G- Cyclicity And Somewhere Dense Orbit

*Zeana Zaki Jamil**

Date of acceptance 12/5 / 2009

Abstract:

let H be an infinite – dimensional separable complex Hilbert space, and *S* be a multiplication semigroup of $\mathcal C$ with 1. An operator T is called G-cyclic over S if there is a non-zero vector $x \in H$ such that $\{\alpha T^n | x \mid \alpha \in S, n \geq 0\}$ is norm-dense in *H*. Bourdon and Feldman have proved that the existence of somewhere dense orbits implies hypercyclicity. We show the corresponding result for G-cyclicity.

Key words:- Hypercyclic operators, hypercyclic vectors, semigroup, somewhere dense set, everywhere dense set.

Introduction:

Let H be an infinite dimensional separable complex Hilbert space, and *B(H)* be the Banach algebra of all linear bounded operator on *H*.

Let *S* be a multiplication semigroup of *C* with 1,an operator $T \in B(H)$ is called G-cyclic over S if there is a vector *x* in *H* such that $\{\alpha \mid T^n \mid x \mid \alpha \in S, n \geq 0\}$ is norm-dense in H. In this case x is called a G-cyclic vector for *T* over *S* [1]. Clearly, every hypercyclic operator is G-cyclic and every G-cyclic operator is supercyclic. Bourdon and Feldman [2] proved that every somewhere dense orbit is everywhere dense, and they used this result to give another proof of *"Ansari's theorem*" if *T* is hypercyclic, then for each $n \ge 1$, $Tⁿ$ is hypercyclic, moreover T and $Tⁿ$ share the same collection of hypercyclic vectors" [3]. Also they use their theorem and give another proof of "*Multihypercyclicity Theorem*" If T is multihypercyclic then T is hypercylic " [4]. Our purpose in this paper is to obtain the corresponding results for G-cylic over S.

\$1 Somewhere dense orbit is everywhere dense:

The aim of this section is to prove that the existence of somewhere dense orbit implies. G-cyclicity. Next we fix notation required for the discussion. **Notation :** Let *S* be a semigroup of *C* with 1 then

1. $\text{Sorb}(T, x) \equiv \{ \alpha \ T^n \ x \mid \alpha \in S, n \geq 0 \}.$

2.
$$
\mathbb{C}
$$
 orb $(T,x) = {\alpha T^n x \mid \alpha \in \mathbb{C}, n \geq 0}.$

3. $F(x)=Sorb(T, x)$

4.
$$
U(x)=int(F(x))
$$
.

5. $X^c \equiv$ complement of X in *H*.

Clearly from the definition of G–cyclic [1], that every G-cyclic operator is supercyclic operator, so we get:

Proposition 1.1: Suppose that $x \in H$ such that $Sorb(T,x)$ is somewhere dense in H, then $\mathcal C$ orb (T, x) is somewhere dense in H.

Proof: Sinse *S* is a semigroup of *C* with 1, then $Sorb(T, x) \subseteq \mathbb{C}orb(T, x)$. Now since $U(x) \neq \emptyset$ and

 $U(x) \subseteq \text{int} (\overline{\mathcal{C}orb(T,x)})$). Thus $\mathcal C$ orb (T, x) is somewhere dense.

From [2] we get immediately the following two lemmas:

^{*}University of Baghdad –College of Science – Dept. of Mathematics

Lemma 1.2: Suppose that $x \in H$ such that $Sorb(T,x)$ is somewhere dense in *H*. Then *T ** may have at most one eigenvalue.

Lemma 1.3: Suppose that $Sorb(T,x)$ is somewhere dense in H, then for each $\alpha \in S, j \in N, \alpha T^{n}$ *x* is a cyclic vector for T.

Peries in [4] proved the following lemma.

Lemma 1.4 [4]: Let p be a complex polynomial, *p(T*) has a dense range if and only if $p(\lambda) \neq 0$ for every eigenvalue λ of $T^*.$

The next lemma provides the crucial element of the argument.

Lemma 1.5: Let $x \in H$, then for every $\lambda \in S$, U^c(*x*) is invariant under λT .

In addition $U^{c}(x)$ is invariant under multiplication by any $\alpha \in S$.

Proof: Since $U(x)$ is nonempty, then there is a positive integer *j* and a nonzero $\beta \in S$ such that $\beta T^j x$ belongs to U(*x*) and set $x_j = \beta_j T^j x$. For any $k \in N$, Sorb(T,T^k x_j) is dense in U(x), thus x_j is a limit point of Sorb $(T, T^k x_j)$ and $U(x) = U(T^k x_j)$. By lemma (1.3) x_j is cyclic vector for T i.e. $\{p(T)x_j | p \text{ is polynomial}\}\$ is dense in H.

Fix $\alpha \in S$. assume that $U^{c}(x)$ is not λT invariant, i.e. there is $y \notin U(x)$ but *Ty* \in U(*x*). We may assume *y* \notin F(*x*), if not, then $y \in \partial F(x)$, also since λT is continues, hence there is point $y' \in F(x)$ close enough to y and λT_v to keep it in U(*x*). Thus rename v' as v .

Because $F^c(x)$ is open and ${p(T)x_j|p \text{ is } polynomial}$ is dense in *H*, Thus there is a polynomial *p* so that $p(T)x_i$ is closed enough to *y* ensure $p(T)x_j \in F^c(x)$ and $\lambda T p(T)x_j \in U(x)$. Since $U(x) \subset F(x)$ and $F(x)$ is λT -invariant, then $Sorb(T, \lambda Tp(T)x_i) \subseteq F(x)$. However $Sorb(T, \lambda Tp(T)x_i) = Sorb(T, p(T)Tx_i)$.

Because x_i is a limit point of Sorb (T, Tx_i) , the continuity of $p(T)$ yield $p(T)x_j \in F(x)$. Thus $p(T)x_j \in F(x)$ and its complement, a contradiction.

It is easy, by notation, to prove that $U^{c}(x)$ is invariant under multiplication $\alpha \in S$

Remark: The preceding show that if $y \in Sort(T,x)$, then $U(x)=U(y)$.

Now we will prove the main result.

Somwhere Dense Theorem 1.6: Suppose $T \in B(H)$, and Sorb (T, x) is somewhere dense in *H*, then *T* is Gcyclic operator.

Proof: Assume that $Sorb(T, x) \neq H$. Since x is cyclic vector for *T* (1.3), then $\{p(T)x_j | p$ is polynomial} is dense in *H*. Then there is a subcollection *Q* of polynomial such that $\{q(T)x|q \in O\}$ is dense subset of $U^c(x)$. By (1.5) $U^c(x)$ is λT -invariant for all $\lambda \in S$, so $q(T)$ *orb*(*T*,*x*) \subset U^c(*x*) for all $q \in Q$, hence, by continuity of *T*, $q(T)F(x) \subset q(T)$ orb $(T, x) \subset U^{c}(x)$.

Let W denote the collection of nonzero polynomials not having the (possible) eigenvalue of T^* as a zero and let $p \in W$.

Now put $D:=U(x)\cup \{q(T)x|q\in Q\}$, since ${q(T)x | q \in Q}$ is dense in U^c(x), hence *D* is dense set in *H*. Because *p(T)* has dense range in H (1.4), therefore $p(T)$ *D* is dense in *H*.

Suppose in order to obtain a contradiction, that $p(T)x \in \partial U(x)$, hence $p(T)x \notin U(x)$, then $p(T)x \in U^{c}(x)$. Thus $p(T)U(x) \subset U^{c}(x)$. On the other hand, since $U^{c}(x)$ is λ T-invariant for all $\lambda \in S$, thus $p(T) \{q(T)x | q \in Q\} \subset U^{c}(x)$. Therefore $p(T)D \subset U^c$ (*x*) which contradicting the density of *p(T)D*. Thus $p(T)x \notin \partial U(x)$. Because $\{p(T)x\}$ $p \in W$ is connected, contains points in $U(x)$ and contains no boundary point of U(*x*), thus $\{p(T)x | p \in W\} \subset U(x)$. Given a coefficient n-tuple c for any polynomial, there is a sequence for coefficient n-tuple of a polynomials in *Q* converging componentwise to c, and

since x is cyclic vector for T , then ${p(T)x|p \in W}$ is dense in *H*. Since ${p(T)x|p \in W} \subset U(x) \subset F(x)$, therefore $F(x)=H$. Thus *T* is G-cyclic operator.

\$2 Applications to the somewhere dense Theorem:

In this section we give two applications to the somewhere dense theorem. First we need the following fact, let X be a topological space and F_1, F_2, \ldots, F_n a finite family of closed subset of X; n n

$$
X = \bigcup_{i=1}^{n} F_i \text{, if } int(F_i) = \emptyset, \text{ then } X = \bigcup_{i=2}^{n} F_i
$$

[4]

Proposition2.1: If T is a G-cyclic operator over S then for every positive integer n, Tⁿ is G-cyclic operator over S. Moreover, T and $Tⁿ$ share the same collection of G-cyclic vectors.

Proof: Let x be a G-cyclic vector for T over S, and fixed $n>1$, then $Sorb(T, x) =$ $\prod_{n=1}^{n-1}$ Sorb (T^n) T^j $\sum_{j=0}$ $Sorb(T^n, T^jx)$ \overline{a} $=$ will be

dense in H, thus $H = \int_{0}^{\frac{n}{1}} \frac{1}{\text{Sorb}(T^n - T)}$ $\sum_{j=0}$ $Sorb(T^n, T^jx)$ \overline{a} $=$

Thus at least one of the sets Sorb (T^n, T^jx) must be somewhere dense. Therefore by (1.6) Tⁿ is a Gcyclic operator over S. Now because *T* must have dense range [1], the set

 T^{n-j} [Sorb(T^n , T^j x)]=Sorb(T^n , T^n x) will be dense in *H*, from which it followed that x is also G-cyclic vector for T^n .

An operator $T \in B(H)$ is a multi-Gcyclic operator over S provided there is a finite subset ${x_i}_1^n$ x_i ₁ $\big\}$ ⁿ in H such that

n Sorb (T, x_i) is dense in H. Clearly 1

every G-cyclic operator is multi-Gcyclic operator. A question arises: **Is the converse true?**

Proposition 2.2: Any multi-G-cyclic operator over S is G-cyclic operator over S.

Proof: Let $\{x_i\}$ be a multi-G-cyclic vector for T over S, then n $Sorb(T, x_i)$

1 is dense in H. By [4], there is at least j; $1 \le j \le n$, such that Sorb (T, x_j) has somewhere dense in H. Thus by (1.6) T is G-cyclic operator over S.

References:

- **1.**Naoum, A. G. and Jamil, Z. Z.,**(2005)**. *G-cyclicity*. Journal of Al-Nahrain University *, 8* (2), 103-108.
- **2.**Bourdon, P. and Feldman, N. **(2003)** *Somewhere dense orbits are everywhere dense, Indiana Univ. math.* J., 52(3), , 11-189.
- **3.**Ansari, S., **(1995)** *Hypercyclic and cyclic vectors, J. Funct. Anal*. 12, 374-383.
- **4.**Peris, A., **(2001)** *Multi-hypercyclic operators are hypercyclic, Math*. 2.236 779-786.

مؤثر الدواري من نمط G والمدار الكثيف في مكان ما

زينة زكي جميل*

*جامعة بغداد – كلية العلوم – قسم الرياضيات

الخالصة: ليكن H فضاء هلبرت على حقل الاعداد العقدية قابل للفصل غير منته البعد وS شبه زمرة جدائية من \mathscr{C} تحتوي على .1 يقال للمؤثر الخطي *T* انه دوري من النمط G على S اذا وجد متجه غير صفري *xH* بحيث ان { *T n* .*H* في كثيفة *xS*, *n* ≥0} بوردن وفيلدمان برهنا وجود مدار كثيف في مكان ما يؤدي الى فوق الدوارية. في هذا البحث اعطينا نتائج مماثلة في حالة دواري من النمط G.