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Abstract: 

The aim of this paper is to approximate the solution of the parabolic partial 

differential equations (heat equations) using Bellman's method with the cooperation 

of the G-spline interpolation formula. The partial differential equation will then be 

changed into a system of the first order ordinary differential equation. The resulting 

system may be then solved easily by using the fundamental matrix solution. In this 

paper, the Bellman's method may be considered as a generalization to the usual 

Bellman's method with an arbitrary ordinary derivative. 

 

Key words: Bellman's Method, G-spline Interpolation. 

 

Introduction: 

The mathematical formulation 

of most problems in science involving 

rates of change with respect to two or 

more independent variables, usually 

representing time, length or angle, lead 

either to a partial differential equation 

or to a set of such equations. 

The general two dimensional 

second order partial differential 

equation: 
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where A, B, C, D, E, F and G may be 

constants or functions of the 

independent variables x and y, [1]. 

As a special case, this equation 

is said to be elliptic when B
2
  4AC < 

0, parabolic when  

B
2
  4AC 0 and hyperbolic when B

2
 

 4AC > 0. 

Problems involving time t as 

one independent variable lead usually 

to parabolic or hyperbolic equations. 

The simplest parabolic 

equation, 
u

t




  k

2

2

u

x




 derives from the 

theory of heat conduction and its 

solution gives, for example the 

temperature u at a distance x units of 

length from one end of a thermally 

insulated bar after t seconds of heat 

conduction. 

In such a problem, the 

temperatures at the ends of a bar of 

length  (say) are often known for all 

time. In other words, the boundary 

conditions are known. It is also usual 

for temperature distribution along the 

bar to be known at some particular 

instant. This instant is usually taken as 

zero time and the temperature 

distribution is called the initial 

condition. The solution gives u for 

values of x between 0 and  and 

values of t from zero to infinity [1]. 
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There are several numerical 

methods for solving the partial 

differential equations, such as the finite 

difference method, finite-element 

method, variational methods, spline 

interpolation method, the collocation 

method, the method of lines and the 

method which we shall used in this 

paper which is so called the Bellman's 

method, [1,2]. Really, Bellman's 

method depends on polynomial 

interpolation in order to interpolate the 

functions ui(t), which considered to be 

known, but in fact they are unknowns, 

therefore, the interpolation method 

which will be used here is the G-spline 

interpolation because of its simplicity 

and efficiency in evaluating the 

approximate solution. 

G-spline interpolation was first 

introduced by I. J. Schoenberg [3] as a 

tool used to specify interpolatory 

conditions: 

f
(j)

(xi)  
( j)
i

y , for (i, j)  e 

which is called the Hermite-Birkhoff 

problem, where e is a certain set of 

order pairs (defined later in section 

two) and he proved that this tool (G-

spline interpolation) gives the best 

approximation for linear functionals, 

[3]. 

 

G-Spline Interpolation, [3],[4],[5]: 

In 1968 Schoenberg [3] 

extended the idea of Hermite for 

splines to specify that the orders of the 

derivatives specified may vary from 

node to node.  

As usual let I  [a, b] be an 

interval partitioned by the nodes: 

a  x1 < x2 < … < xn  b 

and let  be the maximum of the 

orders of the derivatives to be specified 

at the nodes, we introduce an incidence 

matrix E, where the incidence matrix is 

defined by: 

E  [aij], i  1, 2, …, n; j  0, 1, 

…,  

where: 

aij  
1, if (i, j) e

0, if (i, j) e





 

Here e  {(i, j), i  1, 2, …, n; j 0, 1, 

…, } has been chosen in such a way 

that i takes the values 1, 2, …, n; one 

or more times, while j  {0, 1, …, } 

and j   is attained in at least one 

element  

(i, j) of e, assume also that each row of 

the incidence matrix E and last column 

of E should contain some element 

equals 1.  

The Hermite-Birkhoff problem 

is to find f(x)  C

, which satisfies the 

interpolatory conditions: 

f
(j)

(xi)  
( j)
i

y , for (i, j)  e…(1) 

Definition (1), [3],[4],[5]: 

Let m be a natural number, then 

the Hermite-Birkhoff problem (1) is 

said to be m-poised provided that: 

p(x)  m1 

p
(j)

(xi)  0 if (i, j)  e 

then: 

p(x)  0. 

where m1 is the class of polynomial 

of degree m  1 or less. 

The definition of G-spline is 

facilitated by defining a matrix E* 

which is obtained from the incidence 

matrix E by adding m    1 columns 

of zeros to the matrix E. 

Let E*  [ *
ija ], where (i  1, 2, 

…, n; j  0, 1, …, m  1), and: 

*
ija   ija , if j

0, if j 1, 2,...,m 1
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If m   + 1, then E*  E. 

 

Definition (2), [3],[4],[5]: 

A function S(x) is called 

natural G-spline for the knots x1, x2, 

…, xn and the matrix E* of order m 

provided that it satisfies the following 

conditions: 

1. S(x)  2m1 in (xi, xi+1), i  1, 2, 

…, n  1. 

2. S(x)  m1 in (, x1) and in (xn, 

). 

3. S(x)  C
m1

(, ). 

4. If *
ija   0, then S

(2mj1)
(x) is 

continuous at x  xi. 

Let S (E*; x1, x2, …, xn) 

denotes the class of all G-spline of 

order m. 

At this point, the G-spline 

interpolation of order m to f may be 

given in terms of the fundamental G-

spline functions Lij, by: 

Sm(x)  
( j)

ij i
(i, j) e

L (x)y



 …(2) 

Where Lij satisfies: 

(s)
rij

L (x )   
0,     if  (r,s) (i,j)

1,     if  (r,s) (i,j)





 

 

Bellman's Technique with 

Cooperation of G-Spline 

Interpolation to Approximate the 

Solution of Parabolic PDE's: 

Consider the initial-boundary 

value problem: 

PDE      uxx  ut  g(x, t, u, ux), 

0 < x < , 0 < t <  

BC's    
u(0, t) p(t)

u( , t) p(t)





,    0 < t < …(3) 

IC         u(x, 0)  w(x), 0  x   

The idea of this method is that we shall 

consider the values: 

j
i
j

u(x , t)

x




  uij(t), (i, j)  e 

are known, but as we mention in the 

introduction of this paper they are 

unknowns, and we shall interpolate 

them by the G-spline interpolation 

formula given by (2), such that: 

u(x, t)  
ij ij

(i, j) e

L (x)u (t)



 …(4) 

substituting (4) into the initial-

boundary value problem given by (3), 

we have: 

(i, j) e

 Lij(x)uij(t)  

(i, j) e

 Lij(x)uij(t)  

g(x, t, ij ij

(i, j) e

L (x)u (t)



 , 

(i, j) e

 Lij(x)uij(t))…(5) 

and in order to evaluate uij(t) for (i, j) 

 e, we must make the number of 

equations equals to the number of 

unknowns and this will be satisfied by 

choosing (r, s)  e and differentiating 

(5) s-times at the point x  xr, then we 

shall get a system of the first order 

ordinary differential equations with the 

initial conditions: 

uij(0)  
j

i
j

u(x ,0)

x




  

j
i

j

d w(x )

dx
 

Solving the resulting system using 

matrix exponential method, gives the 

values: 

uij(t)  
j

i
j

u(x , t)

x




, (i, j)  e…(6) 

which represent the solution of (3) and 

its j partial derivative with respect to x 
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at the xi, where (i, j)  e and for 0 < t < 

. 

The reader can notice that if j  

0 in (6), which means that we have 

evaluated the solution u of (3) at the 

point xi, and for 0 < t <  (which is the 

usual Bellman's method), therefore we 

have here a modification to the 

Bellman's method with the aid of G-

spline interpolation. 

 

Illustrative Examples: 

In the present section, some 

illustrative examples are given in order 

to check the accuracy of the results: 
 

Example (1): 

Consider the initial-boundary 

value problem: 

PDE      ut  uxx,    0 < x < 1, 0 

< t <  

BC's    
u (0, t ) 0

u ( , t ) 0





,    0 < t < 

…(7) 

IC         u(x, 0)  x, 0  x  1 

and to construct the approximate 

solution of (7), the m-poised Hermite-

Birkhoff problem must be chosen. The 

choice is as follows: 

The interval [0, 1] is partitioned 

with h  1/4, where h is the distance 

between the nodes, as: 

0 < 0.25 < 0.5 < 0.75 < 1 

where 0, 0.25, 0.5, 0.75, 1 are taken to 

be the node points and let: 

e  {(0, 0), (0.25, 0), (0.5, 0), 

(0.75, 0), (1, 0)} 

we shall seek S4(x)  S (E*; 0, 0.25, 

0.5, 0.75, 1), where E*  [ *
ija ] is 

defined by: 

*
ija   

1,     for j 0, 0 i 4

0,    for 0 j 4, 0 i 4

  


   
 

Therefore, equation (4) becomes: 

u(x, t)  L00(x)u00(t) + L10(x)u10(t) + 

L20(x)u20(t)+L30(x)u30(t)+L40(x)u40(t) 

(8) 

 

substituting (8) into (7), gives: 

L00(x)u00(t) + L10(x)u10(t) + 

L20(x)u20(t) + L30(x)u30(t) + 

L40(x)u40(t)  L00(x)u00(t) + 

L10(x)u10(t) + L20(x)u20(t) + 

L30(x)u30(t) + L40(x)u40(t)…(9) 

 

It is clear that from the BC's that u00(t) 

 0 and u40(t)  0, and in order to 

evaluate u10(t), u20(t), u30(t), we shall 

chose (r, s) to be the order pair (1, 0), 

(2, 0), (3, 0) respectively, hence after 

substituting the ordered pairs (r, s) into 

(9) we shall get the following linear 

system: 

u10(t)  L10(x1)u10(t) + L20(x1)u20(t) 

+ L30(x1)u30(t) 

u10(t)  L10(x2)u10(t) + L20(x2)u20(t) 

+ L30(x2)u30(t) 

u10(t)  L10(x3)u10(t) + L20(x3)u20(t) 

+ L30(x3)u30(t) 

writing the above equations in matrix 

form u Au, where: 

u  

10

20

30

u (t)

u (t)

u (t)

 
 
 
   

, A  

10 1 20 1 30 1

10 2 20 2 30 2

10 3 20 3 30 3

L (x ) L (x ) L (x )

L (x ) L (x ) L (x )

L (x ) L (x ) L (x )

   
   
 
     

  

29.881 12.821 2.115

22.834 42.252 22.834

2.119 12.821 29.881
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u(t)  
10

20

30

u (t)

u (t)

u (t)

 
 
 
  

, with c  u(0)  
0.25

0.5

0.75

 
 
 
  

 

and since A have the distinct 

eigenvalues 1 = 9.748, 2  32, 3 

 60.266, which will give an 

independent eigenvectors and hence 

we get a unique solution for the above 

linear system: 

u(t)  c(t)  
9.748t 32t 60.266t

9.748t 6 32t 60.266t

9.748t 32t 60.266t

0.12550e 0.3535e 0.258e

0.17625e 3.605 10 e 0.65475e

0.12550e 0.3535e 0.258e

  

   

  

  
 
   
 
  
 

 

where: 

 

(t)
9.748t 32t 60.266t

9.748t 6 32t 60.266t

9.748t 32t 60.266t

0.502e 0.707e 0.344e

0.705e 6.251 10 e 0.873e

0.502e 0.707e 0.344e

  

   

  

  
 
 
 
 
 

 

The exact solution of (7) is given by 

[2]: 

u(x, t)  

2(n ) t
n

n 1

A e sin(n x)


 



 , An  

1

0

2 x sin(n x)  dx  

Table (1) presents a comparison 

between the analytical and the 

approximate results obtained using 

computer program written in Mathcad 

(2001i): 
 

Table (1)The approximate and the analytical solution of example (1) 

 

Approximate 

solution 

x  0.25 

Analytical 

solution 

x  0.25 

Approximate 

solution 

x  0.5 

Analytical 

solution 

x  0.5 

Approximate 

solution 

x  0.75 

Analytical 

solution 

x  0.75 

t  

0.25 
0.011 0.038 0.015 0.045 0.011 0.038 

t  

0.5 
9.591104 3.237103 1.347103 4.578103 9.592103 3.237103 

t  

0.75 
9.385105 2.746104 1.178104 3.883104 8.385104 2.746104 

 

Where Lij(x) for (i, j)  e are given in 

[6] which are evaluated analytically, as 

follows: 

L00(x)  1  7.9581x + 19.9404x
2
  

16.4592x
3
 + 734178.543

x
7!

   

7136714.1722
(x 0.25)

7!
  + 

7205071.2583
(x 0.5)

7!
   

7136714.1722
(x 0.75)

7!
  + 

734178.543
(x 1)

7!
  

L10(x)  14.498x  55.7616x
2
 + 

55.16998x
3
  7136714.1722

x
7!

  + 

7546856.6887
(x 0.25)

7!
   

7820285.0331
(x 0.5)

7!
  + 

7546856.6887
(x 0.75)

7!
   

7136714.1722
(x 1)

7!
  

L20(x)  9.7483x + 55.6423x
2
  

66.75497x
3
 + 7205071.2583

x
7!

   

7820285.0331
(x 0.25)

7!
  + 

71230427.5497
(x 0.5)

7!
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7820285.0331
(x 0.75)

7!
  + 

7205071.2583
(x 1)

7!
  

L30(x)  3.8322x  23.7616x
2
 + 

33.8366x
3
  7136714.1722

x
7!

  + 

7546856.6887
(x 0.25)

7!
   

7820285.0331
(x 0.5)

7!
  + 

7546856.6887
(x 0.75)

7!
   

7136714.1722
(x 1)

7!
  

L40(x)  0.6247x + 3.9404x
2
  

5.7925x
3
 + 734178.543

x
7!

   

7136714.1722
(x 0.25)

7!
  + 

7205071.2583
(x 0.5)

7!
   

7136714.1722
(x 0.75)

7!
  + 

734178.543
(x 1)

7!
  

The computation of Lij's becomes 

so difficult and expensive when 

reducing the step size h, therefore the 

simplicity of the method is to take the 

step size large enough, which will 

guarantee the best approximation for 

the solution, the details for evaluating 

the Lij's is found in [4] . 

 

Example (2): 

Consider the initial-boundary 

value problem: 

PDE      ut  uxx,    0 < x < 1, 0 < t <  

BC's








ttu

tu

sin),1(

0),0(
  ,    0 < t < …(10) 

IC         u(x, 0)  0, 0  x  1 

A Hermite-Birkhoff problem 

also must be chosen suppose the 

choice is also similar to example (1) 

the node points is then 0, 0.25, 0.5, 

0.75, 1 and let e  {(0, 0), (0.25, 0), 

(0.5, 0), (0.75, 0), (1, 0)}, then u(x, t) is 

as given in the form (8) , and from the 

BC's u00(t)  0, u40(t)  sint; and to find 

u10(t), u20(t), u30(t), we pick (r, s) to be 

(1, 0), (2, 0), (3, 0), respectively. 

Therefore, we have the 

nonhomogeneous linear system of the 

first order ordinary differential 

equations after substituting (8) into 

(10) as follows: 

u  
10

20

30

u (t)

u (t)

u (t)

 
 
 
   

, A  

10 1 20 1 30 1

10 2 20 2 30 2

10 3 20 3 30 3

L (x ) L (x ) L (x )

L (x ) L (x ) L (x )

L (x ) L (x ) L (x )

   
   
 
     

  

29.881 12.821 2.115

22.834 42.252 22.834

2.119 12.821 29.881

 
 


 
  

 

u(t)  

10

20

30

u (t)

u (t)

u (t)

 
 
 
  

, with c  u(0)  

0

0

0

 
 
 
  

, 

B(t)  

0.529804305013021sin t

1.7086205419922sin t

15.47017904378255sin t

 
 


 
  

 

Then: 

u(t)  (t)
1

(0)c + (t)
t

0




1
(s)B(s) 

ds   where: 

(t)  
9.748t 32t 60.266t

9.748t 6 32t 60.266t

9.748t 32t 60.266t

0.502e 0.707e 0.344e

0.705e 6.251 10 e 0.873e

0.502e 0.707e 0.344e

  

   

  

  
 
 
 
 
 

 

a comparison between the analytical 

and the approximate solution is given 

in table (2): 
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Table (2) The approximate and the analytical solution of example (2) 

 

Approximate 

solution 

x  0.25 

Analytical 

solution 

x  0.25 

Approximate 

solution 

x  0.5 

Analytical 

solution 

x  0.5 

Approximate 

solution 

x  0.75 

Analytical 

solution 

x  0.75 

t  0.25 0.027 0.027 0.084 0.068 0.139 0.136 

t  0.5 0.068 0.084 0.183 0.183 0.291 0.31 

t  0.75 0.136 0.139 0.310 0.291 0.468 0.468 

 

Where the fundamental functions Lij(x) 

for (i, j)  e is given in example (1) 

and the analytical solution is obtained 

by the Duhamel's principle method, 

[2], as: 

u(x, t)  

t

0

 w(x, t  ) d 

where: 

w(x, t)  x + 

2n
(n ) t

n 1

2 ( 1)
e sin(n x)

n


 







  

Conclusions: 

1. The advantage of the approximation 

using G-spline functions is the 

evaluation of the fundamental 

functions Lij's once for all with the 

same nodes for any type of linear 

functions. 

2. Other numerical methods may give 

more accurate results but with huge 

number of calculations which 

increases running time and 

computer storage, while G-spline 

methods require minimum 

computer memory storage. 
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حل المعادلات التفاضلية الجزئية المكافئة باستخدام طريقة بيلمان المطورة مع دوال 

 G-السبلاين

 

 *أسامة حميد محمد

 

 العراق. -قسم الرياضيات وتطبيقات الحاسب، كلية العلوم، جامعة النهرين، بغداد *

 

 :الخلاصة

 الجزذيددددة ال ةا  ددددةإنّ الهدددددر الددددرذي  مددددن  ددددبا البحددددلا  ددددو تقريددددب  دددد  ال عدددداد ت ال  اضددددلية 

(Parabolic partial differential equations)   وذلك باس خدام طريقدة بيل دان وبا م  داد ملدغ  ديغة دوا

للاندداا.. سد  حو  ال عادلدة ال  اضدلية الجزذيدة مندذدب الدغ مناومدة معداد ت ت اضدلية إم ياديدة مدن  G-السبلاين

بوسداطة سسد خدام مود و ة الحد  ا ساسدية. و دث البحدلا ي ةدن مدد الرتبة ا ولغ وسي م    الناام الناتج بسهولة 

 طريقة بيل ان تع ي ا لطريقة بيل ان ا م يادية ولأي اتبة مش قة إم يادية.

 

 

 
 
 


