On Primary Multipliction Modules

Uhood S. Al-Hassani*

Received 20, May, 2010
Accepted 27, September, 2010

Abstract

: Let R be a commutative ring with identity and M be a unitary R - module. We shall say that M is a primary multiplication module if every primary submodule of M is a multiplication submodule of M. Some of the properties of this concept will be investigated. The main results of this paper are, for modules M and N , we have $\mathrm{M} \underset{R}{\otimes} \mathrm{~N}$ and $\operatorname{Hom}_{\mathrm{R}}(\mathrm{M}, \mathrm{N})$ are primary multiplications R-modules under certain assumptions.

Key words: Multiplication module, Weak multiplication, Primary submodule, Primary multiplication module.

Introduction:

In this paper all rings are commutative rings with identity and all modules are unital. A submodule N of an R -module M is called prime (resp. primary) if for any $\mathrm{r} \in \mathrm{R}$ and $\mathrm{m} \in \mathrm{M}$ such that $\mathrm{r} \mathrm{m} \in \mathrm{N}$, either $\mathrm{m} \in \mathrm{N}$ or r $\mathrm{M} \subseteq \mathrm{N}$ (resp. either $\mathrm{m} \in \mathrm{N}$ or $\mathrm{r}^{\mathrm{n}} \mathrm{M}$ $\subseteq \mathrm{N}$ for some positive integer n) [1], [2] \& [3]. Note that in this definition we do not require that N is a proper submodule of M as it was define in [4].

An ideal I of a ring R is called Primary if it is a primary submodule of R when considered as an R-module [2, p.40].

A submodule N of an R -module M is called a multiplication submodule if for each submodule K of N , there exists an ideal I of R such that $\mathrm{K}=\mathrm{IN}$. in this case we can take $\mathrm{I}=(\mathrm{K}: \mathrm{N})=$ $\{r \in R: r N \subseteq K\}$. [5]

A module M is called multiplication module if every submodule of M is multiplication submodule of M [1]. As a generalization of multiplication module. Jain in [1] introduced the
concept of weak multiplication module as follows:

An R-module M is said to be \boldsymbol{a} weak multiplication module if every prime submodule of M is a multiplication submodule of M. In this paper we introduce the concept of primary multiplication module as follows:

An R-module M is said to be primary multiplication module if every primary submodule of M is \boldsymbol{a} multiplication submodule of M.

It is clear that every primary multiplication module is weak multiplication module. Also, we give some results concerning this class of module.

1.Primary multiplication modules:

We begin this section with the notion of primary multiplication module, as follows:

Definition (1.1): An R-module M is said to be primary multiplication module if every primary submodule of M is a multiplication submodule of M .

Lemma (1.2): let f: $M \rightarrow N$ be a module epimophism. If L is a primary

[^0]submodule of N then $\mathrm{f}^{-1}(\mathrm{~L})$ is a primary submodule of M.

Proof: let $r \in R$ and $m \in M$ such that $r m \in f^{-1}(L)$ with $m \notin f^{-1}(L)$. We must prove that there exists a positive integer n such that $r^{n} M \subseteq f^{-1}(L)$.

Now $r m \in f^{-1}(L)$, then $r f(m)=f$ $(\mathrm{rm}) \in \mathrm{L}$, but L is primary submodule of N, and $f(m) \notin L$, then $r^{n} N \subseteq L$, for some positive integer n, that is $r^{n} f(m)$ $\in L$ and hence $f\left(r^{n} m\right)=r^{n} f(m) \in L$, therefore
$r^{n} m \in f^{-1}(L)$, and hence $r^{n} M \subseteq f^{-1}(L)$ this implies that $f^{-1}(L)$ is primary submodule of N .

The next proposition shows that a homomorphic image of primary multiplication module is primary multiplication module.

Proposition (1.3): let $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N}$ be an epimorphism. If M is primary multiplication module, then so is N .

Proof: let k be a primary submodule of N and L be a submodule of N such that $\mathrm{L} \subseteq \mathrm{k} \subseteq \mathrm{N}$. it is clear that $\mathrm{f}^{-1}(\mathrm{~L}) \subseteq \mathrm{f}^{-1}(\mathrm{k}) \subseteq \mathrm{M}$. but M is primary multiplication module, and by lemma (1.2) $\mathrm{f}^{-1}(\mathrm{k})$ is a primary submodule of M , thus $\mathrm{f}^{-1}(\mathrm{k})$ is a multiplication submodule of M , and hence there exits an ideal I of R such that $f^{-1}(L)=I f^{-1}(k)$. Now,
$\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~L})\right)=\mathrm{f}\left(\mathrm{If}^{-1}(\mathrm{k})\right)=\mathrm{I}\left(\mathrm{f} \mathrm{f}^{-1}\right.$ (k)). But f is an epimorphism, then
$\mathrm{L}=\mathrm{Ik}$. Therefore k is a multiplication submodule of N , and hence N is a primary multiplication module.

2.The tensor product of primary multiplication modules:

The basic motivating idea in this section will be to take two primary multiplication modules and show that their tensor product is also a primary multiplication module.
Let us state the following proposition which is needed later.

Proposition (2.1) [6. corollary (1.3)]
Let N be a submodule of an R module M . if M is a multiplication submodule of M , then the following are equivalent:

1. N a primary submodule of M .
2. $[\mathrm{N}: \mathrm{M}]$ is a primary ideal of R .
3. $\mathrm{N}=\mathrm{AM}$ for some primary ideal A of R with Ann $(M) \subseteq A$.
Proposition (2.2): If M is a primary multiplication module and N is a multiplication submodule of N , then $\mathrm{M} \otimes \mathrm{N}$ is a primary multiplication module.

Proof:

Let K be a primary submodule of $\mathrm{M} \otimes \mathrm{N}$. since M is a primary multiplication module, then M is a multiplication submodule of M , and hence $\mathrm{M} \otimes \mathrm{N}$ is a multiplication submodule of $\mathrm{M} \otimes \mathrm{N}$ by [7.theorem (2.3)]

Thus $\mathrm{K}=(\mathrm{K}: \mathrm{M} \otimes \mathrm{N})(\mathrm{M} \otimes \mathrm{N})=[(\mathrm{K}:$ $\mathrm{M} \otimes \mathrm{N}) \mathrm{M}] \otimes \mathrm{N}$.
But K is a primary submodule of $\mathrm{M} \otimes \mathrm{N}$, then $(\mathrm{K}: \mathrm{M} \otimes \mathrm{N})$ is a primary ideal in R by (2.1).
Now, clearly Ann $(\mathrm{M}) \subseteq(\mathrm{K}: \mathrm{M} \otimes \mathrm{N})$, thus again by (2.1) $(\mathrm{K}: \mathrm{M} \otimes \mathrm{N}) \mathrm{M}$ is a primary submodule of M , and hence $(\mathrm{K}: \mathrm{M} \otimes \mathrm{N}) \mathrm{M}$ is a multiplication submodule of M . therefore by [7, Theorem (2.3)] $\mathrm{K}=[(\mathrm{K}: \mathrm{M} \otimes \mathrm{N}) \mathrm{M}]$ $\otimes \mathrm{N}$ is a multiplication submodule of $\mathrm{M} \otimes \mathrm{N}$. thus $\mathrm{M} \otimes \mathrm{N}$ is a primary multiplication module.
Corollary (2.3): If each of M and N is a primary multiplication module, then $\mathrm{M} \otimes \mathrm{N}$ is a primary multiplication module.
Corollary (2.4): If the R-module M is a multiplication submodule of M and I is a primary multiplication ideal of R then IM is a primary multiplication module.

Proof:

Define $\quad \mathrm{h}: \quad \mathrm{I} \otimes \mathrm{M} \quad \rightarrow \quad \mathrm{IM} \quad$ by $\mathrm{h}\left(\sum_{i=1}^{n}\left(\mathrm{a}_{\mathrm{i}} \otimes \mathrm{m}_{\mathrm{i}}\right)\right)=\sum_{i=1}^{n} \mathrm{a}_{\mathrm{i}} \mathrm{m}_{\mathrm{i}}$ for all $\mathrm{a}_{\mathrm{i}} \in$ I and for all $m_{i} \in M$.
One can show that h is an epimorphisim. But $\mathrm{I} \otimes \mathrm{M}$ is a primary multiplication module by (2.2), hence IM is a primary multiplication module by (1.3)

3.The module Hom (M, N):

This section is devoted to stady when $\operatorname{Hom}(\mathrm{M}, \mathrm{N})$ is a primary multiplication module, where M and N are modules. We start with the following:
Definition (3.1) [8]: An R-module M is called a weak cancellation module whenever $\mathrm{AM}=\mathrm{BM}$ for ideals A and B of R, then
$\mathrm{A}+\mathrm{Ann}(\mathrm{M})=\mathrm{B}+\mathrm{Ann}(\mathrm{M})$. In particular if $\mathrm{Ann}(\mathrm{M})=0$, then we call M a cancellation module.
The following lemma is needed later.
Lemma (3.2):
Let M and N be R -modules. If K is a submodule of $\operatorname{Hom}(\mathrm{M}, \mathrm{N})$, then Ann $\mathrm{M} \subseteq(\mathrm{K}: \operatorname{Hom}(\mathrm{M}, \mathrm{N}))$
Proof: straightforward.
Proposition (3.3):
If M is a finitely generated primary module and N is a multiplication submodule of N such that Ann M $\subseteq \operatorname{Ann} \mathrm{N}$, then $\operatorname{Hom}(\mathrm{M}, \mathrm{N})$ is a primary multiplication module.

Proof:

Let K be a primary submodule of Hom (M, N) and L be a subnodule of Hom (M, N) such that $L \subseteq K$ then (L : $\operatorname{Hom}(\mathrm{M}, \mathrm{N})) \subseteq(\mathrm{K}: \operatorname{Hom}(\mathrm{M}, \mathrm{N}))$ and thus (L: Hom (M, N)) $\mathrm{M} \subseteq(\mathrm{K}$: Hom (M, N)) M.
Since K is a primary submodule of $\operatorname{Hom}(\mathrm{M}, \mathrm{N})$ then $(\mathrm{K}: \operatorname{Hom}(\mathrm{M}, \mathrm{N}))$ is a primary ideal of R by (2.1). But M is a primary multiplication module and M is a primary submodule of M , so M is a multiplication submodule of M . By
lemma (3.2) and proposition (2.1) we have $(\mathrm{K}: \operatorname{Hom}(\mathrm{M}, \mathrm{N})) \mathrm{M}$ is a primary submodule of M . thus there exist an ideal I in R such that
(L: Hom (M, N)) M = I (K: Hom (M, N)) M.

Now, since M is finitely generated and multiplication submodule of M , then M has the weak cancellation property by [8. Theorem (6.6)] and hence (L: Hom (M, N)) + Ann M = I (K: Hom (M, N)) +Ann M. thus
[(L: $\operatorname{Hom}(\mathrm{M}, \mathrm{N}))+\operatorname{Ann} \mathrm{M}] \operatorname{Hom}(\mathrm{M}$, $\mathrm{N})=[\mathrm{I}(\mathrm{K}: \operatorname{Hom}(\mathrm{M}, \mathrm{N}))+\operatorname{Ann} \mathrm{M}]$ $\operatorname{Hom}(\mathrm{M}, \mathrm{N})$
Since Ann (M) \subseteq Ann (Hom (M, N)), then
$(\mathrm{L}: \operatorname{Hom}(\mathrm{M}, \mathrm{N})) \operatorname{Hom}(\mathrm{M}, \mathrm{N})=\mathrm{I}(\mathrm{K}$: $\operatorname{Hom}(\mathrm{M}, \mathrm{N})) \operatorname{Hom}(\mathrm{M}, \mathrm{N})$
But, Hom (M, N) is a multiplication submodule of $\operatorname{Hom}(\mathrm{M}, \mathrm{N})$ by [7.Theorem (3.4)], therefore $\mathrm{L}=\mathrm{IK}$, and hence K is a multiplication submodule of $\operatorname{Hom}(\mathrm{M}, \mathrm{N})$ and thus Hom (M, N) is a primary multiplication module.

Corollary (3.4):

(A): If M is finitely generated primary multiplication module, then Hom (M, $\mathrm{M})$ is a primary multiplication module.
(B): If M is faithful, finitely generated and primary multiplication R-module, then Hom (M, R) a primary multiplication module.
The following proposition is a partial converse of (3.3)
Proposition (3.5):
Let each of M and N be R modules. If M is a multiplication submodule of M such that Ann $\mathrm{M}=$ Ann $\operatorname{Hom}(M, N)$ and $\operatorname{Hom}(M, N)$ is finitely generated primary multiplication module, then M is a primary multiplication module.

Proof:

Let K be a primary submdule of M and L be a submodule of M such that L $\subseteq \mathrm{K}$. then $(\mathrm{L}: \mathrm{M}) \subseteq(\mathrm{K}: \mathrm{M})$ and hence $(\mathrm{L}: \mathrm{M}) \operatorname{Hom}(\mathrm{M}, \mathrm{N}) \subseteq(\mathrm{K}: \mathrm{M})$ Hom (M, N). Since K is a primary
submodule of M , then ($\mathrm{K}: \mathrm{M}$) is a primary ideal in R by (2.1) But
Hom (M, N) is a multiplication submodule of $\operatorname{Hom}(M, N)$, and hence by the previous similar argument we have, $(\mathrm{K}: \mathrm{M}) \operatorname{Hom}(\mathrm{M}, \mathrm{N})$ is a primary submodule of $\operatorname{Hom}(\mathrm{M}, \mathrm{N})$, and therefor $(\mathrm{K}: \mathrm{M}) \operatorname{Hom}(\mathrm{M}, \mathrm{N})$ is a multiplication submodule of $\operatorname{Hom}(\mathrm{M}, \mathrm{N})$, This implies the existence of an ideal I in R such that (L:M) $\operatorname{Hom}(\mathrm{M}, \mathrm{N})=\mathrm{I}(\mathrm{K}: \mathrm{M}) \operatorname{Hom}$ (M,N).
Now, Hom (M, N) is finitely generated and multiplication submodule of M , so Hom (M, N) has the weak cancellation property by [8, theorem (6.6)]. That is $(\mathrm{L}: \mathrm{M})+\operatorname{Ann} \operatorname{Hom}(\mathrm{M}, \mathrm{N})=\mathrm{I}(\mathrm{K}: \mathrm{M})$ + Ann $\operatorname{Hom}(\mathrm{M}, \mathrm{N})$
Thus [(L: M) + Ann Hom (M, N)] M= $[\mathrm{I}(\mathrm{k}: \mathrm{M})+\operatorname{Ann} \operatorname{Hom}(\mathrm{M}, \mathrm{N})] \mathrm{M}$.
But Ann $\mathrm{M}=\mathrm{Ann} \operatorname{Hom}(\mathrm{M}$, N).Therefore (L: M) M=I (k: M) M.

Also, M is amultiplication submodule of M, so $L=I k$, then k is a multiplication submodule of M . Therefore M is a primary multiplication module.
We end this paper by the following corollary

Corollary (3.6):

(A): If M is a multiplication submodule of M such that
Ann (M) = Ann (Hom (M, M)) and Hom (M, M) is a finitely generated, primary multiplication module then M is a primary multiplication module.
(B): Let M be a multiplication submodule of M such that
Ann $\mathrm{M}=\mathrm{Ann}$ (Hom (M, R)) If Hom (M, R) is a finitely generated primary
multiplication module, then M is a primary multiplication module.

References:

1.Jain, R.K. 1981, Generalized multiplication modules, Riv.Mat. Univ. Parma, 7: 461-472.
2.Larsen, M. D. and McCarthy P.J. 1971, Multiplicative theory of ideal, Academic Press, New York and London.
3.Smith, P.F. 2001, Primary modules over commutative rings, Glasg. Math. J. 43 (1): 103-111.
4.Reza Jahani-Nezhad and Naderi, M.H. 2009, Weak primary submodules of multiplication modules and intersection theorem, Int. J. Contemp. Math. Sciences. 4 (33):1645-1652.
5.Ebrahimi Atani S. and Khojasteh S.and Ghaleh G. 2006, On multiplication Modules, International Mathematical Forum, 1, No.24: 1175-1180.
6.Al-Hashimi B and AbdulRahman A.A., 1994, Condition under which a multiplication module is finitely generated, Iraqi J. Sci., 35, (7): 397411.
7.Al-Hashimi B. and Al-Bahrany B.H. 1994, On the tensor product and the module of homomorphisms of multiplication modules, Iraqi J. Sci. 35, (3): 799-825.
8.Naoum A. G. and Mijbass, A. S. 1997, Weak cancellation modules, Kyungpook. Math. J. 37: 73-82.

المقاسات الجدائية الابتدائية
 عهولد سعدي (لحسنـي*

*قسم الحاسبات/ كلية العلوم/ جامعة بغداد

يقال لمقاس أحادي M معرفا على حلقة ابدالية ذات عنصر محايد R بأنه جدائي ابتائي أذا كان كل مقاس ابتدائي منه هو مقاس جزئي جدائي. درسنا بعض خواص هذا الدفهوم وبر هنا على انه اذا كان كل من M و N N

[^0]: *Department of Computer Science, college of Science ,University of Baghdad, Baghdad, Iraq

