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Abstract: 
This paper is dealing with non-polynomial spline functions "generalized spline" to 

find the approximate solution of linear Volterra integro-differential equations of the 

second kind and extension of this work to solve system of linear Volterra integro-

differential equations. The performance of generalized spline functions are illustrated 

in test examples. 
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Introduction: 
Integro-differential equation (IDE) is 

an important branch of modern 

Mathematics and arises frequently in 

many applied areas which include 

engineering, mechanics, Physics, 

Chemistry, Biology, economics and 

electrostatics, [1]. Authors and 

researchers used numerical methods to 

find a solution of the integro-

differential equations. Elayaraja and 

Jumat, in [2], Generalized Minimal 

Residual (GMR) method may be used 

to approximate the solution of linear 

Fredholm integro-differential equation 

of second order which discretized by 

using finite difference and trapezoidal 

methods. Rostam and Kawa, in [3], 

deal with introducing spline function to 

find the approximate solution of 

nonlinear fredholm integral equations. 

Mortaza, in [4], presented Power series 

method for finding the numerical 

solution of linear and nonlinear 

integro-differential equations system. 

Muna in, [5], proposed numerical 

methods to solve Volterra integral 

equations and state theorem which 

reduce high order system to first order 

for linear Volterra integro-differential 

equations. In this papear, generalized 

spline functions will be used for 

solving the following two problems: 

 Linear Volterra integro-differential 

equation (VIDE) of n
th

 order : 
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with initial conditions 

)(),...,(),( 1 auauau n are be given, 

where, f, pi and k denote given 

continuous functions. 

 System of the 1
st
 order linear 

Volterra integro-differential equation 

(VIDE's): 
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with the initial conditions: ii uau )(  

mi ,...,2,1;   

where the functions fi ,and pi ; 

i=1,2,…,m are assumed to be 

continuous on I and ki,j  ; i,j=1,2,…,m 

denotes some given continuous 

functions. 

Generalized Splines, [6] 

Consider the linear differential 

operator of order p N  

).(.)(....)(. 01

1

1 taDtaDtaDL p

p

p  


 ---(3) 

where each 1,...,1,0),(  pktak , is a  
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real pC smooth function in [a,b]. The 

operator L is acting on the space 

],[ baC m of real functions defined in 

[a,b]. Its adjoint is defined by 

).().)((...).)(()1(.)1( 011

11* tataDtaDDL p

pppp  

 ---(4) 

*L  is also acting on the space 

],[ baC m and the scalar product for 

which it is computed is given by  

dttxtxxx

b

a

 )()(, 2121  

Let  ∆ : 

Nmbttta m  ,...10 , be a 

partition of [a,b],   be the family of 

real 22 pC smooth functions in [a,b] 

which are pC 2 smooth in each interval 

1,...,1,0],,[ 1  mitt ii  and f . 

Definition (2.1), [7]:] 

The function s : [a,b]→R is an 

interpolating generalized spline of f 

associated to ∆ and L, if s , s is a 

solution of the differential equation 
*L L x = 0 in each interval 

1,...,1,0],,[ 1  mitt ii , and 

)()( tfts  on ∆ . 

Definition (2.2), [7]:  
An interpolating generalized spline of f 

is of type I  if it is such that 

)()( 0

)(

0

)( tfts kk   and 

)()( )()(

m

k

m

k tfts  for 1,...,2,1  pk  

By interpolation and boundary 

conditions gave in definitions (2,1) and 

(2.2) respectively s  is a generalized 

spline of type I . 

Now to construct the approximate 

function, let hjq j 2,...,2,1,  , be the 

basis functions of generalized spline s, 

where 2h is order of *L L x = 0 gave in 

definition (2,1).Then generalized 

spline functions s is defined by:   





h

j

jj tqcts
2

1

)()(           ---(5)                                                                                     

In each interval 

],,[ 1ii tt 1,...,1,0  mi  where 

hccc 221 ,...,,  are constants to be found. 

Particularly consider the operator of 

order 2
nd

 given by:  

4.2  DL  then its adjoint is 

4.2*  DL  by solving the 

homogeneous differential equation  

16.8. 24*  DDLL , we have the 

solutions: tttt teteee 2222 ,,,   

so that the generalized spline function 

in each ],[ 1ii tt , is: 

tttt tectececects 2

4

2

3

2

2

2

1)(      ---(6)                                         

Approximate Solution of n
th

 Order 

Linear VIDE 
In this section the reduction theorem, 

[8] will be used to reduce the integro-

differential equations of arbitrary high 

order to the first order in which one 

can use the available spline function to 

solve eq.(1).  

Theorem (1.3): (The Reduction 

Theorem),[8] 
Let f, k be L

2
 integrable functions on 

interval [a,b] and ],[ baCp n

i  . Then 

eq.(1) may be reduced to the first order 

linear VIDE of the form: 

  

x

a

nnn dttutxkxFxuxpD )(),()()())(( 111
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with initial condition: 

 u(a)= u0 

where 
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with [A] and [B] being two special 

constant matrices of dimensions (n-

2)×(n-2) and       (n-1)×(n-1) 

respectively. 

For more details and proof about 

reduction theorem see [8] 

To find the approximate solution of 

eq.(1), substitute eq.(5) in eq.(7) we 

get: 
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, hj 2,...,2,1  

where x = xr, Nr ,...,1,0 , and adding 

the initial condition of eq.(9) as a new 

raw then we can write eq.(10) as in the 

following system: 
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---(9) 

or  

AC=F             ---(10) 

A and F are constant matrices with 

dimensions (N+2)×2h and (N+2)×1 

respectively. Calculate FAACA TT    

to find the cj ; j=1,2,…,2h and 

substitute this solution in eq.(5) to get 

the approximate solution of eq.(1).  

Approximate Solution of System of 

Linear VIDE 
In this section the system of the 1

st
 

order linear VIDE's given in eq.(2) will 

be formulated in matrix form, as: 

  

x

a

x

a

mm

x

a

dttutxkdttutxkdttutxkxuxpD )(),(...)(),()(),()())(( 212122222   

  

x

a

x

a
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x

a

mmmmm dttutxkdttutxkdttutxkxuxpD )(),(...)(),()(),()())(( 11,11

then: 

AC = F          ---(11) 

where A=(ai,j) as a matrix of order m 

such that 





m

i

jijij uka
1

  mjiji ,...,2,1,;   



x

a

iiiiiii dttutxkxuxpDa )(),()())((   

; mi ,...,2,1

 

 hmmmhh cccccccccC 2,212,222212,11211 ,...,,,...,,...,,,,...,,  

 

],...,,[ 21 mfffF   

 

Algorithm(1) 

Step(1): Input N (number of 

subintervals). Set 
N

ab
h


1 , 

xr = a+ rh1 , for r = 0,1,…,N 

and divide the interval [a,b] 

into N subintervals, 

bxxxa N  ...10 . 

Step(2): let ii uas )(   ; mi ,...,2,1  

(which are the given initial 

conditions ). 

Step(3): let  



h

j

jiji xqcxs
2

1

)()(  ;  

mi ,...,2,1  

Step(4): using step(3) and eq.(11) to 

find the coefficients 

micij ,...,2,1,  ; 

hj 2,...,2,1 . 

Step(5): substitute the results in step(4) 

to get the approximation solution of 

eq.(2). 

Numerical Examples: 

Three numerical test examples were 

defined on the interval [0,1] and 
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10: 3210  xxxx ,where 

3

1
h , for examples (5.1) and (5.2) 

apply generalized spline function 

defined in eq. (6) and for example (5.3) 

apply generalized spline function 

defined in step (3) of algorithm (1) 

Example(5.1): 

Consider the 1
st
 order linear VIDE 

problem 

 

x

x dttutxxexxuxD
0

)()(1)cos()())cos((

,       10  x                ---(12) 

with initial condition:  

u(0)=1                       ---(13) 

The exact solution is: 
xexu )(  

In eq.(6) the coefficients 4321 ,,, cccc  

are unknown, four algebraic equations 

are needed. substituting eq.(6) in the 

initial condition eq.(13) yield: 

 

14321  cccc          ---(14) 

substituting eq.(6) in eq.(12)  for each 

ixx  , 3,2,1,0i  yield: 
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  --(15) 

where  

1)cos()(  xexxf x   

The system will construct from eq.(14) 

and eq.(15) has 5 equations and 4 

coefficients, therefore, calculate:  

FAACA TT             ---(16) 

where A is constant matrix of 

dimension )45(  gain from eq.(14) 

and eq.(15)        1[cC    2c   3c   Tc ]4  

)0([uF   )( 0xf   )( 1xf   )( 2xf   
Txf )]( 3  

Finally, Gauss elimination method may 

be used to solve system (16) to find 

725.01 c , 275.02 c , 371.03 c ,  

469.04 c , so the approximate 

solution s(x) is: 

 
xxxx xexeeexs 2222 469.0371.0275.0725.0)(    

 

Table(1), presents a comparison 

between the exact and numerical 

solution for u(x). 

 
Table(1): Numerical Results of Example 

(5.1) 
x exact approximate absolute error 

0 1 1 0 

0.1 1.10517091 1.10375238 0.00141853 

0.2 1.22140275 1.21809354 0.00330921 

0.3 1.34985880 1.34637530 0.00348350 

0.4 1.49182469 1.49110647 0.00071821 

0.5 1.64872127 1.65394762 0.00522635 

0.6 1.82211880 1.83561120 0.01349240 

0.7 2.01375270 2.03565649 0.02190378 

0.8 2.22554092 2.25216160 0.02662067 

0.9 2.45960311 2.48124697 0.02164386 

1 2.71800000 2.71986700 0.001867 

 

As a cooperation the least square error 

is 710158.5   while the partition 

method gave in [9],  is 6109  .  

Example(5.2): 

Consider the 4
th

 order linear VIDE 

problem 

 

x

dttutxxxxxuxDDDD
0

7642234 )()(
210

29

30

19
24)()(

 

with initial conditions: 

 0)0()0()0()0(  uuuu  

The exact solution is: 
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By using the reducing theorem we 

have the following 1
st
 order linear 

VIDE problem: 



x

dttutxkxFxuD
0

33 )(),()()()1(   ---(17) 

where 

109
7

3

3
151200

29

15120

19

210
4)( xx

x
xxF   

1
24

19

6

11

4

5

624
),( 4322

34

3  txtxttx
txx

txk  

with initial conditions  

0)0( u                          ---(18) 

As in example(5.1) Gauss elimination 

method may be used to solve system 

(16) for eq.(17) and eq.(18) to find 

296.01 c , 292.02 c , 436.03 c ,  

748.04 c , so the approximate 

solution s(x) is:

 
xxxx xexeeexs 2222 748.0436.0292.0296.0)(  

 

Table(2), presents a comparison 

between the exact and numerical 

solution for u(x). 

 
Table(2): Numerical Results of Example 

(5.2) 
x exact approximate absolute error 

0 0 0.00400000 0.00400000 

0.1 0.000102 -0.00797161 0.00807361 

0.2 0.001664 -0.01547966 0.01714366 

0.3 0.008586 -0.01760769 0.02619369 

0.4 0.027648 -0.00498249 0.03263049 

0.5 0.068759 0.03298172 0.03576827 

0.6 0.145152 0.10891265 0.03623934 

0.7 0.273714 0.23843232 0.03528167 

0.8 0.475136 0.44128877 0.03384722 

0.9 0.774198 0.74273250 0.03146549 

1 1.200000 1.17500000 0.02500000 

 

Example(5.3): 

Consider the system of linear VIDE 

problem 

 

x

dttutuxuxxxDu
0

212

2

1 ))()(()(1)(
    

10  x   ---(19) 

 

x

dttutuxuxxDu
0

2112 ))()(()(1)( ,          

10  x         ---(20) 

with initial conditions:  

,1)0(1 u                      ---(21) 

1)0(2 u ,                 ---(22)  

The exact solutions are: 

 xexxu )(1  
xexxu )(2  

In this example as in step(3), 

algorithm(1), )(1 xu will approximate 

by )(1 xs , where 
xxxx xecxecececxs 2

14

2

13

2

12

2

111 )(   --(23) 

and )(2 xu  will approximate by )(2 xs , 

where
xxxx xecxecececxs 2

24

2

23

2

22

2

212 )(                ---(24) 

 

 

To find the unknown coefficients 

2,1, icij ; 4,3,2,1j , eight algebraic 

equations are needed. Substituting 

eq.(23) in the initial condition eq.(21) 

yield: 

114131211  cccc            ---(25) 

and eq.(24) in the initial condition 

eq.(22) yield: 

124232221  cccc         ---(26) 

substituting eq.(23) and eq.(24) in 

eq.(19) and eq.(20) respectively for 

each ixx  , 3,2,1,0i  yield: 
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 ---(28) 

where 
2

1 1)( xxxf    

xxf  1)(2  

The system will construct from 

eqs.(25)-(28) has 10 equations and 8 

coefficients, therefore, calculate:  

FAACA TT                            ---(29) 

where A is constant matrix of 

dimension )810(  gain from the 

eqs.(25)-(28) and   11[cC    12c   13c   

14c   21c   22c   23c   Tc ]24    

)0([ 1uF    )0(2u  )( 01 xf   )( 02 xf  

)( 11 xf  )( 12 xf   )( 21 xf  )( 22 xf   )( 31 xf  

Txf )]( 32  

Finally, Gauss elimination method may 

be used to solve system (29) to find 

011.111 c , 011.012 c , 

484.013 c , 441.014 c , 

389.021 c , 611.022 c , 

178.023 c ,  621.024 c ,  so the 

approximate solutions )(1 xs and 

)(2 xs are: 
xxxx xexeeexs 2222

1 441.0484.0011.0011.1)(  

 
xxxx xexeeexs 2222

2 621.0178.0611.0389.0)(  

 

Table(3), and table(4), present a 

comparison between the exact and 

numerical solution for u1(x) and u2(x) 

respectively. 
 
Table(3): Numerical Results of Eexample 

(5.3) 
x exact approximate absolute error 

0 1 1 0 

0.1 1.20517091 1.20282228 0.00234863 

0.2 1.42140275 1.41557484 0.00582791 

0.3 1.64985880 1.64416130 0.00569749 

0.4 1.89182469 1.89347616 0.00165146 

0.5 2.14872127 2.16742946 0.01870819 

0.6 2.42211880 2.46885910 0.04674030 

0.7 2.71375270 2.79931733 0.08556462 

0.8 3.02554092 3.15870985 0.13316892 

0.9 3.35960311 3.54475599 0.185152880 

1 3.71800000 3.85200000 0.13400000 

 

Table(4): Numerical Results of Example 

(5.3) 
x exact approximate absolute error 

0 -1 -1 0 

0.1 -1.00517091 -1.00447237 0.00069854 

0.2 -1.02140275 -1.02003014 0.00137261 

0.3 -1.04985880 -1.04907058 0.00078822 

0.4 -1.09182469 -1.09343021 0.00160552 

0.5 -1.14872127 -1.15448545 0.00576418 

0.6 -1.22211880 -1.23319162 0.01107282 

0.7 -1.31375270 -1.33006131 0.01630860 

0.8 -1.42554092 -1.44507875 0.01953782 

0.9 -1.55960311 -1.57754250 0.01793939 

1 -1.71800000 -1.72600000 0.00800000 

 

The method in [4], defines the error 

between the exact solution and the 

Taylor polynomial solution by the 

reminder )( 7xO . 

 

Conclusions: 
In this paper, the researcher have 

constructed generalized spline 

functions for solving linear VIDE's of 

n
th

 order and system of linear VIDE's 

based on interpolation and boundary 

conditions of the generalized spline. 

The choice of the linear differential 

operator gave the basis which form the 

approximate function. Three test 

examples are considered, the first deal 

with 1
th

 order linear VIDE's, the 

second reduce 4
th

 order linear VIDE's 

to 1
th

 order by reduction theorem, and 

the third solve system of linear first 

order VIDE's. As a comparison with 

the exact solution, tables (1), (2), (3), 

and (4) showed the results. 

Comparison with methods in 

references [9] and [4] are given. 
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التفاضلية الخطية بأستخدام دوال -التقارب العددي لمعادلات فولتيرا التكاملية

 السبلاين العامة
 

 *نبـأ نجـدي حسـن
 بغداد  -الجامعة المستنصرية  -كلية العلوم *

 

 :الخلاصة
  لايجذذاد ال ذذو التيريثذذ  generalized splineهذذ ا الث ذذع يتعامذذو مذذل دلاان السذذثعيد  يذذر متعذذدد  ال ذذدلاد  

التفاضلية الخطية مد المرتثة الثانية لاتوسيل ه ا العمو ل و منظومذة معذادلات فذولتيرا -لمعادلات فولتيرا التكاملية

 التفاضلية الخطية. أداء لادقة الطريية موض ة مد خعن بالامثلة.  -التكاملية

 


