New Fuzzy Normed Spaces

Jehad R. Kider*

Received 20, April, 2011 Accepted 4, December, 2011

Abstract:

In this paper the research introduces a new definition of a fuzzy normed space then the related concepts such as fuzzy continuous, convergence of sequence of fuzzy points and Cauchy sequence of fuzzy points are discussed in details.

Key words: fuzzy set, fuzzy normed space, sequence of fuzzy points, fuzzy continuous.

S1:Basic Concepts About Fuzzy Sets:

Definition 1.1: [1]

Let X be a nonempty set of elements. A fuzzy set \tilde{A} in X is characterized by a membership function, $\mu_{\tilde{A}}$: $X \rightarrow [0.1]$. Then \tilde{A} can be written by $\tilde{A} = \{(x, \mu_{\tilde{A}} (x) | x \in X, 0 \le \mu_{\tilde{A}} (x) \le 1\}$

Definition 1.2: [1]

Let \tilde{A} and \tilde{U} be two fuzzy sets in X then

- 1. $\tilde{A} \subseteq \tilde{U} \Leftrightarrow \mu_{\tilde{A}}(x) \leq \mu_{\tilde{U}}(x)$ for all $x \in X$.
- 2. $\tilde{A} = \tilde{U} \Leftrightarrow \mu_{\tilde{A}}(x) = \mu_{\tilde{U}}(x)$ for all $x \in X$.
- 3. Then complement of \tilde{A} (denoted by \tilde{A}^c) is also a fuzzy set with membership function $\mu_{\tilde{A}}{}^c$ (x) =1- $\mu_{\tilde{A}}$ (X) for all $x \in X$.
- 4. $\tilde{A} = \emptyset \Leftrightarrow \mu_{\tilde{A}}(x) = 0$ for all $x \in X$, where \emptyset is the empty fuzzy set.

Definition 1.3: [2],[3]

A fuzzy point P_x in X is a fuzzy set with membership function

$$\mu_{Px}(y) = \begin{cases} \alpha & \text{if } y = x \\ 0 & \text{otherwise} \end{cases}$$

For all $y \in X$ where $0 < \alpha < 1$. We denote this fuzzy point by x_{α} or (x,α) .

Definition 1.4: [4],[5]

Two fuzzy points x_{α} and y_{β} are said to be equal if x = y and $\alpha = \beta$ where $\alpha, \beta \in (0,1]$.

Definition 1.5: [5],[6]

Let x_{α} be a fuzzy point and \tilde{A} a fuzzy set in X. then x_{α} is said to be in \tilde{A} or belongs to \tilde{A} denoted by $x_{\alpha} \in \tilde{A}$ if $\alpha \leq \mu_{\tilde{A}}(x)$.

Definition 1.6: [6],[7]

Let f be a function from a nonempty set X into a nonempty set Y. If \tilde{U} is a fuzzy set in Y then f⁻¹ (\tilde{U}) is a fuzzy set in X with membership function $\mu_{f^{-1}(\tilde{U})} = \mu_{\tilde{U}}$ of.

If \tilde{A} is a fuzzy set in X then $f(\tilde{A})$ is a fuzzy set in Y with membership

$$\mu_{f(\tilde{A})}(y) = \begin{cases} \sup \{\mu_{\tilde{A}}(x) \mid x \in f^{-1}(y) \} \\ 0 & \text{otherwise} \end{cases}$$
if $f^{-1}(y) \neq \emptyset$

For all $y \in Y$ where $f^{-1}(y) = \{x \in X | f(x) = y\}$

Proposition 1.7: [7],[5]

Let $f: X \to Y$ be a function then for a fuzzy point x_{α} in X, $f(x_{\alpha})$ is a fuzzy point in Y and $f(x_{\alpha}) = f(x)_{\alpha}$.

Definition 1.8: [8],[3]

Let X be a vector space over field \mathbf{K} and let \tilde{A} be a fuzzy set in X. then \tilde{A} is called a fuzzy subspace of X if for all $x, y \in X$ and $\lambda \in \mathbf{K}$.

- (i) $\mu_{\tilde{A}}(x+y) \ge \min \{\mu_{\tilde{A}}(x), \mu_{\tilde{A}}(y)\}$
- (ii) $\mu_{\tilde{A}}(\lambda x) \ge \mu_{\tilde{A}}(x)$

S2: Fuzzy Normed Spaces

Definition 2.1: let X be a vector space over field

^{*}University of Technology

K(**K**= R or **K**= C).Put I=[0,1] then $\tilde{N}: X \times I \to I$ is said to be a fuzzy norm on X if for each x , y \in X and $\lambda \in$ **K** (N₁)if $\alpha = 0$ then $\tilde{N}(x,\alpha)=0$.

 (N_2) if $\alpha \neq 0$ then $\tilde{N}(x,\alpha)=0$ if and only if x=0.

 $(N_3)\tilde{N}(\lambda x, \alpha) = |\lambda| \tilde{N}(x, \alpha)$

 $(N_4)\tilde{N}(x+y,\alpha) \leq \tilde{N}(x,\alpha) + \tilde{N}(y,\alpha)$

(N5) if $0 < \sigma \le \alpha < 1$ then $\tilde{N}(x,\alpha) \le$

 $\tilde{N}(x,\sigma)$ and there exists $0 < \alpha_n < \alpha$ such that $\lim_{n \to \infty} \tilde{N}(x,\alpha_n) = \tilde{N}(x,\alpha)$.

Then \tilde{N} is called fuzzy norm and (X, \tilde{N}) is called fuzzy normed space.

Now we introduce some propositions to explain the relation between ordinary normed space and fuzzy normed space .

Proposition 2.2:

Let $(X, \|.\|)$ be an ordinary normed space, define $\tilde{N}(x,\alpha) = \frac{1}{\alpha} \|x\|$ for $\alpha > 0$ and $\tilde{N}(x,\alpha) = 0$ for $\alpha = 0$. Then (X,\tilde{N}) is a fuzzy normed space

Proof: let $x, y \in X$ and $\gamma \in K$. Then

 (N_1) if $\alpha = 0$ then $\tilde{N}(x,\alpha) = 0$

 (N_2) if $\alpha \neq 0$ then $\tilde{N}(x,\alpha) = 0 \Leftrightarrow \frac{1}{\alpha} \|x\| = 0$

 $\Leftrightarrow \|x\| = 0 \Leftrightarrow x = 0.$

 $(N_3)\tilde{N}(\gamma x, \alpha) = \frac{1}{\alpha} || \gamma x || = \frac{|\gamma|}{\alpha} || x || = |\gamma|$ $\tilde{N}(x, \alpha).$

 $(N_4)\tilde{N}(x + y,\alpha) = \frac{1}{\alpha} \|x + y\| \le \frac{1}{\alpha} \|x\| + \frac{1}{\alpha} \|y\| = \tilde{N}(x,\alpha) + \tilde{N}(y,\alpha).$

(N₅) if $0 < \sigma \le \alpha < 1$ then $\frac{||x||}{\alpha} \le \frac{||x||}{\sigma}$ that is $\tilde{N}(x,\alpha) \le \tilde{N}(x,\sigma)$ then there exists $0 < \alpha$ _n < α [This is possible by taking α _n = $(1 - \frac{1}{\pi})\alpha$] such that \lim

 $_{n\to\infty}\tilde{N}(x,\alpha_n)=\tilde{N}(x,\alpha)$.

The proof of the following result is clear. Hence is omitted

Proposition 2.3:

Let (X,\tilde{N}) be a fuzzy normed space if for each $x \in X$ define

 $\| x \| = \tilde{N}(x, \alpha)$, for some $\alpha \in (0,1]$. Then $(X, \|.\|)$ is an ordinary normed space.

Example 2.4:

Let X=**R**, then $\tilde{N}(x,\alpha) = \frac{1}{\alpha} |x|$ is a fuzzy norm on **R** by proposition 2.2

called the usual fuzzy norm.

Remark 2.5:

From the definition 2.1 we obtain by induction the generalized of (N_4)

$$\tilde{N}(x_1 - x_n, \alpha) \leq \tilde{N}(x_1 - x_2, \alpha) + \tilde{N}(x_2 - x_3, \alpha) + ... + \tilde{N}(x_{n-1} - x_n, \alpha)$$

Where $(x_2, \alpha), (x_3, \alpha), \dots, (x_{n-1}, \alpha) \in X$

Definition 2.6:

A fuzzy subspace \hat{Y} of a fuzzy normed space (X, \tilde{N}) is a fuzzy subspace of X considered as a vector space with the fuzzy norm obtained by restricting the fuzzy norm on X to \hat{Y} .

S3: Open Fuzzy Sets, Closed Fuzzy Sets, Fuzzy Continuity of Functions
In this section we introduce some new concepts

Definition 3.1:

Let (X, \tilde{N}) be a fuzzy normed space. Given $x_{\alpha} \in X$, where $\alpha \in (0,1]$ and a real number r>0

- (i) $\widetilde{\mathbf{O}}(\mathbf{x}_{\alpha},\mathbf{r}) = \{\mathbf{y}_{\beta} \in \mathbf{X} : \widetilde{\mathbf{N}}(\mathbf{x} \mathbf{y},\lambda) < \mathbf{r}\}\$ is open fuzzy ball, where $\lambda = \min\{\alpha,\beta\}$.
- (ii) $\widetilde{\mathbf{B}}(\mathbf{x}_{\alpha},\mathbf{r}) = \{\mathbf{y}_{\beta} \in \mathbf{X}: \widetilde{\mathbf{N}}(\mathbf{x} \mathbf{y}, \lambda) \leq \mathbf{r}\}\$ is closed fuzzy ball, where $\lambda = \min\{\alpha, \beta\}$.
- (iii) $S(x_{\alpha},r) = \{y_{\beta} \in X: \tilde{N}(x-y,\lambda) = r\}$ is fuzzy sphere, where $\lambda = \min\{\alpha, \beta\}$.

In all three cases, x_{α} is called the center and r is radius.

Definition 3.2:

A fuzzy set \tilde{A} in fuzzy normed space (X, \tilde{N}) is said to be open if it contains a fuzzy ball about each of its, fuzzy element.

A fuzzy set $\widetilde{\mathbf{D}}$ is said to be closed fuzzy set if it's complement is open fuzzy set.

Definition 3.3:

Let (X, \tilde{N}) be a fuzzy normed space, an open fuzzy ball $\tilde{O}(x_{\alpha}, \epsilon)$ of radius ϵ is

often called an ϵ -neighborhood of x_{α} (here $\epsilon > 0$).

By a neighborhood of x_{α} we mean a fuzzy set of X which contains an ϵ -neighborhood of x_{α} .

Definition 3.4:

The fuzzy point x_{α} is called an interior point of the fuzzy set \tilde{A} if \tilde{A} is a neighborhood of x_{α} . The interior of \tilde{A} is the set of all interior fuzzy points of \tilde{A} and is denoted by $int(\tilde{A})$.

Int(Ã) is open fuzzy set and is the largest open fuzzy set contained in Ã. **Definition 3.5:**

Let (X, \tilde{N}_1) and (Y, \tilde{N}_2) be a fuzzy normed spaces. A mapping $T: X \to Y$ is said to be fuzzy continuous at the fuzzy point $x_\alpha \in X$ where $\alpha \in (0,1]$ if for every $\varepsilon > 0$ there is $\delta > 0$ such that $\tilde{N}_2(T(y) - T(x), \lambda) < \varepsilon$, for all $y_\beta \in X$ satisfying $\tilde{N}_1(y - x, \lambda) < \delta$, where $\lambda = \min\{\alpha, \beta\}$. T is said to be fuzzy continuous if it is fuzzy continuous at every fuzzy point $x_\alpha \in X$.

Theorem 3.6:

A mapping T of a fuzzy normed space (X, \tilde{N}_1) into a fuzzy normed space (Y, \tilde{N}_2) is fuzzy continuous if and only if the inverse image of any open fuzzy set in Y is open fuzzy set in X.

Proof:

Suppose T is fuzzy continuous. Let \tilde{O} be open fuzzy set in Y and \tilde{U} is the inverse image of \tilde{O} i.e T^{-1} (\tilde{O}) = \tilde{U} . If \tilde{U} = \emptyset it is open fuzzy set. Let \tilde{U} ≠ \emptyset , for any $x_{\alpha} \in \tilde{U}$ where $\alpha \in (0,1]$. Let $y_{\alpha} = T(x_{\alpha}) = T(x)_{\alpha}$ [By proposition 1.7] since \tilde{O} is open, it contains as ε -neighborhood N_2 of y_{α} . Since T is fuzzy continuous, x_{α} has an δ -neighborhood N_1 which is mapped into N_2 . Since $N_2 \subset \tilde{O}$ we have $N_1 \subset \tilde{U}$ so that \tilde{U} is open fuzzy set because $x_{\alpha} \in \tilde{U}$ was arbitrary.

Conversely, assume that the inverse image of every open fuzzy set in Y is open fuzzy set in X. Then for each $x_{\alpha} \in X$ where $\alpha \in (0,1]$ and any ϵ -

neighborhood N_2 of $T(x)_{\alpha}$ the inverse image of N_1 is open since N_2 is open and N_1 contains x_{α} . Hence N_1 is also contain a δ -neighborhood of x_{α} which is mapped into N_2 because N_1 is mapped into N_2 . Consequently T is fuzzy continuous at x_{α} . Since $x_{\alpha} \in X$ was arbitrary T is fuzzy continuous.

Definition 3.7:

Let \tilde{A} be a fuzzy set in a fuzzy normed space (X,\tilde{N}) . Then a fuzzy point $x_{\alpha} \in X$ where $\alpha \in (0,1]$ (which may or not be a fuzzy element of \tilde{A}) is called a limit of \tilde{A} if every neighborhood of x_{α} contains at least one fuzzy element $y_{\beta} \in \tilde{A}$ distinct from x_{α} . The fuzzy set consisting of \tilde{A} and its limit fuzzy points is called closure of \tilde{A} and is denoted by $cl(\tilde{A})$. It is the smallest closed fuzzy set containing \tilde{A} .

Definition 3.8:

A fuzzy set \tilde{A} of a fuzzy normed space (X,\tilde{N}) is said to be dense in X if $cl(\tilde{A})=X$.

S4: Convergence, Cauchy Fuzzy Sequences

In this section we will introduce some new concepts and results

Definition 4.1:

A sequence of fuzzy points $\{(x_n, \alpha_n)\}$ in a fuzzy normed space (X, \tilde{N}) is said to be convergent to x_α in X where α , $\alpha_n \in (0,1]$ for $i=1,2,\ldots$ if $\lim_{n\to\infty} \tilde{N}(x_n-x,\lambda)=0$, x_α is called the limit if $\{(x_n,\alpha_n)\}$ and we write $\lim_{n\to\infty} (x_n,\alpha_n)=x_\alpha$ or simply $(x_n,\alpha_n)\to x_\alpha$, if $\{(x_n,\alpha_n)\}$ is not convergent then it is called divergent.

Remark 4.2:

If $(x_n, \alpha_n) \to x_\alpha$, an $\epsilon > 0$ being given, there is a positive integer N such that (x_n, α_n) with n > N lie in ϵ -neighborhood $\tilde{O}(x_\alpha, \epsilon)$ of x_α that is: $\tilde{N}(x_n - x, \lambda) < \epsilon$, for all n > N.

Definition 4.3:

We call a nonempty fuzzy set \tilde{A} in (X,\tilde{N}) bounded if its fuzzy diameter

δ (\tilde{A}) = sup { \tilde{N} (x − y,λ): x_{α} , y_{β} ∈ \tilde{A} , λ = min{ α , β }} is finite.

Definition 4.4:

In a fuzzy normed space (X, \tilde{N}) we call a sequence $\{(x_n, \alpha_n)\}$ is bounded if the corresponding fuzzy set is bounded.

Remark 4.5:

If \tilde{A} is a bounded fuzzy set then $\tilde{A} \subset \tilde{O}$ (x_{α}, r) where $x_{\alpha} \in \tilde{A}$ is any fuzzy element and r>0 is a (sufficiently large) real number.

Theorem 4.6:

Let (X,\tilde{N}) be a fuzzy normed space. Then (i) a convergent fuzzy sequence in X is bounded and its limit is unique. (ii) if $(x_n,\,\alpha_n) \to x_\alpha$ and $(y_m,\,\beta_m) \to y_\beta$ in X, where $\alpha,\,\alpha_i,\,\beta,\,\beta_i$ $\in (0.1]$ $i=1,\,2,$

. . .

Then $\tilde{N}(x_n - y_m, \lambda) \rightarrow \tilde{N}(x - y, \lambda)$, where $\lambda = \min \{\alpha, \alpha_i, \beta_i\}$.

Proof:

(i)Suppose that $(x_n,\ \alpha_n) \to x_\alpha$ then taking $\epsilon=1$ we can find N>0 such that $\tilde{N}(x_n-x_\alpha)<1$ for all n>N. Hence by remark 2.5 for all n we have $\tilde{N}(x_n-x_\alpha,\lambda)<1+a$, where $a=\max\{\tilde{N}(x_1-x_2,\lambda),\tilde{N}(x_2-x_3,\lambda),...,\tilde{N}(x_n-x_\alpha,\lambda)\}$, where $\lambda=\min\{\alpha_1,\alpha_2,...,\alpha_n,...\}$ [Here λ exists since this set is bounded]. This shows that $\{(x_n,\ \alpha_n)\}$ is bounded. Now, assuming that $(x_n,\alpha_n)\to x_\alpha$ and

 $(x_n, \alpha_n) \rightarrow z_{\beta}$, we obtain from (N_4) $0 \le \tilde{N}(x_{\alpha} - z_{\beta}, \lambda) \le \tilde{N}(x_{\alpha} - x_n, \lambda) + \tilde{N}(x_n - z_{\beta}, \lambda) \rightarrow 0+0$ where $\lambda = \min\{\beta, \alpha_1, \alpha_2, ..., \alpha_n, ...\}$ [Here λ exists since this set is bounded].

Thus $\tilde{N}(x_{\alpha}-z_{\beta},\lambda)=0$ which implies that $x_{\alpha}=z_{\beta}$.

(ii)By remark 2.5 we have $\tilde{N}(x_n - y_m, \lambda) \leq \tilde{N}(x_n - x_\alpha, \lambda) + \tilde{N}(x_\alpha - y_\beta, \lambda) + \tilde{N}(y_\beta - y_m, \lambda).$

Hence we obtain

$$\begin{split} \tilde{N}(x_n - y_m, \lambda) &- \tilde{N}(x_\alpha - y_\beta \ \text{,} \lambda) \leq \tilde{N}(x_n - x_\alpha \ \text{,} \lambda) + \tilde{N}(y_m \ - y_\beta \ \text{,} \lambda) \ . \end{split}$$

And a similar inequality by interchanging (x_n, α_n) and x_α as well as (y_m, β_m) and y_β and multiplying by -1. Together $|\tilde{N}(x_n - y_m, \lambda) - \tilde{N}(x_\alpha - y_\beta, \lambda)| \le \tilde{N}(x_n - x_\alpha, \lambda) + \tilde{N}(y_m - y_\beta, \lambda) \to 0$ as $n \to \infty$. Where $\lambda = \min \{\alpha, \beta, \alpha_n, \beta_m\}$.

Definition 4.7:

A sequence $\{(x_n,\alpha_n)\}$ in a fuzzy normed space (X,\tilde{N}) is said to be Cauchy if for

every $\epsilon > 0$ there is integer N > 0 such that $\tilde{N}(x_m - x_n, \lambda) < \epsilon$ for every m, n > N

where $\lambda = \min \{\alpha_1, \alpha_2, ..., \alpha_n, ...\}$ [Here λ exists since this set is bounded].

Theorem 4.8:

Every convergent fuzzy sequence in a fuzzy normed space (X,\tilde{N}) is Cauchy.

Proof:

Let $\{(x_n, \alpha_n)\}$ be a sequence of fuzzy points in X such that $(x_n, \alpha_n) \to x_\alpha$ then for every $\varepsilon > 0$ there is an integer N > 0 such that $\tilde{N}(x_n - x_\alpha, \lambda) < \frac{\varepsilon}{2}$ for all n > N.

Hence by (N_4) we obtain for m,n > N. $\tilde{N}(x_m - x_n, \lambda) \leq \tilde{N}(x_m - x_\alpha, \lambda) + \tilde{N}(x_\alpha - x_n, \lambda) \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

This shows that $\{(x_n, \alpha_n)\}$ is Cauchy. Where $\lambda = \min \{\alpha, \alpha_1, \alpha_2, ..., \alpha_n, ...\}$ [Here λ exists since this set is bounded].

Theorem 4.9:

Let \tilde{A} be a nonempty fuzzy set in a fuzzy normed space (X,\tilde{N}) and $cl(\tilde{A})$ its closure.

Then

- (i) $x_{\alpha} \in cl(\tilde{A})$ if and only if there is a fuzzy sequence $\{(x_n, \alpha_n)\}$ in \tilde{A} such that $(x_n, \alpha_n) \to x_{\alpha}$ where $\alpha \in (0,1]$.
- (ii) \tilde{A} is closed if and only if the situation $(x_n, \alpha_n) \in \tilde{A}$ and $(x_n, \alpha_n) \to x_\alpha$ implies $x_\alpha \in \tilde{A}$.

Proof:

(i)Let $x_{\alpha} \in cl$ (\tilde{A}). If $x_{\alpha} \in \tilde{A}$ a fuzzy sequence of that type is $x_{\alpha}, x_{\alpha}, ...$

If $x_{\alpha} \notin \tilde{A}$ then it must be a limit of \tilde{A} . Hence for each n=1,2,... the fuzzy ball $\tilde{O}(x_{\alpha},\frac{1}{n})$ contains an $(x_n,\alpha_n)\in \tilde{A}$ and $(x_n,\alpha_n)\to x_{\alpha}$ because $\frac{1}{n}\to 0$ as $n\to\infty$. Conversely, if $\{(x_n,\alpha_n)\}$ is in \tilde{A} and $(x_n,\alpha_n)\to x_{\alpha}$ then $x_{\alpha}\in \tilde{A}$ or every neighborhood of x_{α} contains a fuzzy point $(x_n,\alpha_n)\neq x_{\alpha}$ so that is x_{α} a limit of \tilde{A} . Hence $x_{\alpha}\in cl(\tilde{A})$. It is clear that $\tilde{A}=cl(\tilde{A})$.

(ii) \tilde{A} is closed if and only if $\tilde{A} = cl(\tilde{A})$ so that (ii) follows readily from (i).

Theorem 4.10:

A mapping $T: X \to Y$ of a fuzzy normed space (X,\tilde{N}_1) into a fuzzy normed space (Y,\tilde{N}_2) is fuzzy continuous at a fuzzy point $x_{\alpha}, \in X$ if and only if $(x_n, \alpha_n) \to x_{\alpha}$ implies $(T(x_n), \alpha_n) \to T(x)_{\alpha}$.

Proof:

Assume that T is fuzzy continuous at x_{α} . Then given $\epsilon > 0$ there is $\delta > 0$ such that $\tilde{N}_1(y-x_{\lambda}) < \delta$ implies $\tilde{N}_2(T(y)-T(x),\lambda) < \epsilon$. Let $(x_n,\ \alpha_n) \to x_{\alpha}$. Then there is N>0 such that $\tilde{N}(x_n-x_{\alpha},\lambda) < \epsilon$ for all n>N. Where $\lambda=\min\{\alpha,\beta\}$. Hence for all n>N, $\tilde{N}_2(T(x_n)-T(x),\lambda) < \epsilon$ this means that $(T(x_n),\alpha_n) \to T(x)_{\alpha}$.

Conversely, we assume that $(x_n, \alpha_n) \rightarrow x_\alpha$ implies $(T(x_n), \alpha_n) \rightarrow T(x)_\alpha$, and prove that T is fuzzy continuous at x_α . Suppose this is false. Then there is an $\epsilon > 0$ such that for every $\delta > 0$ there is $y_\beta \neq x_\alpha$ satisfying $\tilde{N}_1(y - x_\lambda) < \delta$ but $\tilde{N}_2(T(y) - T(x), \lambda) \geq \epsilon$.

In particular for $\delta = \frac{1}{n}$ there is $\{(x_n, \alpha_n)\}$ satisfying $\tilde{N}_1(x_n - x_\alpha, \lambda) < \frac{1}{n}$ but $\tilde{N}_2(T(x_n) - T(x), \lambda) \ge \epsilon$. Clearly $(x_n, \alpha_n) \to x_\alpha$ but $\{T(x_n), \alpha_n)\}$ does not converse to $T(x)_\alpha$. This contradicts $(T(x_n), \alpha_n) \to T(x)_\alpha$ and proves the theorem.

References:

- 1. Zadeh, A. L.1965. Fuzzy set, Information and Control. 8: 338 353.
- 2. Gregori, V. and Sapena, A.2002.On Fixed Point Theorems in Fuzzy Metric Spaces , Fuzzy Set and System .125 :245-252 .
- 3. Kider, J. R.2004.Fuzzy Locally Convex *- Algebra, Ph. D. Thesis, Technology University, Baghdad.
- 4.Bag, T. and Samanta, T. K.2003.Finite Dimensional Fuzzy Normed Linear Spaces, J. Fuzzy Math.11(3):687-705.
- Abdual Gawad, A.Q.2003. On Fuzzy Topological Dimension, Ph. D. Thesis, Baghdad University, Baghdad.
- 6.Bag, T. and Samanta, T. K.2008. A comparative Study of Fuzzy Norms on Linear Spaces, Fuzzy Sets and System. 159: 670-684.
- 7. Lubna, K. A.2005. On Fuzzy Open Mapping, Ph. D. Thesis, College of Education, Al- Mustaniriyah University, Baghdad.
- 8.Mihet, D. 2007 . On Fuzzy Contractive Mapping in Fuzzy Mrtric, Fuzzy Sets and System. 158 : 915-921 .

فضاءات قيا سية ضبا بية جديدة

جها د رمضان خضر *

*الجا معة التكنولوجية.

الخلاصة:

في هذا البحث قدمنا تعريف جديد للفضاء القياسي الضبابي ثم بعد ذلك قمنا بدراسة المفاهيم المتعلقة بهذا التعريف مثلا الاستمرارية الضبابيه والتقارب للمتتابعات التي عناصرها نقاط ضبابيه ومتتابعات كوشي بتفاصيل اكثر.