L-pre- and L-semi-P- compact Spaces

Nerjis Abdul Jabbar Dawood*

Suaad Gedaan Gasim*

Received 4, August, 2010 Accepted 14, January, 2011

Abstract:

The purpose of this paper is to study a new types of compactness in the dual bitopological spaces. We shall introduce the concepts of L-pre- compactness and L-semi-P- compactness .

Key words: L-pre-compact ,L-semi-p-compact ,L-pre-open,L-semi-p-open.

Introduction:

The concepts of bitopological space was initiated by Kelly[1].A set Х equipped with two topologies τ_1 and τ_2 is called a bitopological space denoted by (X, τ_1, τ_2) . Navalagi [2] introduced the concepts of pre-open and semi-P-open sets. A subset A of a topological space (X, τ) is said to be "pre-open" set if and only if $A \subseteq \operatorname{int} cl(A)$, the family of all pre open subsets of X is denoted by PO(X). The complement of a pre-open set is called pre-closed set, the family of all pre- closed subsets of X is denoted by PC(X) [2].The smallest pre- closed subset of X containing A is called "pre-closure of A" and is denoted by pre-cl(A)[3].

Let (X, τ) be a topological space, a subset A of X is said to be "semi-P-open" set if and only if there exists a pre-open subset U of X such that $U \subseteq A \subseteq pre-cl(U)$, the family of all semi –p-open subsets of X is denoted by SPO(X).The complement of a semi-p-open set is called "semi-pclosed" set, the family of all semi-pclosed subsets of X is denoted by SPC(X). The smallest semi-p-closed set containing A is called semi-pclosure of A denoted by semi-pcl(A)[4].[3]shows that every open set is a pre-open and the union of any family of pre-open subsets of X is a pre-open set, but the intersection of any two pre-open subsets of X need not be apre-open set.[4] shows that every pre-open set is a semi -p-open and consequently every open set is a semi-p-open. Also she shows that the union of any family of semi-p-open subsets of X is a semi-p-open set, but the intersection of any two semi-popen subsets of X need not be a semip-open set.

L-open set was studied by Al-Talkhany [5], asubset G of a bitopological space (X, τ_1, τ_2) is said to be "L –open" set if and only if there exists a τ_1 -open set U such that $U \subseteq G \subseteq cl\tau_2(U)$, the family of all Lopen subset of X is denoted by L-O(X). The complement of an L-open set is called "L-closed" set, the family of all L-closed subsets of X is denoted by L-C(X). In a bitopological space (X, τ_1, τ_2) every τ_1 -open set is an Lopen subsets of X is an L-open set, but the intersection of any two L-open

^{*}Department of Mathematics-Ibn-Al-Haitham College of Education - University of Baghdad

subsets of X need not be L-open set[5].

A collection of sets is said to have the finite intersection property (FIP) if and only if the intersection of each finite subcollection of it is non empty.[6]

2-L-pre - and L-semi-p - compact spaces

In this section we shall introduce a new typ of compactness namely L-pr – (L-semi-p-) compactness. We start with definition of L-pre-(L-semi-p-) open set.

Definition (2.1):

Let (X, τ_1, τ_2) be a bitopological space and let G be a subset of X. then G is said to be:

1- "L-pre-open" set if and only if there exists a τ_1 -pre-open set U such that $U \subseteq G \subseteq c l \tau_2(U)$. The family of all L-pre-open sub sets of X is denoted by L - PO(X).

2- "L-semi-P-open" set if and only if there exists a τ_1 - semi-P-open setU such that $U \subseteq G \subseteq cl\tau_2(U)$. The family of all L- semi-P-open sub sets of X is denoted by L - SPO(X).

Definition (2.2):

Let (X, τ_1, τ_2) be a bitopological space and let A be a subset of X.

1. By an "L-open cover of A" we mean a subcollection of the family L-O(X) which covers A .

2. By an "L -pre-open cover of A" we mean a subcollection of the family L-PO(X) which covers A.

3. By an "L -semi-p-open cover of A" we mean a subcollection of the family L-SPO(X) which covers A.

Remark (2.3):

1- Every L-open cover is an L- preopen. 2- Every L-pre-open cover is an L-semi-P-open.

3- Every L-open cover is an L-semi-P-open.

The converse of each case of remark (2.3) is not true in general as the following example shows:

Example (2.4): Let $X = \{a, b, c, d\}$

 $\tau_{1} = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$ $\tau_{2} = D = \text{The discrete topology} = \text{The power set of } X$ $L - O(X) = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$ $L = DO(X) = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a$

$$L - PO(X) = \begin{cases} X, \varphi, \langle a \rangle, \langle b \rangle, \langle c \rangle, \langle a, b \rangle, \langle a, c \rangle, \\ \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\} \end{cases}$$

$$L - SPO(X) = L - PO(X) \cup$$

{{a,d}, {c,d}, {b,c,d}}
Let $C = \{\{c\}, \{a,b,d\}\}$ and
 $B = \{\{a,d\}, \{b,c\}\}$, clear that B is an L
-semi-p- open cover, but it is neither L-
pre-open nor L-open, and C is an L-
pre-open cover,but it is not L-open
cover.

Remark (2.5):

Every τ_1 -pre-open(τ_1 -semi- popen) cover of a sub set of a bitopological space (X, τ_1, τ_2) is an L -pre-open "L-semi-p-open" respectively.

The opposite direction of remark (2.5) is not true in general as the following example show:

Example (2.6):

 $X = \{a, b, c, d\} \qquad \tau_1 = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$

 $\boldsymbol{\tau}_2 = \boldsymbol{I}$ = the indiscrete topology

$$\tau_1 - po(X) = \begin{cases} X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\} \\ , \{a, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c\} \end{cases}$$

 $\tau_1 - SPO(X) = \tau_1 - PO(X) \cup \{\{a, d\}, \{b, c, d\}\}\$ $L - PO(X) = \tau_1 - PO(X) \cup \{\{a, d\}, \{b, c, d\}, \{c, d\}, \{b, c, d\}\}\$ L - SPO(X) = L - PO(X) If $C = \{\{a, c\}, \{b, d\}\}\)$, then C is an L -pre-open and L -semi-p-open cover, but it is neither τ_1 -pre-open nor τ_1 -

semi-p-open cover.

Definition (2.7):

A bitopological space (X, τ_1, τ_2) is said to be :

1- "L-pre-compact space " if and only if every L-pre-open cover of X has a finite sub cover.

2- "L-semi-p-compact space" if and only if every L-semi-p-open cover of X has a finite sub cover.

Proposition (2.8):

1- Every L-semi-p-compact space is an L- pre-compact.

2- Every L-pre- compact space is an L- compact.

3- Every L-semi-p-compact space is an L-compact.

Proof:

Follows from remark (2.3).

Remark (2.9):

The opposite direction of each case in proposition (2.8) is not true in general. As the following two examples show:

1- Let X be an infinite set with two topologies $\tau_1 = I$ and $\boldsymbol{\tau_2} = \boldsymbol{D}$

 $L - O(X) = \{X, \phi\}, L - PO(X) = \mathbb{P}(X) \text{ and } L - SPO(X) = \mathbb{P}(X)$

Note that (X, τ_1, τ_2) is an L-compact space but it is neither L-precompact space nor L-semi-pcompact.

Let X=N with two topologies $L-SPO(N) = \mathbb{P}(N)$

Note that (N, τ_1, τ_2) is an L-precompact space , but it is not L-semip-compact.

Proposition (2.10):

Let (X, τ_1, τ_2) be abitopological

$$\mathcal{T}_{1} = \{ u \subseteq N : 2 \notin u \} \cup \{ N \}$$
$$\mathcal{T}_{2} = D$$
$$L - O(N) = \mathcal{T}_{1}$$
$$L - PO(N) = \mathcal{T}_{1}$$

space. If

1- X is an L-pre- compact space ,than (X, τ_1) is pre- compact space.

2- X is an L-semi-p-compact space, then (X, τ_1) is semi-p-compact space.

Proof :

follows from remark (2.5).

Remark (2.11):

The opposite direction of each case in proposition (2.10) is not true in general.

As the following example show:

Let X = N = The set of natural numbers

$$\mathcal{T}_{1} = \{ u \subseteq N : 1 \notin u \} \cup \{ N \}$$
$$\mathcal{T}_{2} = I$$
$$\mathcal{T}_{1} - PO(N) = \mathcal{T}_{1}$$
$$L - PO(N) = \mathbb{P}(N) \setminus \{ 1 \}$$
Note that (N, τ_{1}) is pre- comp

Note that (N, τ_1) is pre- compact space, but (N, τ_1, τ_2) is not L-precompact space.

Proposition (2.12):

An L-pre-closed (L-semi-p-closed) subset of an L-pre- compact(L-semi-pcompact) space is an L-precompact(L-semi-p-compact) set respectively *Proof:*

Let A be an L-pre-(L-semi-p-) closed subset of an L-pre- (L-semi-p-) compact space (X, τ_1, τ_2) and let $\{G_{\alpha} : \alpha \in \Lambda\}$ be an L-pre-(L-semip-) open cover of A .Then $\{G_{\alpha} : \alpha \in \Lambda\} \cup A^c$ forms an L-pre-(L- semi-p-) open cover of X which is Lpre- (L-semi-p-) compact space. So there are finitely many elements $\alpha_1, \alpha_2, ..., \alpha_n$ such that $X = \bigcup_{i=1}^n G_{\alpha_i} \bigcup A^c$, it follows that $A \subseteq \bigcup_{i=1}^n G_{\alpha_i}$. Hence A is an L-pre-(L-

semi-p-) compact.

Corollaries (2.13):

1- An L-pre-closed (L-semi-p-closed) subset of an L-pre- compact(L-semi-pcompact) space is an L- compact.

2- An L-semi-p-closed subset of an L-semi -p- compact space is an L-pre-compact.

Proof:

follows from propositions (2.12) and (2.8).

Corollaries (2.14):

1- An L-pre-closed (L-semi-p-closed) subset of an L-pre- compact (L-semi-pcompact) space is a τ_1 -pre-

compact(τ_1 -semi-p-compact)

respectively.

2- An L-semi-p-closed subset of an L-semi -p- compact space is a τ_1 -pre-compact.

3- An L-pre-closed (L-semi-p-closed) subset of an L-pre- compact(L-semi-p-compact) space is a τ_1 - compact.

Proof :

follows from proposition (2.12), remarks (2.3) and (2.5).

Definition (2.15):

A bitopological space (X, τ_1, τ_2) is said to be :

1. "L- T_2 -space" if and only if for each pair of distinct points x and y in X,there exist two disjoint L-open subset G and H of X such that $x \in G$ and $y \in H$.[5] "L-pre-T₂-space" if and only if for each pair of distinct points x and y,there are two disjoint L-pre-open subsets U and V of X such that x ∈ U and y ∈ V.
 "L-semi-p-T₂-space" if and only if for each pair of distinct points x and

if for each pair of distinct points x and y,there are two disjoint L-semi-p-open subsets U and V of X such that $x \in U$ and $y \in V$.

Remark (2.16):

An L-pre- compact subset of an Lpre $-T_2$ -space need not be L-preclosed.

For example:

 $X = \{1,2,3\}$ $\tau_1 = \{X,\phi,\{1,2\}\}$ $\tau_2 = \{X,\phi,\{1\},\{3\},\{1,3\}\}$ $L - O(X) = \{X,\phi,\{1,2\}\}$ L - PO(X) = L - O(X) $\cup \{\{1\},\{2\},\{2,3\},\{1,3\}\}$

Note that (X, τ_1, τ_2) is an L-pre - T_2 -space.

Let $A = \{1, 2\}$, clear that A is an L-pre- compact subset of X, but it is not L-pre-closed.

Remark (2.17):

An L-semi -p- compact subset of an L-semi-p- T_2 -space need not be L-semi-p-closed.

For example:

Note that (X, τ_1, τ_2) is an L-semi-p - T_2 -space.

Let $A = \{1, 2, 4\}$, clear that A is an L-semi-p- compact subset of X, but it is not L -semi-p-closed.

Definition (2.18):

$$X = \{1,2,3,4\}$$

$$\tau_{1} = \{X, \phi, \{1\}, \{2\}, \{1,2\}\}$$

$$\tau_{2} = D$$

$$L - O(X) = \{X, \phi, \{1\}, \{2\}, \{1,2\}\}\}$$

$$L - PO(X) = \{X, \phi, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}, \{1,2,4\}\}\}$$

$$L - SPO(X) = L - PO(X) \bigcup$$

$$\{\{2,3,4\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{1,3,4\}\}\}$$

Let $f : (X, \tau_{1}, \tau_{2}) \rightarrow (Y, \tau_{1}^{'}, \tau_{2}^{'})$

be any function, then f is said to be: 1. "L-continuous" function if and only if the inverse image of any L-

open subset of Y is an L-open subset of X.[5]

2. "L-pre-irresolute" function if and only if the inverse image of an L-pre-open subset of Y is an L-pre-open subset of X.

3. "L-semi-p-irresolute" function if and only if the inverse image of an Lsemi-p-open subset of Y is an L-semip-open subset of X.

Proposition (2.19):

The L-pre-irresolute (L-semi-pirresolute) image of an L-pre-compact (L-semi-p-compact) space is an L-precompact (L-semi-p-compact) respectively.

Proof:

Suppose that $f:(X,\tau_1,\tau_2) \rightarrow (Y,\tau_1,\tau_2)$ is an L-pre-(L-semi-p-) irresolut and onto function and X is an L-pre-(Lsemi-p-) compact space. Let $\{G_{\alpha} : \alpha \in \Delta\}$ be an L-pre-(L-semi-p-) open cover of Y, it follows that $\{f^{-1}(G_{\alpha}): \alpha \in \Delta\}$ is an L-pre-(Lsemi-p-) open cover of X which is Lpre-(L-semi-p-) compact.So there are finitely many elements $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ such that $X = \bigcup_{i=1}^{n} f^{-1} (G_{\alpha_i}) = f^{-1} (\bigcup_{i=1}^{n} G_{\alpha_i})$

.Therefore $Y = \bigcup_{i=1}^{n} G_{\alpha_i}$ Hence *Y* is an Lpre-(L-semi-p-) compact.

Proposition(2.20):

The L-continuous image of an L-compact space is an L-compact.

Proof:

Suppose that $f:(X,\tau_1,\tau_2) \to (Y,\tau_1,\tau_2)$ is an L-continuous and onto functionand X is an L-compact space. Let $\{G_{\alpha} : \alpha \in \Delta\}$ be an L-open cover of Y, it follows that $\{f^{-1}(G_{\alpha}): \alpha \in \Delta\}$ is an L-open cover of X which is L-compact.So there are finitely many elements $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ such that $X = \bigcup_{i=1}^n f^{-1}(G_{\alpha_i}) = f^{-1}(\bigcup_{i=1}^n G_{\alpha_i})$. Therefore $Y = \bigcup_{i=1}^n G_{\alpha_i}$, hence Y is an L-compact.

Proposition (2.21):

The L-continuous image of an Lpre-compact (L-semi-p-compact) space is an L-pre-compact

Proof:

follows from proposition (2.20) and (2.8).

Proposition (2.22):

The L-pre-irresolute image of an Lsemi-p-compact space is an L-precompact.

Proof:

follows from proposition (2.19) and (2.8).

Theorem (2.23):

Let (X, τ_1, τ_2) be abitopological space and let A be a subset of X.A point x in X is an L-pre-closure (Lsemi-p-closure) point of A if and only if every L-pre-neighbourhood (L-semip- neighbourhood) of x intersects A. Proof: Assum that x is an L-pre-closure (Lsemi-p-closure) of A , then

$$x \in \mathfrak{T} = \bigcap \begin{cases} F \subseteq X : A \subseteq F \\ and \ F \ is \ an \ L - \ pre - closed \\ (L - semi - p - closed) \end{cases}.$$

Suppose that there exists an L-preneighbourhood (L-semi-pneighbourhood) M of x such that $M \cap A = \phi$, that is, there exists an L-pre-open(L-semi-p -open) set G such $x \in G \subset M$, then that such that $A \subseteq M^{c} \subseteq G^{c}$, but G^{c} is an L-preclosed (L-semi-p-closed) with $x \notin \mathbf{G}^{c}$. Therefor $x \notin \mathfrak{I}$ which is a contradiction hence every L-preneighbourhood (L-semi-pneighbourhood) of x must intersects A. Conversely

that Assume every L-preneighbourhood (L-semi-pneighbourhood) of x intersects A, and suppose that x is notL -pre-closure (Lsemi-p-closure) point of A,then $x \notin \Im$,that is, there exists an L-pre-closed (Lsemi-p -closed) subset F of X with $A \subseteq F$ such that $x \notin F$, it follows that $x \in F^{c}$ which is an L-preopen(L-semi-p -open) set. Now there is an L-pre-neighbourhood (L-semi-p- F^{c} of x neighbourhood) with $A \cap \mathbf{F}^{c} = \phi$.that implies to contradiction with our assumption.Hence x must be an L-pre-(L-semi-p-) closure point of A

Theorem (2.24):

Let (X, τ_1, τ_2) be abitopological space. Asubset A of X is an L-pre-(Lsemi-p-) closed if and only if A = L - Pcl(A)(L - SPcl(A)). Proof: Suppose that $A \in L - PC(X)(L - SPC(X))$

 $A \neq L - Pcl(A)(L - SPcl(A)).$ and Since $A \subseteq L - Pcl(A)(L - SPcl(A))$, so $L - Pcl(A)(L - SPcl(A)) \not\subset A$, that exists is,there an element $r \in L - Pcl(A)(L - SPcl(A))$ and $r \notin A$, it follows that $r \in A^c$ which is an L-pre-(L-semi-p-) open set. Then by theorem (2.23) $A \cap \mathbf{A}^c \neq \phi$ which is a contradiction with the fact $A \cap A^c = \phi$. Hence A = L - Pcl(A)(L - SPcl(A))Conversly

Assume that A = L - Pcl(A)(L - SPcl(A)), but L - Pcl(A)(L - SPcl(A)) is an L-pre-(L-semi-p-) closed subset of X by definition of L-pre-(L-semi-p-) closur of a set A wich is the intersection of all L-pre-(L-semi-p-) closed subsets of X containing A. So A is an L-pre-(L-semi-p-) closed set. **Definition (2.25):**

Let (X, τ_1, τ_2) be abitopological space and let (f, X, A, \geq) be a net in X. Then f is said to be:

1- "L-pre-convergent" to a point \mathcal{X}_o in X if and only if for each L-prenhd.M of \mathcal{X}_o there exists an element $a_o \in A$ such that $f_a \in N$ for each $a \ge a_o$.

2- "L-semi-p-convergent" to a point \mathcal{X}_o in X if and only if for each L-semi-p-nhd. M of \mathcal{X}_o there exists an element $a_o \in A$ such that $f_a \in N$ for each $a \ge a_o$.

Definition (2.26):

Let (X, τ_1, τ_2) be abitopological space and let (f, X, A, \geq) be a net in X. A point \mathcal{X}_{α} in X is called:

1- "L-pre-cluster point" of f if and only if for each $a \in A$ and for each L-

pre-nhd. M of \mathcal{X}_o there exists an element $b \ge a$ in A such that $f_b \in M$.

2- "L-semi-p-cluster point" of f if and only if for each $a \in A$ and for each Lsemi-p-nhd. M of \mathcal{X}_o there exists an element $b \ge a$ in A such that $f_b \in M$.

Theorem (2.27):

Let (X, τ_1, τ_2) be abitopological space and let (f, X, A, \geq) be a net in X. for each $a \in A$, let $K_a = \{f_x : x \geq ainA\}$, then a point p of X is an L-pre-cluster(L-semi-p-cluster) point of f if and only if $p \in L - Pcl(K_a)(L - SPcl(K_a))$.

Proof:

Assum that p is an L-pre-(L-semip-) cluster point of f and let M be an L-pre-(L-semi-p-) nhd.of p, then for each $a \in A$, there exists an element $x \ge a$ in A such that $f_x \in M$ hence $K_a \cap M \neq \phi$ for each $a \in A$. So by theorem (2.23)

 $p \in L - Pcl(K_a)(L - SPcl(K_a))$ for each $a \in A$.

Conversely

Assum that $p \in L - Pcl(K_a)(L - SPcl(K_a))$ for each $a \in A$, and suppose, if possible, pis not an L-pre-(L-semi-p-) cluster point of f, then there exists an L-pre-(L-semi-p-) nhd.Mof p and an element $a \in A$ such that $f_x \notin M$ for every this implies $x \ge a$ in A. that $K_a \cap M = \phi$, it follows that $p \notin L - Pcl(K_a)(L - SPcl(K_a))$ for this a which is a contradiction. Hence p must be an an L-pre-(L-semi-p-) cluster point of the net f.

Definition (2.28):

Let (X, τ_1, τ_2) be a bitopological space and let F be a filter on X. Apoint x inX is called 1- An" L-pre-cluster" point of \mathbf{F} if and only if each L-pre-nhd. Of x intersects every member of \mathbf{F} .

2- An" L-semi-p-cluster" point of \mathbf{F} if and only if each L-semi-p-nhd. Of x intersects every member of \mathbf{F} .

Theorem (2.29):

Let (X, τ_1, τ_2) be a bitopological space and let \mathbf{F} be a filter on X. A point p inX is an L-pre-(L-semi-p-) cluster point of \mathbf{F} if and only if $p \in L - Pcl(F)(L - SPcl(F))$, for each $F \in \mathbf{F}$.

Proof:

Suppose that p is an L-pre-(Lsemi-p-) cluster point of \mathbf{F} , then each L-pre-(L-semi-p-) nhd.M of p , $F \cap M \neq \phi$ for every $F \in \mathbf{F}$. It follows by theorem (2.23) that $p \in L - Pcl(F)(L - SPcl(F))$ for each $F \in \mathbf{F}$.

Conversly

Assum that $p \in L - Pcl(K_a)(L - SPcl(K_a))$ for each $F \in \mathbf{F}$, then by theorem (2.23) every L-pre-(L-semi-p-) nhd.of p intersects F for each $F \in \mathbf{F}$.Hence p is an L-pre-(L-semi-p-) cluster point of **F**.

Theorem (2.30):[6]

Let A be anon empty collection of subsets of a set X such that A has the FIP. Then there exists an ultrafilter \mathbf{F} containing A.

Remark (2.31): [6]

Every filter in anon- empty set X has the FIP.

Theorem (2.32):

Let (X, τ_1, τ_2) be a bitopological space. Then the following statements are equivalent

1- X an L-pre-(L-semi-p-) compact space,

2- Every collection of an L-pre-(Lsemi-p-) closed subsets of Xwith FIP has a non empty intersection ,and

3- Every filter on X has an L-pre-(L-semi-p-) cluster point

Proof:

 $1 \rightarrow 2$ Let $\{F_{\alpha}: \alpha \in \Lambda\}$ be a collection of L-pre-(L-semi-p-) closed subset of X with the FIP . suppose that $\bigcap_{\alpha \in \Lambda} F_{\alpha} = \phi \text{,it follows by De-Morgen}$ Laws that $\bigcup_{\alpha \in \Lambda} F_{\alpha}^{c} = X$ where F_{α}^{c} is an L-pre-(L-semi-p-) open set for each $\alpha \in \Lambda$.therefore $\left\{ F_{\alpha}^{c} : \alpha \in \Lambda \right\}$ forms an L-pre-(L-semi-p-) open cover for X which is an L-pre-(L-semi-p-) compact space, then there exist fintiely many $\alpha_1, \alpha_2, \dots, \alpha_n$ such elements $\bigcup_{i=1}^{n} F_{\alpha_i}^c = X . \quad \text{Again by De-Morgen}$ Laws we have that $\bigcap_{i=1}^{n} F_{\alpha_i} = \phi$ which is a contradiction since $\{F_{\alpha}: \alpha \in \Lambda\}$ has the FIP. Hence $\bigcap_{\alpha \in \Lambda} F_{\alpha} = \phi$ $2 \rightarrow 3$ Let \mathbf{F} be a filter on X, then by remark(2.31) F has the FIP, it follows

remark(2.31) \mathbf{F} has the FIP, it follows that the collection $\{L - Pcl(F)(L - SPcl(F)): F \in \mathbf{F}\}$ of L-pre-(L-semi-p-) closed subsets of X also has the FIP, so by (2) there exists at least one point $x \in \bigcap \{L - Pcl(F)(L - SPcl(F)): F \in \mathbf{F}\}\$ then by theorem (2.29) x is an L-pre-(L-semi-p-) cluster point of \mathbf{F} . thus every filter on X has an L-pre-(Lsemi-p-) cluster point.

 $3 \rightarrow 1$

Assume that every filter on X has an L-pre-(L-semi-p-) -cluster point. To show that X is an L-pre-(L-semi-p-) compact space and let \Im be an L-pre-

(L-semi-p-) open cover of X and suppose , if possible, \mathfrak{I} has no finite sub cover the collection А $= \{X - G : G \in Y\}$ has the FIP, for if afinite there is sub collection $\{X - G_i : 1 \le i \le n\}$ of A such that $\bigcap \{X - G_i : 1 \le i \le n\} = \phi$ this implies $\bigcup \{G_i : 1 \le i \le n\} = X$ which that is contradicts our supposition that \mathfrak{T} has no finite sub cover, thus A must have the FIP, it follows by theorem (2.30)that there exists an ultrafilter Fon X containing A .by (3) \mathbf{F} has an L-pre-(L-semi-p-) cluster point $x \in X$, by theorem (3.39)then $x \in L - Pcl(F)(L - SPcl(F))$ for each $F \in \mathbf{F},$ particular in $x \in L - Pcl(X - G)(L - SPcl(X - G))$ for each $G \in \mathfrak{I}$. But X-G is an L-pre-(L-semi-p-) closed subset of X for each $G \in \mathfrak{I}$, therefore by proposition (2.24) L - Pcl(X - G)(L - SPcl(X - G)) = X - Gfor every $G \in \mathfrak{I}$. This implies $x \in \bigcap \{X - G : G \in \mathfrak{I}\}, \text{ so by De-}$ Morgen Laws $x \in X - \bigcup \{G : G \in M\}$ \mathfrak{I} , that is, $x \notin \bigcup \{G: G \in \mathfrak{I}\}$, which is acontradiction with the fact that \Im is an L-pre-(L-semi-p-) open cover of X ,hence \Im must have a finite sub cover and consequently X is an L-pre-(Lsemi-p-) compact space.

Theorem (2.33):

Let (X, τ_1, τ_2) be a bitopological space, if X is an L-pre-(L-semi-p-) compact space, then every net in X has an L-pre-(L-semi-p-) cluster point *Proof:*

let (f, X, A, \geq) be a net in X. for each $a \in A$ let $K_a = \{f_x : x \geq a \text{ in } A\}$. Since A is directed by \geq , so the collection $\{K_a : a \in A\}$ has the FIP. Hence

 $\{L - Pcl(K_a)(L - SPcl(K_a)): a \in A\}$ also has FIP, it follows by theorem (2.32) that $\bigcap \{L - Pcl(K_a)(L - SPcl(K_a)): a \in A\} \neq \phi.$ Let $p \in \bigcap \{L - Pcl(K_a)(L - SPcl(K_a)): a \in A\} \neq \phi$, then $p \in L - Pcl(K_a)(L - SPcl(K_a))$ for each $a \in A$, so by theorem (3.37) p is an L-pre-(L-semi-p-) cluster point of f.

References:

- [1] Kelly,J.C., 1963," Bitopological spaces", Proc. London Math.Soc.13, p.p.71-89.
- [2] Navalagi ,G.B., 2000,"Definition Bank in General Topology", which is available at Topology Atlas – Survey Articles Section.
- [3] Nasir ,A.I., 2005,"some Kinds of strongly Compact and Pair- wise

compact Spaces"M.SC.Thesis, , College of Education Ibn Al-Haitham, University of Baghdad,.

- [4] Al-Khazaraji, R.B., 2004," On Semi-p-open Sets", M.Sc. Thesis, College of Education Ibn Al-Haitham, University of Baghdad,.
- [5]AL-Talkhany, Y.K., 2001, "Separation Axioms in Bitopological spaces ", Research submitted to college of Education Babylon University as apartial Fulfillment of the Requirement for Degree of master of science in Math.,.
- [6]Sharma,L.J.N., 2000, "Topology", Krishna Prakashan Media (P) Ltd, India, Twenty Fifth Edition,.

فضاءات الرص من النوع (L-pre- and L-semi-P-

سعاد جدعان جاسم*

نرجس عبد الجبار داود *

*قسم الرياضيات - كلية التربية- ابن الهيثم - جامعة بغداد

الخلاصة:

الغرض من هذا البحث هو دراسة انواع جديدة من التراص في الفضاءات التبلوجية الثنائية . اذ سنقدم التراص من النوع (L-pre- and L-semi-P-)