G- Cyclicity And Somewhere Dense Orbit

Zeana Zaki Jamil*

Date of acceptance 12/5 / 2009

Abstract:

let H be an infinite – dimensional separable complex Hilbert space, and S be a multiplication semigroup of C with 1. An operator T is called G-cyclic over S if there is a non-zero vector $x \in H$ such that $\{\alpha T^n \ x \mid \alpha \in S, n \ge 0\}$ is norm-dense in H. Bourdon and Feldman have proved that the existence of somewhere dense orbits implies hypercyclicity. We show the corresponding result for G-cyclicity.

Key words:- Hypercyclic operators, hypercyclic vectors, semigroup, somewhere dense set, everywhere dense set.

Introduction:

Let H be an infinite dimensional separable complex Hilbert space, and B(H) be the Banach algebra of all linear bounded operator on H.

Let *S* be a multiplication semigroup of \mathcal{C} with 1, an operator $T \in B(H)$ is called G-cyclic over S if there is a vector x in H such that $\{\alpha T^n \mid x \mid \alpha \in S, n \ge 0\}$ is norm-dense in H. In this case x is called a G-cyclic vector for T over S[1]. Clearly, every hypercyclic operator is G-cyclic and every G-cyclic operator is supercyclic. Bourdon and Feldman [2] proved that every somewhere dense orbit is everywhere dense, and they used this result to give another proof of "Ansari's theorem" if T is hypercyclic, then for each $n \ge 1$, T^n is hypercyclic, moreover T and T^n share the same collection of hypercyclic vectors" [3]. Also they use their theorem and give another proof of "Multihypercyclicity *Theorem*" If T is multihypercyclic then T is hypercylic " [4]. Our purpose in this paper is to obtain the corresponding results for G-cylic over S.

\$1 Somewhere dense orbit is everywhere dense:

The aim of this section is to prove that the existence of somewhere dense orbit implies. G-cyclicity. Next we fix notation required for the discussion. **Notation :** Let *S* be a semigroup of Cwith 1 then

1. $.\operatorname{Sorb}(T,x) \equiv \{ \alpha T^n \ x \mid \alpha \in S, n \ge 0 \}.$

2.
$$\mathcal{C}$$
 orb $(T,x) = \{ \alpha T^n \ x \mid \alpha \in \mathcal{C}, n \ge 0 \}.$

3. $F(x) = \overline{\text{Sorb}(T, x)}$

4.
$$U(x)=int(F(x))$$
.

5. $X^{c} \equiv$ complement of X in *H*.

Clearly from the definition of G–cyclic [1], that every G-cyclic operator is supercyclic operator, so we get:

Proposition 1.1: Suppose that $x \in H$ such that Sorb(T,x) is somewhere dense in H, then $C \operatorname{orb}(T,x)$ is somewhere dense in H.

Proof: Sinse *S* is a semigroup of \mathcal{C} with 1, then $\overline{Sorb(T,x)} \subseteq \overline{Corb(T,x)}$. Now since $U(x) \neq \emptyset$ and

 $U(x) \subseteq int (\overline{Corb(T, x)})$. Thus $C \operatorname{orb}(T, x)$ is somewhere dense.

From [2] we get immediately the following two lemmas:

^{*}University of Baghdad -College of Science - Dept. of Mathematics

Lemma 1.2: Suppose that $x \in H$ such that Sorb(*T*,*x*) is somewhere dense in *H*. Then T^* may have at most one eigenvalue.

Lemma 1.3: Suppose that Sorb(T,x) is somewhere dense in H, then for each $\alpha \in S, j \in \mathbb{N}, \alpha T^n_j x$ is a cyclic vector for T.

Peries in [4] proved the following lemma.

Lemma 1.4 [4]: Let *p* be a complex polynomial, p(T) has a dense range if and only if $p(\lambda) \neq 0$ for every eigenvalue λ of T^{*}.

The next lemma provides the crucial element of the argument.

Lemma 1.5: Let $x \in H$, then for every $\lambda \in S$, $U^{c}(x)$ is invariant under λT .

In addition $U^{c}(x)$ is invariant under multiplication by any $\alpha \in S$.

Proof: Since U(x) is nonempty, then there is a positive integer *j* and a nonzero $\beta \in S$ such that $\beta T^j x$ belongs to U(x) and set $x_j = \beta_j T^j x$. For any $k \in N$, Sorb(T,T^k x_j) is dense in U(x), thus x_j is a limit point of Sorb(*T*, $T^k x_j$) and $U(x) = U(T^k x_j)$. By lemma (1.3) x_j is cyclic vector for T i.e. $\{p(T)x_j | p \text{ is polynomail}\}$ is dense in H.

Fix $\alpha \in S$. assume that $U^{c}(x)$ is not λT invariant, i.e. there is $y \notin U(x)$ but $Ty \in U(x)$. We may assume $y \notin F(x)$, if not, then $y \in \partial F(x)$, also since λT is continues, hence there is point $y' \in F(x)$ close enough to y and λTy to keep it in U(x). Thus rename y' as y.

Because $F^{c}(x)$ is open and { $p(T)x_{j}|p$ is *polynomial*} is dense in *H*, Thus there is a polynomial *p* so that $p(T)x_{j} \in F^{c}(x)$ and $\lambda Tp(T)x_{j} \in U(x)$. Since $U(x) \subset F(x)$ and F(x) is λT -invariant, then Sorb $(T, \lambda Tp(T)x_{j}) \subseteq F(x)$. However Sorb $(T, \lambda Tp(T)x_{j}) = Sorb(T, p(T)Tx_{j})$.

Because x_j is a limit point of Sorb(T,Tx_j), the continuity of p(T)

yield $p(T)x_j \in F(x)$. Thus $p(T)x_j \in F(x)$ and its complement, a contradiction.

It is easy, by notation, to prove that $U^{c}(x)$ is invariant under multiplication $\alpha \in S$

Remark: The preceding show that if $y \in Sorb(T,x)$, then U(x)=U(y). Now we will prove the main result.

Somwhere Dense Theorem 1.6: Suppose $T \in B(H)$, and Sorb(T,x) is somewhere dense in *H*, then *T* is G-cyclic operator.

Proof: Assume that $Sorb(T, x) \neq H$. Since x is cyclic vector for T (1.3), then $\{p(T)x_i \mid p \text{ is polynomial}\}\$ is dense in *H*. Then there is a subcollection *Q* of polynomial such that $\{q(T)x|q \in Q\}$ is dense subset of $U^{c}(x)$. By (1.5) $U^{c}(x)$ is λT -invariant all for λeS, SO $q(T)orb(T,x) \subset U^{c}(x)$ for all $q \in Q$, of hence. by continuity Т. $q(T)F(x) \subset q(T) \text{orb}(T,x) \subset U^{c}(x).$

Let W denote the collection of nonzero polynomials not having the (possible) eigenvalue of T^* as a zero and let $p \in W$.

Now put $D:=U(x)\cup \{q(T)x|q\in Q\}$, since $\{q(T)x|q\in Q\}$ is dense in $U^{c}(x)$, hence D is dense set in H. Because p(T) has dense range in H (1.4), therefore p(T) D is dense in H.

Suppose in order to obtain а contradiction, that $p(T)x \in \partial U(x)$, hence $p(T)x \notin U(x)$, then $p(T)x \in U^{c}(x)$. Thus $p(T)U(x) \subset U^{c}(x)$. On the other hand, since $U^{c}(x)$ is λT -invariant for all $\lambda \in S$, thus $p(T)\{q(T)x|q \in Q\} \subset U^{c}(x).$ Therefore $p(T)D \subset U^{c}(x)$ which contradicting the density of p(T)D. Thus $p(T)x \notin \partial U(x)$. Because $\{p(T)x\}$ $p \in W$ is connected, contains points in U(x) and contains no boundary point of U(x), thus $\{p(T)x | p \in W\} \subset U(x)$. Given a coefficient n-tuple for с anv polynomial, there is a sequence for coefficient n-tuple of a polynomials in Q converging componentwise to c, and

since x is cyclic vector for T, then $\{p(T)x|p \in W\}$ is dense in H. Since $\{p(T)x|p \in W\} \subset U(x) \subset F(x)$, therefore F(x)=H. Thus T is G-cyclic operator.

\$2 Applications to the somewhere dense Theorem:

In this section we give two applications to the somewhere dense theorem. First we need the following fact, let X be a topological space and $F_1, F_2, ..., F_n$ a finite family of closed subset of X; $X = \bigcup_{i=1}^{n} F_i$, if int(F_i)= \emptyset , then $X = \bigcup_{i=2}^{n} F_i$

[4]

Proposition2.1: If T is a G-cyclic operator over S then for every positive integer n, T^n is G-cyclic operator over S. Moreover, T and T^n share the same collection of G-cyclic vectors.

Proof: Let x be a G-cyclic vector for T over S, and fixed n>1, then $Sorb(T,x) = \bigcup_{j=0}^{n-1} Sorb(T^n, T^jx)$ will be

dense in H, thus $H = \bigcup_{j=0}^{n-1} \overline{\operatorname{Sorb}(T^n, T^j x)}$

Thus at least one of the sets Sorb(T^n , T^jx) must be somewhere dense. Therefore by (1.6) T^n is a Gcyclic operator over S. Now because T must have dense range [1], the set

 $T^{n-j}[Sorb(T^n,T^jx)]=Sorb(T^n,T^nx)$ will be dense in *H*, from which it followed that *x* is also G-cyclic vector for T^n .

An operator $T \in B(H)$ is a multi-Gcyclic operator over S provided there is a finite subset $\{x_i\}_{i=1}^{n}$ in H such that

 $\bigcup_{1} Sorb(T, x_i) \text{ is dense in } H. Clearly$

every G-cyclic operator is multi-Gcyclic operator. A question arises: Is the converse true?

Proposition 2.2: Any multi-G-cyclic operator over S is G-cyclic operator over S.

Proof: Let $\{x_j\}$ be a multi-G-cyclic vector for T over S, then $\bigcup_{1}^{n} Sorb(T, x_i)$

is dense in H. By [4], there is at least j; 1 < j < n, such that Sorb(T, x_j) has somewhere dense in H. Thus by (1.6) T is G-cyclic operator over S.

References:

- **1.**Naoum, A. G. and Jamil, Z. Z.,(**2005**). *G-cyclicity*. Journal of Al-Nahrain University , 8 (2), 103-108.
- **2.**Bourdon, P. and Feldman, N. (**2003**) Somewhere dense orbits are everywhere dense, Indiana Univ. math. J., 52(3), , 11-189.
- **3.**Ansari, S., (**1995**) Hypercyclic and cyclic vectors, J. Funct. Anal. 12, 374-383.
- **4.**Peris, A., (**2001**) *Multi-hypercyclic operators are hypercyclic, Math.* 2.236 779-786.

مؤثر الدواري من نمط G والمدار الكثيف في مكان ما

*جامعة بغداد – كلية العلوم – قسم الرياضيات ١١ هـ ٨٨ مـ تم