U of M, there is an idempotent $e \in End(M)$ with $e(M) \subseteq U$ and $(I-e)(U) \subset S((I-e)(M)).$
- 3- For every submodule U of M, there is a direct summand N of M with $N \subseteq U$ and $\frac{0}{N} \subseteq S \frac{M}{N}$ J $\left(\frac{M}{N}\right)$ \setminus \subseteq S $\left($ N $S\left(\frac{M}{N}\right)$ N $\frac{U}{\sqrt{2}} \subseteq S \left(\frac{M}{\sqrt{2}} \right)$.
- 4- Every submodule U has Sgeneralized supplement V in M with $U \cap V$ is a summand of U.
- 5- M is S-GS module.

Then $(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4) \Rightarrow (5)$.

Proof: Clear.

4. Soc (Z)-GS modules:

In this section we study $Soc(Z)$ -GS modules .We give some their basic properties. Also we give a characterization of Soc (Z)-GSmodule, when M is a prime R-module.

 Let M be an R-module. Recall that the socle of $M = Soc(M) = \sum A = \bigcap$ ${B \; ; \; B \; \subseteq_{e} M}$, and M is called semisimple module if Soc(M)=M, See[5]. submodule Asimple

The singular of $M = Z(M) = \{ x$ \in M; Ann x \subset e R }, See[5]

If $Z(M) = M$ then M is called singular module.

If $Z(M) = 0$ then M is called non singular module, See^[5].

It is know that each of the socle (Soc) and the singular (Z) is a hereditary and

quasi-radical property. See (example (1.1)) and (example (1.2)).

Definition (4.1):

An R - module M is called Soc-GS module if for each submodule N of M, there exists a submodule K of M such that $M = N+K$ and $N \cap K \subset$ $Soc(K)$.

Definition (4.2):

An R –module M is called Z- GS module if for each submodule N of M, there exists a submodule K of M such that $M = N+K$ and $N \cap K \subseteq Z(K)$.

We start this section by the following examples

Examples (4.3):

1. It is clear that the module Z_n as Z module is Z-GS module, for each n \in Z. Also Z_n as a Z-module is Soc-GS module, for each square free $n \in \mathbb{Z}$, see [4].

For example Z_6 as Z - module is Soc (Z)-GS module.

2. Consider the module Z⁸ as Zmodule. $Z(Z_8) = Z_8$, and hance by (remark (2.7)). Z₈ is Z- GS module. One can easily show that Soc $(Z_8) = \{0,4\}$. Note that $A = \{0, 2, 4, 6\}$, $B = Z_8$ the only submodule of Z₈ such that $Z_8 = A + B$. But $A \cap B$ $= A = \{0, 2, 4, 6\} \quad \subset \quad \text{Soc}(B) = \{0, 4\},$ so A has no Soc - generalized supplement in Z_8 . Thus Z_8 is not Soc - GS module.

3. Consider the module Z as Zmodule. It is easy to see that $Soc(Z) = 0$ and $Z(Z) = 0$. Let nZ be a non- trivial submodule of Z and let mZ be a submodule of Z such that Z= $nZ + mZ$. It is clear that $mZ \neq 0$. Since Z is indecomposable, then nZ \cap mZ \neq 0.Thus nZ \cap mZ \subset $Soc(mZ) \subset Soc(Z) =0$ and hence nZ has no Soc - generalized supplement in Z.Thus Z is not Soc-GS module.

By the same way we can show that Z is not Z-GS module.

Remark (4.4): Every singular Rmodule is Z- GS module.

Proof: Clear by (remark (2.7)).

Remark (4.5): Let M be an R -module and let N is essential submodule of M, then N $\frac{M}{N}$ is Z- GS module.

Proof:

Since N is essential submodule of M, then by [5, prop.1.20, p.31] $\frac{1}{N}$ M is singular. Thus by (prop. (4.2)) $\frac{1}{N}$ M is Z -GS module.

Proposition (4.6): Let M be an Rmodule, then M is Soc (Z)-GS module if and only if for every submodule N of M, there exists a submodule K of M such that $M = N+ K$ and

 $N \cap K \subset Soc(M)$ (respectively, $N \cap K$ $\subset Z(M)$).

Proof:

Assume that M is Soc- GS module. Let N be a submodule of M, then there is a submodule K of M such that $M = N+K$ and $N \cap K \subset Soc(K)$. But $Soc(K) \subseteq Soc(M)$, therefore $N \cap K$ \subset Soc(M).

For the converse, let N be a submodule of M, then there exists a submodule K of M such that $M = N+K$ and $N \cap K \subseteq$ Soc(M). So $N \cap K \subset (Soc(M)) \cap K$. But $Soc(K) = Soc(M) \cap K$, by [4,Th. 9.7.3, p.226], therefore $N \cap K \subseteq Soc(K)$. Thus M is Soc -GS module.

By the same argument we can prove the proposition(4.6) for Z -GS module.

Remark (4.7): Let M be Soc (respectively Z) - GS module. Then every submodule of M is Soc (respectively Z)-GS module.

Proof: clear by (prop. (2.10)).

Proposition (4.8): Let M be a non zero R - module such that $Soc(M) = 0$, then M is not Soc - GS module.

Proof:

Let $M \neq 0$ be an R- module with $Soc(M) = 0$. Suppose that M is Soc -GS module and let N be a submodule of M, then there exists a submodule K of M such that $M = N+K$ and $N \cap K \subset \text{Soc}(K) \subset \text{Soc}(M) = 0.$ So $M =$ $N \oplus K$ and hence M is semisimple (i.e. Soc(M) $=M \neq 0$) which is a contradiction.

Before we give our next result we need the following results which they appeared in[8].

Lemma (4.9): [8, prop. 2.3.4]: Let M be a prime R- module, then either Z $(M) = 0$ or $Z(M)=M$.

Proposition (4.10): [8, prop. 1.2.4, CH1]**:** Let R be an integral domain such that R is not a field. Then every non - zero torsion free R- module is not regular.

Proposition (4.11): Let R be an integral domain such that R is not a field and let M be a non - zero projective module, then M is not Soc (respectively Z) – GS module.

Proof:

Assume that M is Soc- GS module. Since M is projective then by [13]. M is torsion free and hence M is prime module [9]. By (remark (4.7)) and (prop.(4.6)) M is semisimple. But M is projective, therefore by [7] M is a regular module which is a contracliction with (4.10).

By the same argument we can prove the proposition(4.11) for Z-GS module.

Proposition (4.12): Let M be a non singular R- module and let N, K be submodules of M. If K is a Socgeneralized supplement submodule of N in M and N is an essential submodule of M, then $N \cap K = Soc(K)$.

Proof:

Assume that K is a Socgeneralized supplement of N, then $M =$ $N+K$ and $N\cap K \subset Soc(K)$. By the second isomorphism theorem $N \cap K$ K N $N + K$ N M \cap $=\frac{N+K}{N} \approx \frac{K}{N}$. Since N \subseteq e M, then by [5, prop. 1.21, p.32] $\frac{1}{N}$ M is singular and hence $\overline{N \cap K}$ K $\overline{\wedge K}$ is singular. But M is non singular, therefore by [5, prop. 1.21, p.32], $N \cap K$ \subseteq e K and hence Soc (K) \subseteq N \cap K. Thus

 $Soc(K) = N \cap K$. **Proposition (4.13):** Let R be a ring and N, K be ideals of R such that K is a

Soc - generalized supplement ideal of N in R. If N is an essential ideal of R, then $N \cap K = Soc(K)$.

Proof:

Let $M = N+K$ and $N \cap K \subset$ $Soc(K)$. By the second isomorphism theorem, $\frac{N}{N} = \frac{N}{N} \approx \frac{N}{N} \frac{N}{N}$ K N $N + K$ N R \bigcap $=\frac{N+K}{N} \approx \frac{K}{N \cdot N}$, Since $N \subseteq R$, then by [5, prop. 1.20, p.31] N R is singular and hence $\overline{N \cap K}$ K $\overline{\wedge K}$ is singular. By [5, prop.1.20, p.31], $N\cap K$ \subseteq K. So Soc $(K)\subseteq N\cap K$. Thus $N \cap K = Soc(K)$.

References:

- **1.**Wang Y. and Ding N., 2006, Generalized Supplemented Modules, Taiwanese J. M., Vol. 10, No. 6,pp.1589- 1601.
- **2.**Xue W., 1996, Characterizations of Semiperfect and Perfect Rings, publications Matematiques, 40, 115 - 125.
- **3.**Nuha H.H., 1996, The Radicals of Modules, M.Sc., Thesis, University of Baghdad.
- **4.**Kasch F., 1982, Modules and Rings, Academic press, London.
- **5.**Goodearl K.R., 1976, Rings Theory, Non-singular Rings and Modules, Mercel Dekker, New York.
- **6.**Sahera M.Y., 1993, On F regular Modules, M.SC, Thesis, University of Baghdad.
- **7.**Nuhad S.A., 1993, On Z- regular Modules, M.Sc., Thesis, University of Baghdad.
- **8.**Aqeel J. N., 2007, On F- semiregular Modules, M. SC, Thesis, University of Baghdad.
- **9.**Desale G., Nicholoson W.K., 1981, Endoprimitive Ring, J., Algebra, 70, PP.548-560.
- **10.** Roa Y.J., 2006, Some Generalizations on Modules with Chain Conditions, M.SC, Thesis, University of Baghdad.
- **11.** Abdelkader B.H., 2001, On Lifting Modules, M. SC, Thesis, University of Baghdad.
- **12.** Wisbauer R., 1991, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia.
- **13.** Knight J.T., 1971, Commutative Algebra, Cambridge University press.

المقاسات المكملة المعممة من النمط S

بهار حمد البحراني* عبير جبار الركابي*

الكلمات المفتاحية: خاصية شبه جذرية، المقاس المكمل المعمم، المقاسات الجزئية الصغيرة.

الخالصة:

أكسيو قدم المفهوم األتي، يقال للمقاس M بأنه مكمل معمم إذا كان لكل مقاس جزئي N من M، يوجد .N \cap K \subseteq Rad(K) و M=N+ K مقاس جزئي \le M من

نها حمادة والهاشمي قدما المفهوم األتي، يقال للخاصية S المعرفة على المقاسات بأنها خاصية شبه جذرية أذا تحقق الأتي:

يملك الخاصية S. يملك الخاصية S فأن N مقاساً . أذا كانت M مقاساً .1 ليكن N →M :f تشاكالً شامالً .2 كل مقاس M يحوي على المقاس الجزئي (M(S.

هذه المالحظات قادتنا إلى اقتراح تعريف المقاسات المكملة المعممة من النمط S. لتكن S خاصية شبه جذرية، يقال للمقاس M المعرف على الحلقة R بأنه مقاس مكمل معمم من النمط S. إذا كان لكل مقاس جزئي N من M، .N∩ K \subseteq S(K) و M=N+K أن M=N+K بحيث أن M=N (X) .

الغرض الرئيسي من هذا البحث هو تطوير خواص المقاسات المكملة المعممة من النمط S. لقد أعطينا مجموعة من القضايا الجديدة وأوضحنا المفاهيم بأمثلة.

^{*}قسم الرياضيات /كلية العلوم/جامعة بغداد.