An Algorithm for nth Order Intgro-Differential Equations by Using Hermite Wavelets Functions

Asmaa A.Abdalrehman*

Received 21, May, 2013
Accepted 26, September, 2013

Abstract

: In this paper, the construction of Hermite waveletsfunctions and their operational matrix of integration is presented. The Hermite wavelets method is applied to solve nth order Volterraintegrodiferential equations (VIDE) by expanding the unknown functions, as series in terms of Hermite wavelets with unknown coefficients. Finally, two examples are given

Keywords: Hermite wavelets, integro-differential equation, operational matrix of integrations.

Introduction:

The solution of integral and integro-differential equations has a major role in the fields of science and engineering when a physical system is modeled under the differential sense, it finally gives a differential equation, an integral equation or an integrodifferential equations mostly appear in the last equation [1,2].

Wavelets permit the accurate representation of a variaty of functions and operators. Special attention has been given to application of the Chebyshev wavelets [3-5] the Sin and Cosin wavelets [6] and the Legendre wavelets [7,8] .

In this paper the operational matrix of integration for Hermite wavelets is derived and used it for obtaining approximate solution of the following nth order VIDE.
$\mathrm{u}^{(\mathrm{n})}(\mathrm{x})=\mathrm{g}(\mathrm{x})+\int_{0}^{x} k(x, t) u^{(s)}(t) d t$
where $\mathrm{k}(\mathrm{x}, \mathrm{t})$ and $\mathrm{g}(\mathrm{x})$ are known functions, and $\mathrm{u}(\mathrm{x})$ is an unknown function.

Hermite Polynomials and Their Properties:

An important equation wich appears in problems of physics is
called Hermite's differential equation; it is given by [9]
$y^{\prime \prime}-2 x y^{\prime}+2 n y=0$
where $\mathrm{n}=0,1,2,3 \ldots$
Eq (2) has polynomial solutions called Hermite polynomials given by Rodrigue's formula
$H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2}}\right) \ldots$

- The first few Hermite polynomials are $H_{0}=1, H_{1}=2 x, H_{2}=$ $4 x^{2}-2, H_{3}=8 x^{3}-12 x$
- The generating function for Hermite polynomials is given by

$$
e^{2 t x-t^{2}}=\sum_{n=0}^{\infty} \frac{H_{n}}{n!} t^{n}
$$

This result is useful in obtaining many properties of $H_{n}(x)$. The Hermite polynomials satisfy the recurrence formulas
$H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x) \ldots$
(4)

$$
H_{n}^{\prime}(x)=2 n H_{n-1}(x)
$$

Starting with $H_{0}=1, H_{1}=2 x$.

- Orthgonality of Hermite polynomials [9]

[^0]$\int_{-\infty}^{\infty} e^{-x^{2}} H_{m}(x) H_{n}(x) d x=$

$\left\{\begin{array}{cc}0 & m \neq n \\ 2^{n} n!\sqrt{\pi} & m=n^{\ldots}\end{array}\right.$
So that the Hermite polynomials are mutually orthogonal with respect to the weight function or density function $e^{-x^{2}}$ and if $\mathrm{m}=\mathrm{n}$ we can normalize the Hermite polynomial so as to obtain an orthonormals set.

Hermite Wavelets:

Hermite wavelets, $\mathrm{h}_{\mathrm{nm}}(\mathrm{t})$ have four arguments $l, m, k, t, \quad l=1,2,3, \ldots, 2 k$, k any non-negative integer, m is the degree of Hermite polynomial and t independent variable in $[0,1]$, Here we can define Hermite wavelets as follows:
$h_{n m}(t)=$
$\left\{\begin{array}{cc}2^{\frac{k}{2}} H_{m}^{*}\left(2^{k+1} t-2 l+1\right) & t \in\left[\frac{l-1}{2^{k}}, \frac{l}{2^{k}}\right] \\ 0 & \text { o.w }\end{array}\right.$... (6)
where

$$
\begin{align*}
& H_{m}^{*}=\frac{1}{2^{m} l!\sqrt{\pi}} H_{m} \ldots(7) \quad l= \tag{7}\\
& \mathrm{m}=0,1,2, \ldots, \mathrm{M}-1 \\
& 0,1,2, \ldots, 2 k
\end{align*}
$$

we should note that Hermite wavelets are orthonormal set with respect to the weight function

$$
W_{k}^{*}(t)=\left\{\begin{array}{cc}
W_{1, k}(t) & 0 \leq t<\frac{1}{2^{k}} \tag{8}\\
W_{2, k}(t) & \frac{1}{2^{k}} \leq t<\frac{2}{2^{k}} \\
\vdots & \vdots \\
W_{2^{k}, k}(t) & \frac{2^{k}-1}{2^{k}} \leq t<1
\end{array}\right.
$$

where $W_{l, k}=W\left(2^{k-1} t-l+1\right)$.
Hermit wavelets method for VIDE with mth order:

In this section the introduced Hermite wavelets will be applied to solve VIDE with mth order,
$u_{i}^{(n)}(x)=$
$g_{i}(x)+\int_{0}^{x} K_{i, j}(x, t) u_{i}^{(s)}(t) d t, n \geq$
With the following conditions

$$
\begin{align*}
u_{i}^{s}(0)=a_{i s} i= & 1,2, \ldots, l \quad s \tag{9}\\
& =0,1,2, \ldots, n-1
\end{align*}
$$

Afunction $u_{i}^{n}(x)$ which is defined on the interval $x \in[0,1]$ can be expanded into the Hermite wavelet series
$u_{i}^{n}(x)=\sum_{i=1}^{M} c_{i} h_{i}(t) \ldots(10)$
Where c_{i} are the wavelet coefficients.
Integrate eq.(10) m times,yields
$u(x)=\sum_{i=0}^{M} c_{i} \int_{0}^{x} \ldots \int_{0}^{x} h_{i}(t) d t+$
$\sum_{j=0}^{m-1} \frac{x^{j}}{j!} a_{m-j} \ldots$
Using the following
formula $\int_{0}^{x} \ldots \int_{0}^{x} h_{i}(t) d t=$
$\frac{1}{(n-1)!} \int_{0}^{x}(x-t)^{n-1} h_{i}(t) d t$
therefore eq.(11) becomes
$u(x)=\sum_{i=0}^{M} c_{i} \frac{1}{(n-1)!} \int_{0}^{x}(x-$
$t)^{n-1} h_{i}(t) d t+\sum_{j=0}^{n-1} \frac{x^{j}}{j!} a_{n-j}$.
Let $K_{n}(x, t)=\frac{(x-t)^{n-1}}{(n-1)!} \quad$ and
$L_{i}^{n}=\int_{0}^{x} K_{n}(x, t) h_{i}(t) d t$
$\mathrm{i}=0,1, \ldots, \mathrm{M}$
This leads to

$$
u(x)=\sum_{i=0}^{M} c_{i} L_{i}^{n}+\sum_{j=0}^{n-1} \frac{x^{j}}{j!} a_{n-j}
$$

In similar way, we can get
$u^{(s)}(x)=$
$\sum_{i=0}^{M} c_{i} L_{i}^{n-s}+\sum_{j=0}^{n-s-1} \frac{x^{j}}{j!} a_{n-s-j}$.
Substituting eqs (11) and (13) in (9), yield
$\sum_{i=1}^{M} c_{i} h_{i}(t)=$
$g_{i}(x)+\int_{0}^{x} K_{i, j}(x, t)\left[\sum_{i=0}^{M} c_{i} L_{i}^{n-s}+\right.$
$\left.\sum_{j=0}^{n-s-1} \frac{x^{j}}{j!} a_{n-s-j}\right] d t \ldots$
or
$\sum_{i=1}^{M} c_{i} h_{i}(t)-A_{i}(x)=g_{i}(x)+$
$\sum_{j=0}^{n-s-1} \frac{a_{n-s-j}}{j!} B_{j}(x) \ldots(15)$
where $A_{i}(x)=\int_{0}^{x} K_{n}(x, t) L_{i}^{n-s}(t) d t$ $\mathrm{i}=0,1,2, \ldots, \mathrm{M}$
$B_{j}(x)=\int_{0}^{x} K_{n}(x, t) t^{j} d t \mathrm{j}=0,1,2, \ldots, \mathrm{n}-$ s-1

Next the interval $x \in[0,1]$ is devided in to $l \Delta x=\frac{1}{l}$ and introduce the collocation points
$x_{k}=\frac{k-1}{l} \quad, \quad \mathrm{k}=1,2, \ldots, 1 \quad \mathrm{eq}(19)$ is satisfied only at the collocation points we get asystem of linear equations
$\sum_{\mathrm{i}=1}^{\mathrm{M}} \mathrm{c}_{\mathrm{i}}\left[\mathrm{h}_{\mathrm{i}}(\mathrm{x})-\mathrm{A}_{\mathrm{i}}(\mathrm{x})\right]=\mathrm{g}_{\mathrm{i}}(\mathrm{x})+$
$\sum_{j=0}^{n-s-1} \frac{a_{n-s-j}}{j!} B_{j}(x) \ldots$ (17)
The matrix form of this system
is $C F=G+\sum_{j=0}^{n-s-1} \frac{a_{n-s-j}}{j!} B_{j}(x)$ where $\mathrm{F}=\mathrm{h}(\mathrm{x}), \mathrm{G}=\mathrm{g}(\mathrm{x})$

1.Design of the matrix A :-

When Hermite wavelets are integrated m times, the following integral must be evaluated.
$L_{i}^{n}=\int_{0}^{x} K_{n}(x, t) h_{i}(t) d t, \mathrm{i}=0,1,2, \ldots$, M

$$
L_{i}^{n}(x)=\frac{(x-t)^{n}}{2^{k}(n-1)!}\left[\begin{array}{cccccccccc}
\frac{1}{2} & \frac{1}{2} & 0 & \ldots & 0 & \vdots & 1 & 0 & \ldots & 0 \\
\frac{-1}{8} & 0 & \frac{1}{2} & \ldots & 0 & \vdots & 0 & 0 & 0 & 0 \\
\frac{-1}{24} & 0 & 0 & \ldots & 0 & \vdots & \frac{-1}{3} & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \frac{1}{2} & \vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{-1}{M 2^{M}} & 0 & 0 & \ldots & 0 & \vdots & -\frac{1}{M} & 0 & \ldots & 0
\end{array}\right] \frac{l-1}{2^{k}} \leq x<\frac{l}{2^{k}}
$$

Therefore the matrix $A_{i}(x)$ can be constructed as follows

Since
$A_{i}(x)=\int_{0}^{x} K_{n}(x, t) L_{i}^{n-s}(t) d t$
$\mathrm{i}=0,1,2, \ldots, \mathrm{M}$
$A_{i}(x)$
$=\left[\begin{array}{cc}\int_{0}^{x_{0}} K_{n}\left(x_{0}, t\right) L_{i}^{n-s}(t) d t & i=0 \\ \int_{0}^{x_{n}} K_{n}\left(x_{i}, t\right) L_{i}^{n-s}(t) d t & i>0\end{array}\right]$

2. Hermite Wavelets Method for VIDE with nth Order:

For solving VIDE with mth order the matrix $L_{i}^{n}(x)$ in section(4.1) will be followed to get

$$
\begin{aligned}
\sum_{\mathrm{i}=1}^{\mathrm{M}} \mathrm{c}_{\mathrm{i}}\left[\mathrm { h } _ { \mathrm { i } } \left(\mathrm{x}_{\mathrm{L}}-\right.\right. & \left.\left.A_{\mathrm{L}}\right)\right] \\
& =\underset{\mathrm{n}-\mathrm{s}-1}{\mathrm{~g}\left(\mathrm{x}_{\mathrm{L}}\right)} \\
& +\sum_{j=0} \frac{a_{\mathrm{n}-\mathrm{s}-\mathrm{j}}}{\mathrm{j}!} \mathrm{B}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{L}}\right) L \\
& \in[a, b]
\end{aligned}
$$

But
$A_{i}\left(x_{L}\right)=\int_{0}^{x_{L}} K_{n}\left(\mathrm{x}_{\mathrm{L}}, t\right) L_{i}^{n-s}(t) d t$ where $\mathrm{i}=0, \ldots, \mathrm{M}$
$\mathrm{B}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{L}}\right)=\int_{0}^{x_{L}} K_{n}\left(\mathrm{x}_{\mathrm{L}}, t\right) t^{n-s} d t$
where $L_{i}^{n-s}(t)$ as in eq(17),(18)
that is $\quad A_{i}\left(x_{L}\right)=A_{L} \quad, \quad F_{i}\left(x_{L}\right)=$ $h_{i}\left(x_{L}\right)-A_{i}\left(x_{L}\right)=F_{L}$

Numerical Results:

In this section VIDE is considered and solved by the introduced method.
parameters k and M are considered to be 1 and 3 respectively.
Example 1: Consider the following VIDE:

$$
\mathrm{U}^{\prime \prime}(x)=e^{2 x}-\int_{0}^{x} e^{2(x-t)} U^{\prime}(t) d t
$$

Initial conditions $U(0)=0, U^{\prime}(0)=0$.
The exact solution $U(x)=x e^{x}-$ $e^{x}+1$. Table 1 shows the numerical results for this example with $\mathrm{k}=1, \mathrm{M}=3$ with error $=10^{-3}$ and $\mathrm{k}=1, \mathrm{M}=4$, with error $=10^{-4}$ are compared with exact solution graphically in fig.

Table 1:some numerical results for example 1

x	Exact solution	Approximat solution $\mathrm{k}=1, \mathrm{M}=3$	Approximat solution $\mathrm{k}=1, \mathrm{M}=4$
0	0.00000000	0.00000001	0.00000001
0.2	0.02287779	0.02280000	0.02287000
0.4	0.10940518	0.10945544	0.10940544
0.6	0.27115248	0.25826756	0.27826756
0.8	0.55489181	0.54330957	0.55330957
1	1.00000000	0.99999995	0.99999998

Fig 1:Approximate solution for example 1

Example 2: Consider the following VIDE:

$$
\begin{aligned}
\mathrm{U}^{(5)}(x)=-2 & \sin x+2 \cos x-x \\
& +\int_{0}^{x}(x-t) U^{(3)}(t) d t
\end{aligned}
$$

Initial conditions $U(0)=1, U^{\prime}(0)=$ $0, U^{\prime \prime}(0)=-1, U^{3}(0)=0, U^{3}(0)=$ 1,
The exact solution $U(x)=\cos x$. Table 2 shows the numerical results for this example with $\mathrm{k}=1, \mathrm{M}=3$ with error $=10^{-3}$ and $\mathrm{k}=1, \mathrm{M}=4$, with error $=10^{-4}$ are compared with exact solution graphically in fig, 2 .

Table 2:some numerical results for example 2

x	Exact solution	Approximat solution $\mathrm{k}=1, \mathrm{M}=3$	Approximat solution $\mathrm{k}=1, \mathrm{M}=4$
0	1.00000000	0.99812235	0.99999875
0.2	0.98006658	0.98024711	0.98005541
0.4	0.92106099	0.92158990	0.92104326
0.6	0.82533561	0.82479820	0.82535367
0.8	0.69670671	0.69689632	0.69678976
1	0.54030231	0.54032879	0.54035879

Fig 2:Approximate solution for example

Conclusion:

In this work, VIDE has been solved by using Hermite wavelets in collocation method. Comparison of the approximate solutions and the exact solutions shows that the proposed method is efficient tool. Illustrative examples are included to demonstrate the validity and applicability of the technique.

References

1.Shihab. S. N. and Mohammed. A. 2012. An Efficient Algorithm for $\mathrm{n}^{\text {th }}$ OrderIntegro- Differential Equations Using New Haar Wavelets Matrix Designation, International Journal of Emerging. Technologies in Computational and Applied Sciences (IJETCAS). 12(209): 32-35.
2. Elayaraja. A. and Jumat. S. 2010. Numerical Solution of SecondOrder Linear FredholmIntegroDifferential Equation Using Generalized Minimal Residual Method, (AJAppSci). 7(6):780-783.
3. Branch. A. and Azad. I. 2011. Numerical Solution of Integral Equations with Legendre Basis, Int. J. Contemp. Math. Sciences. 6(23):1131-1135.
4. Shihab. S. N. and Abdalelah. A. 2012. Numerical Solution of Calculus of Variations by using the Second Chebyshev Wavelets, Eng. \& Tech. Journal. 30(18): 32193229.
5. Fariborzi. M. A. and Daliri. S. 2012. Numerical Solution of IntegroDifferential Equation by using Chebyshev Wavelets Operational Matrix of Integration, Int. J. Math. Mod \&Comput. 2(2):127-136.
6. Kajani. M. and hasem. M. 2006. Numerical Solution of Linear Integro Differential Equation by Using Sine-Cosine Wavelets, Appl. Math. Comput.1(8): 569-574.
7. Rahbar. S. 2007. A Numerical Solution to the Linear and nonlinear Fredholm integral equations using Legendre Wavelet functions, PAMM. Proc. Appl.Math. Mech. 7(71): 2020149-2020150.
8. Tao. X. and Yuan. L. 2012. Numerical Solution ofFredholmIntegral Equation of Second kind by General Legendre Wavelets, Int. J. Inn. Comp and Cont. 8(1): 799-805.
9.Habibullah. G. M. 2013. A Generalization of Hermite Polynomials, Int. Math Forum. 8(15): 701-706.

أسماء عبل الالهه عبل الرحمن*
*الجامعة النكنولوجية، قسم العلوم التطبيقية
|ذلوهة:

[^0]: *University of Technology, Applied Science Department

