Synthesis, Characterization, Thermal Analysis and Structural Studies of New Complexes with Tetradentate Ligand

Abbas A. Salih Al-Hamdani* Sahar S. Hassan*

Received 13, May, 2014 Accepted 30, June, 2014

080

EX NO IND This work is licensed under a <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licens</u>

Abstract:

Some new complexes of 4-(5-(1,5-dimethyl-3-oxo-2-phenyl pyrazolidin-4vlimino)-3,3-dimethyl cyclohexylideneamino) -1,5- dimethyl-2- phenyl -1H- pyrazol -3(2H) -one (L) with Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Pd(II), Re(V) and Pt(IV) were prepared. The ligand and its metal complexes were characterized by phiscochemical spectroscopic techniques. The spectral data were suggested that the (L) as a neutral tetradentate ligand is coordinated with the metal ions through two nitrogen and two oxygen atoms. These studies revealed Octahedral geometries for all metal complexes, except square planar for Pd(II) complex. Moreover, the thermodynamic activation parameters, such as ΔE^* , ΔH , ΔS , ΔG and K are calculated from the TGA curves using Coats -Redfern method. Hyper Chem -8 program has been used to predict structural geometries for compounds in gas phase. The heat of formation (ΔH_f) and bin ding energy ($\Delta E_{\rm b}$) at 298 °K for the free ligand and its metal complexes were calculated by PM3 method. The synthesized ligands and their metal complexes were screened for their biological activity against bacterial species, two Gram positive bacteria (Bacillus subtilis and Staphylococcus aureus) and two Gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa).

Key words: Tetradentate ligand Schiff base; thermal analysis and Kinetics thermodynamic parameters.

Introduction:

The coordination chemistry of transition metals with ligands from the 5, 5- dimethyl cyclohexane-1,3- dione has been of interest due to different bonding modes show by these ligands with both electron rich and electron poor metals. Schiff bases play an important role in inorganic chemistry as they easily form stable complexes with most transition metal ions. The presence of donor atoms in the ligand will play in important role in the formation of a stable chelatering and this situation facilitates the complexation process[1]. Moreover,

synthesis, spectroscopic the characterization and reaction of transition metal with hydrazine ligands have shown wide spectro of biological and pharmaceutical activates such as possess antimicrobial, antibacterial, antifungal, antiinflammatory, anticonvulsant, antitubercular. antiviral, antioxidative effects and inhibition of tumor growth[2-4]. The aim of this paper is to synthesized, characterization, study thermal analysis and study the biological activates of the new complexes with tetradentate Schiff base ligand.

*Department of Chemistry, College of Science for Women, University of Baghdad, Iraq Email: - Abbas_alhamadani@ yahoo. co. uK

Materials and Methods:

All reagents were commercially available and used without further purification. Solvent were distilled from appropriate drying agents immediately prior to use.

Infrared spectra were obtained using CsI discs $(4000-200 \text{ cm}^{-1})$ on Perkin -Elmer FT-IR spectrometer. The electronic spectra were carried out using a Cary 50 Conc. UV-Visible spectra were recorded using spectrophotometer in DMSO solution 10^{-3} M. Thermal analysis studies of the complexes were performed on Perkin -Elmer pyris Diamond DTA / TG system under nitrogen Thermal atmosphere at a heating rate at 10°C / min from 30-900 °C. Elemental analysis (C, H, N) were performed by using a flash E A 1112 Series elemental analyzer. Chloride was determined using potentiometer titration method on a 686-Titro processor - 665 Dosimat Metrohm Conductivity measurements Swiss. were made with DMSO solution using a Jenway 4071 digital conductivity meter and room temperature. Magnetic were measured with a moments magnetic susceptibility balance (Jonson Mattey Catalytic system Division). Mass spectra were obtained by LC-Mass 100P Shimadzu. NMR spectra (¹H-, ¹³C- NMR) were acquired in DMSO -d₆ solution using Brucker AMX 400 MHz spectrometer with tetramethyl silane (TMS) as an internal standard for ¹H NMR analysis. Metals were determined using a Shimadzu (A. A) 680 G atomic absorption spectrophotometer. Melting points were obtained on a Buchi SMP -20capillary melting point apparatus and are uncorrected.

Preparation of the ligand:

To a solution of 5,5dimethylcyclohexane- 1,3- dione (A) (1g,7.142 mmole) in ethanol (10ml), (5) drops of glacial acetic acid were added slowly, then the mixture was added to 4 –amino antipyrine (B) (2.905 g. 14.280 mmole) in ethanol (10 ml). The mixture was refluxed for (4hrs), with stirring at temperature (40 - 50 °c) in water path. The deep vellow solution was left to dry for (24hrs) at room temperature. The obtained the precipitate was washed with an excess of mixture of ethanol and water (1:1), dried then drops of diethylether were added to precipitate which was dated in a crucible for (1min) with continuous product After that the stirring. precipitated yield (87%), m. p. (219-220°c). The LC-Mass for ligand (510 m/z) with $(C_{30}H_{34}N_6O_2)$, (327 m/z)z) with $(C_{18}H_{23}N_4O_2)$ and (326 m/ z)with $(C_{18}H_{22}N_4O_2)$. ¹H-NMR (DMSO*d*₆, ppm): δ 1.09 (s,6H, CCH₃), 1.69 (s,2H, CH), 1.73 (s,H,CH), 2.74 (s,6H,CCH₃), 3.43 (s,6H, NCH₃),7.13-¹³C-NMR (m,10H arom). 8.03 (100.622 MHz, DMSO-*d*₆): δ 16.39 $(C_{18}), 21.87 (C_5), 29.79 (C_1), 46.79$ $(C_2), 51.09 (C_9), 62.12 (C_3), 100.12$ (C_6) , 111.99 $(C_{12, 14, 16})$, 118.89 $(C_{13, 16})$ 15), 143.77 (C11), 157.31 (C7), 179.39 (C₁₀), 190.95 (C₄). Figure (1).

Fig (1) Structure of ligand

Preparation of Complexes:

The preparation of all complexes is essentially the same and so a generic description will be presented. To a solution of (L) (1mmole) in ethanol was added slowly to a solution of metal salt [MnCl₂.4H₂O =0.197g; FeCl₃.6H₂O =0.27g; CoCl₂.6H₂O =0.237g; NiCl₂.6H₂O =0.237g; CuCl₂.2H₂O =0.17g; ReCl₅ =0.363g; H₂PtCl₄.6H₂O =0.446g] (1mmol) in (ethanol and water) ratio (1:1) with stirring the mixture was refluxed for (3hrs). The solid was collected by filtration recrystallized from methanol dried at room temperature. Elemental analysis data color and yield for the complexes are given in Table (1).

Programs used in theoretical calculation:

Hyper Chem-8 program is a sophisticated molecular modeler, editor and powerful computational package, that is known for its quality, flexibility and ease of use. It is also uniting 3D visualization and animation with chemical calculations, quantum molecular mechanics and dynamics. In the present work, parameterization method (PM3) was use for the calculation of heat of formation and binding energy for all metal complexes. PM3 is more popular than other semi-empirical method due to the availability of algorithms and it is more accurate than other method[5]. PM3 / TM is an extension of the PM3 method to include orbital's with transition metals. It is parameterized primarily for organic molecules and selected transition metals.

Microbiological investigations

For these investigations the filter paper disc method was applied according to[6]. The investigated isolates of bacteria were seeded in tubes with nutrient broth (NB). The seeded NB (1 cm³) was homogenized in tubes with 9 cm³ of melted (45 °C)

nutrient agar (NA). The homogeneous suspensions were poured into Petri dishes. The discs of filter paper (diameter 4 mm) were ranged on the cool medium. After cooling on the formed solid medium, 2×10^{-5} dm³ of the investigated compounds were applied using a micropipette. After incubation for 24 h in a thermostat at 25–27 °C, the inhibition (sterile) zone diameters (including disc) were measured and expressed in mm. An inhibition zone diameter over 7 mm indicates that the tested compound is active against the bacteria under investigation. The antibacterial activities of the

Results and Discussion:

The physical analytical data of (L) and its metal complexes are given in Table (1), which in a satisfactory agreement with the calculated values. The suggested molecular formulae also supported by subsequent spectral and molar ratio, magnetic moment and conductivity measurements. For the wide studied rang of molar concentration $(10^{-5}-10^{-3}M)$ of the mixed solutions, only concentration of (10⁻⁴M) obey Lambert-Beer's Law and showed intense color. A calibration curve was plotted on absorbance against molar concentration in the range $(1 \times 10^{-4} - 3 \times 10^{-4} \text{ M})$. Best fit straight lines were obtained Figure (2) with correlation factor R. > 0.998. The composition of the complexes formed in solution has been established by mole ration and job method. In both cases the results reveals (1:1) metal to ligand ratio.

Compounds	Formula	Color	M. P. Yield		Elemental analysis, found (Calc.)%				
Compounds	M. wt	Color	°C	%	С	Н	Ν	М	Cl
L	$C_{30}H_{34}N_6O_2$	Deep	219-220	87	70.56	6.71	16.46		
	510	yellow	217 220	0.	(71.66)	(7.17)	(15.40)		
Col	$C_{30}H_{34}N_6O_2Cl_2Co$	Violate	265	74	56.26	5.35	13.12	9.20	11.07
COL	640.47	Violate	205	/+	(55.46)	(6.53)	(14.14)	(10.11)	(10.09)
NiI	C ₃₀ H ₃₄ N ₆ Cl ₂ Ni	Yellow	240	70	56.28	5.35	13.13	9.17	11.08
INIL	640.23	greenish	240	70	(55.82)	(4.53)	(14.14)	(11.00)	(9.98)
CuI	$C_{30}H_{34}N_6O_2Cl_2Cu$	Deep	266	75	55.86	5.31	13.03	9.85	10.99
CuL	645	Brown	200	15	(57.11)	(4.46)	(14.14)	(11.11)	(10.16)
DAL	$C_{30}H_{34}N_6PdCl_2$	Drown	217 4	50	52.38	4.98	12.22	15.47	10.31
TUL	687.96	BIOWII	217 u	39	(53.40)	(3.80)	(14.14)	(16.86)	(11.41)
MnI	$C_{30}H_{34}N_6O_2MnCl_2$	Brown	228 d	68	56.61	5.38	13.20	8.63	11.41
IVIIIL	636.47	BIOWII	220 U	08	(55.56)	(6.65)	(14.62)	(9.77)	(12.16)
Folii	C30H34N6O2FeCl3	Red	265 d	74	53.55	5.09	12.49	8.30	15.81
Te L	672.83	Brown	205 u	/4	(54.54)	(4.90)	(13.88)	(9.88)	(16.77)
Dt(IV)I	$C_{30}H_{34}N_6O_2PtCl_4$	Red	201 d	77	42.51	4.04	9.92	23.02	16.73
Pt ^{, · ·} /L	847.52	Brown	501 û	//	(43.02)	(4.14)	(10.11)	(22.87)	(15.99)
Po ^v I	$C_{30}H_{34}N_6O_2ReCl_5$	Drouve	210.4	71	41.22	3.92	9.61		20.28
Ke L	874.10	DIOMU	510 d	/1	(42.02)	(4.01)	(10.11)	-	(21.08)

Table (1) Analytical and physical data of the ligand and its complexes

d=decompose

Infrared spectral studies of the ligand and its complexes

The IR spectrum of the ligand shows characterization bonds at (1728-1692) and (1640-1600) cm⁻¹ due to the v(C=O) and v(C=N)functional groups, respectively[6,7]. The IR spectra of the complexes exhibited ligand bands with the appropriate shift due to complex formation Table (2). The v(C=O) and v(C=N) at (1728-1692) and (1640-1600) cm⁻¹ in the free ligand shift to (1669-1714) and (1576-1610) cm⁻¹, respectively for the complexes. The reduction in bond order. upon complexation can be attributed to delocalization of metal electron density (t_2g) to the T_1 - system of the ligand. These shifts confirm the coordination of the ligand via the oxygen and nitrogen of carbonyl and the azomethine groups to metal ions. At lower frequency the complexes exhibited bands around (590-508), cm⁻¹ (485-412) and (365-312) assigned to the v(M-N), v(M-O) and v(M-Cl), respectively[8,9].

Table (2) FTIR spectral data (wave number v) cm⁻¹ for the ligand and its complexes

	1						
Compound	C-H arom	C-Halip	C=O	C=N	M-N	M-O	M-Cl
т	3125	2958	1728	1640			
L	3080	2926	1692	1600	-	-	-
Mal	3112	2998	1700	1570	570	440	256
IVIIIL	3045	2919	1688	1378	508	440	550
C-I	3012	2937	1697	1610	580	450	265
COL	3006	2933	1678	1590	530	421	305
N'I	3110	2940	1708	1621	590	460	275
NiL	3009	2912	1682	1590	557	444	375
	3117	2937	1705	1576	577	439	220
FeL	3006	2921	1680		577	420	520
Cul	3120	2025	1711	1612	580	470	217
CuL	3060	2935	1680	1581	545	417	517
D4I	2110	2959	1700	1620	590	412	
PuL	5116	2939	1700	1578	530	412	-
PtL	3120	2044	1714	1617	590	195	219
	3035	2944	1669	1571	572	485	318
Dal	3111	2020	1712	1612	500	450	340
ReL	3035	2939	1681	1582	588	433	312

Mass spectrum

The electron impact spectrum of ligand (L) confirms the probable formula by showing a peak at (510m/ z) cores bonding to Schiff base moiety [($C_{30}H_{34}N_6O_2$) calculated atomic mass 510]. The series of peak at 327 m/z is attributed to ($C_{18}H_{23}N_4O_2$) and 326 m/z is attributed to ($C_{18}H_{22}N_4O_2$). The fragmentation pattern is shown in Table (3).

Table (3) the fragmentation pattern for complexes of LC-Mass in units (m/z)

(111, 2)		
Complexes	Peak	Assignment
	687m/z	[C ₃₀ H ₃₄ N ₆ Cl ₂ O ₂ Pd]
Pd Complex	428m/z	$[C_{19}H_{22}N_4OPd]$
	259m/z	[C ₁₁ H ₁₂ N ₂ Cl ₂ O]
	645m/z	[C ₃₀ H ₃₄ N ₆ Cl ₂ O ₂ Cu]
Cu Complex	380m/z	[C ₁₉ H ₂₃ Cl ₂ N ₃ O]
-	265m/z	[C11H11CuN3O]
NI Complete	640m/z	[C ₃₀ H ₃₄ N ₆ O ₂ Ni]
NI Complex	569m/z	[C ₃₀ H ₃₄ N ₆ Cl ₂ O ₂ Ni]
	636m/z	[C ₃₀ H ₃₄ N ₆ O ₂ MnCl ₂]
Ma Canadan	342m/z	[C11H12N3O2MnCl2]
Mn Complex	184m/z	[C ₁₁ H ₁₀ N ₃]
	110m/z	[C ₈ H ₁₄]
	874m/z	$[C_{30}H_{34}N_6O_2ReCl_5]$
Re Complex	472m/z	$[C_{11}H_9N_3O_2ReCl_2]$
	402m/z	$[C_{19}H_{25}Cl_3N_3]$

Electronic spectral, magnetic moments, and conductivity measurements

The electronic spectrum at the ligand exhibits intense absorption at (282,330) and 348 nm attributed to $\pi \rightarrow \pi^*$ and $n \rightarrow \pi^*$, respectively.

The magnetic moment value 3.872B.M. at Co(II) complex is typical

for distorted octahedral geometry[10]. The electronic spectrum for this complex showed three broad peaks at 15432, 20000 and 25000cm⁻¹ assigned to ${}^{4}T_{1}g \rightarrow {}^{4}T_{1}g_{F}$, ${}^{4}T_{1}g \rightarrow {}^{4}T_{1}g_{P}$ and ${}^{4}T_{1}g \rightarrow {}^{4}A_{2}g_{F}$ transition, respectively[11]. The Ni(II) complex exhibits peaks at 20408 and 15384cm⁻¹ which assign to ${}^{3}A_{2}g \rightarrow {}^{3}T_{1}g_{(P)}$ and ${}^{3}A_{2}g \rightarrow {}^{3}T_{1}g_{(F)}$ transition, respectively suggesting an octahedral geometry around the Ni(II) ion [12]. The magnetic moment value at this complex consistent with octahedral geometry structure. The spectra of the Cu(II), Mn(II), Fe(III), Pt(IV) and Re(V) complexes of together with the Mett value Table(4) suggest octahedral geometry around for complexes. The spectrum of Pd(II) complex gave two bands peak at 20325 and 12658cm⁻¹ assigned to ${}^{1}A_{1}g \rightarrow {}^{1}B_{1}g$ and ${}^{1}A_{1}g \rightarrow$ $^{1}A_{2}g$ transition, respectively suggesting an square planar geometry[13-15]. The molar conductivity value of the complexes were consistent with nonelectrolytes 2:1 electrolytes for Pd(II) and Pt(IV) complexes, 1:1 electrolytes for Fe(III) complex and 3:1 electrolytes Re(V) complex. See for the scheme of the preparation ligand and complexes Figure (3).

Table (4)	Electronic	data and	molar o	conductivity	for	the metal	complexes
	Electronic	uata anu	motar	conductivity	101	the metal	complexes

Complexes	Molar Conductive cm ² s mole ⁻¹ in DMSO	µeff M. B.	$\lambda_{max} nm$	"ucm"	Assignment
			280	35714	Ligand Field
Cal			346	29801	C. T
Ostahadral	27	3.872	400	25000	${}^{4}T_{1}g(F) \rightarrow {}^{4}A_{2}g F$
Octanedrai			500	20000	${}^{4}T_{1}g(F) \rightarrow {}^{4}T_{1}g P$
			648	15432	${}^{4}T_{1}g(F) \rightarrow {}^{4}T_{1}g F$
			289	34602	Ligand Field
NU			346	28901	C. T
NIL	23	2828	394	25380	${}^{3}A_{2g} \xrightarrow{F} {}^{3}T_{1}g(p)$
Octanedrai			490	20408	${}^{3}A_{2g} \rightarrow {}^{3}T_{1}g(F)$
			650	15384	${}^{3}A_{2g} \xrightarrow{F} {}^{3}T_{2}g$ (F)
Cal			436	28901	Ligand Field
Ostahadral	19	1.732	385	25974	С. Т
Octanedrai			590	16949	$^{2}Eg \rightarrow ^{2}T_{2}g$ (D)
			380	26315	Ligand Field
PdL	147	Diamagnatia	410	24390	C. T
Square planer	147	Diamagnetic	492	20325	${}^{1}A_{1}g \rightarrow {}^{1}B_{1}g$
			790	12658	$^{1}A_{1}g \rightarrow ^{1}A_{2}g$
			244	20660	Ligand Field
MnL	10	1.05	269	29009	C. T
Octahedral	19	1.05	505	10802	${}^{6}A_{1}g \rightarrow {}^{4}T_{1}g (G)$
			505	19802	${}^{6}A_{1}g \rightarrow {}^{4}T_{1}g (D)$
FallI			344	29069	Ligand Field
Octobedrel	83	5.77	371	26954	C. T
Octalleural			640	21739	${}^{5}T_{2}g \rightarrow {}^{5}Eg (D)$
D+I			389	640	$\pi \rightarrow \pi^*$
Octobodrol	155	Diamagnetic	587	100	$^{1}A_{1}g \rightarrow ^{1}T_{2}g \nu_{2}$
Octalleural			892	68	$^{1}A_{1}g \rightarrow ^{1}T_{1}g \nu_{1}$
			344	29669	Ligand Field
ReL	217	1.05	368	271714	С. Т
Octahedral	217	1.05	492	203	${}^{6}A_{1}g \rightarrow {}^{4}T_{1}g (G)$
			790	126	${}^{6}A_{1}g \rightarrow {}^{4}T_{1}g (D)$

Fig (2) Linear Relation between Molar Concentration and Absorbance

Fig (3) scheme of the preparation ligand and complexes

Thermal analyses TGA

of The results thermo gravimetric analyses of L and complexes are given in Table (5). The thermograms have been carried out in the range of 25-700 °C at a heating rate of 10 °C/min in nitrogen atmosphere, they showed an agreement in weight loss between their results obtained from the thermal decomposition and the calculated values, which supports the results of elemental analysis and confirms the suggested formulae. Thus, the ligand L showed a common general behavior as the first step ($C_{18}H_{11}N_2O_2$) was loss

of $C_{12}H_{23}N_4$ moiety followed by the other parts of the ligand L. Furthermore, the final step of the thermolysis reactions of the complexes was found to give the metal oxide (L) $C_{30}H_{34}N_6O_2$ [101.892%] Found = (99.999% Cal) (130-390 °C) C₁₈H₁₁N₂O₂ [56.28% Found (56.274% Cal)] (390-697 °C) \rightarrow C₁₂H₂₃N₄ [45.614% Found (43.725%Cal). $1-C_{30}H_{34}N_6O_2Cl_3Fe$ (672.83) (35–190 $^{\circ}C) \rightarrow C_{11}H_{12}N_2OCl_3$ [42.89% Found (43.80% Cal)]. 2-C₁₉H₂₂N₄OFe (378.3) (190-690 °C) $\rightarrow C_{19}H_{22}N_4$ [44.78% Found (45.54%)

Cal)].

3-FeO⁺ [12.33% Found (10.67% Cal)]. Total wt. loss = 87.67% Found (89.34% Cal) and final residue: 12.33% Found (10.66% Cal). $1-C_{30}H_{34}N_6O_2Cl_2Co$ (640.47) (25-200 $^{\circ}C) \rightarrow Cl_2$ [12.21% Found (11.08%) Cal)]. $2-C_{30}H_{34}N_6O_2Co$ (569.56) (200-700) $^{\circ}C) \rightarrow C_{30}H_{34}N_{6}O$ [76.43% Found (77.13% Cal)]. 3-CoO [11.36% Found (11.79% Cal)]. Total wt. loss = 88.64% Found (88.21% Cal) and final residue: 11.36% Found (11.79% Cal). 1-C₃₀H₃₄N₆O₂Cl₂Ni (640.23) (25-200 °C) \rightarrow Cl₂ [12.11% Found (11.08% Cal)]. $2-C_{30}H_{34}N_6O_2N_1$ (569.56) (200-700) $^{\circ}C) \rightarrow C_{30}H_{34}N_{6}O$ [76.53% Found \rightarrow (77.10% Cal)]. 3-NiO [11.36% Found (11.82% Cal)]. Total wt. loss = 88.64% Found (88.18%) Cal) and final residue: 11.36% Found (11.82% Cal). $1-C_{30}H_{34}N_6O_2Cl_2Pd$ (687.96) (30-390) $^{\circ}C) \rightarrow C_{11}H_8N_3Cl_2$ [35.97% Found (36.77% Cal)]. $2-C_{19}H_{26}N_{3}O_{2}Pd$ (617.05) (390-690) °C) \rightarrow C₃₀H₃₄N₆O [45.52% Found (44.91% Cal)]. 3-PdO [18.51% Found (18.82% Cal)]. Total wt. loss = 81.49% Found (81.68% Cal) and final residue: 18.51% Found (18.32% Cal). $1-C_{30}H_{34}N_6O_2Cl_2Cu$ (645.08) (30-195) $^{\circ}C) \rightarrow C_6H_6Cl_2$ [22.87%] Found (23.09% Cal)]. 24.39% Found (25.01% Cal). $2-C_{24}H_{28}N_6O_2Cu$ (496.08) (195-695) °C) \rightarrow C₂₄H₂₈N₆O [65.75% Found (64.48% Cal)].

3-CuO [11.38% Found (12.43% Cal)]. Total wt. loss = 88.62% Found (87.57% Cal) and final residue: 11.38% Found (12.43% Cal). 1-C₃₀H₃₄N₆O₂Cl₂Mn (636.47) (35-400 °C) \rightarrow C₆H₆Cl₂ [22.07% Found (23.41% Cal)]. $2 - C_{24}H_{28}N_6O_2Mn$ (487.47) (400-700) $^{\circ}C) \rightarrow C_{24}H_{28}N_{6}O$ [65.75% Found (65.36% Cal)]. 3-MnO [12.18% Found (11.23% Cal)]. Total wt. loss = 87.82% Found (88.77% Cal) and final residue: 12.18% Found (11.23% Cal). $1-C_{30}H_{34}N_6O_2Cl_4Pt$ (847.52) (35-400) $^{\circ}C) \rightarrow C_{6}H_{6}Cl_{4}$ [26.87%] Found (25.95% Cal)]. 2-C₂₄H₂₈N₆O₂Pt (627.52) (400-700 °C) $C_{24}H_{28}N_6O$ [46.87% Found (47.19% Cal)]. 3-CuO [26.26% Found (26.86% Cal)]. Total wt. loss = 73.74% Found (73.14% Cal) and final residue: 26.26% Found (26.86% Cal). 1-C₃₀H₃₄N₆O₂Cl₅ Re (874.1) (35-150 $^{\circ}C) \rightarrow C_{6}H_{6}Cl_{5}$ [28.87%] Found (29.23% Cal)]. 2-C₂₄H₂₈N₆O₂Re (618.6) (150-430 °C) \rightarrow C₆H₅N [9.87% Found (10.41%) Cal)]. 3-C₁₈H₂₃N₅O₂Re (527.6) (430-700 °C) $\rightarrow C_{18}H_{23}N_5$ [36.87% Found (35.35%) Cal)]. 4-ReO₂ [24.39% Found (25.01% Cal)]. Total wt. loss = 75.61% Found (74.99% Cal) and final residue:

_ comp										
Sam (step	T range (°C)	n	\mathbb{R}^2	Tmax (K)	Ea (kJ mol ⁻¹)	ΔH^* (kJ mol ⁻¹)	$\begin{array}{c} A\\(sec^{-1}\\\times 10^7)\end{array}$	ΔS^* (J mol ⁻¹ K ⁻)	ΔG* (kJ mol ⁻¹)	K×10 ⁻⁷
L=1	130- 390	1	0.995	570.64	10.160737	5.70751	3.661	-104.996	61.946	9.095102
L=2	390- 697	1	0.998	877.36	13.851965	13.1808	7.791	-102.075	95.086	6.45457
PtL=1	35-400	0.9	0.989	547.79	5.71848	1.16415	5.84729	-101.293	56.6514	0.39608
PtL=2	400- 700	0.9	0.997	848.51	13.25878	6.20427	9.76425	-100.668	91.6221	0.228822
MnL1	35-400	0.9	0.989	545.79	5.57028	1.03258	6.16336	-100.824	56.0618	0.430953
MnL=2	400- 700	0.9	0.997	849.51	12.43878	5.37596	0.75906	-121.9189	108.947	1.9989
FeL=1	35-190	0.9	0.996	409.65	6.187388	2.78155	16.6018	-90.196	39.7168	0.858326
FeL=2	190- 690	0.9	0.988	846.74	11.866	4.82622	12.4259	-98.646	88.353	0.35427
CuL=1	30-195	0.9	0.996	409.77	6.27826	2.87143	2.0264	-107.691	47	0.10174
CuL=2	195- 695	0.9	0.988	847.74	11.866	4.81792	12.5302	-98.58648	88.393	0.35752
NiL=1	30-375	0.9	0.99	545.79	5.57031	1.0326	6.17163	-100.8137	56.055	0.43153
NiL=2	375- 700	0.9	0.996	850.51	11.602	4.53087	13.7918	-97.5911	87.533	0.420629
CoL=1	25-200	0.9	0.997	409.77	6.289644	2.88339	2.02715	-107.688	47.0031	0.101652
CoL=2	200- 700	0.9	0.989	846.74	11.69165	4.65185	13.0333	-98.24933	87.8435	0.38090
PdL=1	30-390	0.9	0.99	546.19	5.989	1.448	5.07571	-102.445	57.4027	0.32368
PdL=2	390- 690	0.9	0.997	852.51	12.6143	5.5265	2.8008	-111.0917	100.233	7.21642
ReL=1	35-150	0.9	0.997	345.18	5.96778	3.09795	1.53783	-108.5589	40.5703	7.25169
ReL=2	150- 430	0.9	0.993	632.54	9.1435	3.8845	5.42426	-103.1137	69.1081	0.19629
ReL=3	430- 700	0.9	0.997	750.06	14.46375	8.22775	6.5654	-102.943	85.4412	0.112099

Table 5 Thermodynamic data of the thermal decomposition of ligand and their complexes.

Kinetic studies

Coats-Redfern is the method mentioned in the literature related to decomposition kinetics studies; this method is applied in this study[16]. From the TG curves, the activation energy, E, pre-exponential factor, A, entropy, ΔS , enthalpy, ΔH , and Gibbs free energy, ΔG were calculated by the Coats–Redfern method where: $\Delta H = E$ - RT and $\Delta G = \Delta H$ - T ΔS . Kinetic parameters calculated bv are employing the Coats-Redfern equations, are summarized in Table (5). The Coats- Redfern equation may be written as the following:

$$log\left[\frac{1-(1-\alpha)^{1-n}}{T^2(1-n)}\right] = log\frac{ZR}{qE}\left[1-\frac{2RT}{E}\right] -\frac{E}{2.303RT} n \neq 1 \text{ for complex}$$
(1)
$$log\left[\frac{-log(1-\alpha)}{T^2}\right] = log\left[\frac{AR}{\beta E}\left(1-\frac{2RT}{E}\right]\frac{E}{2.303RT} n \neq 1 \text{ for ligands}$$
(2)

Where α is the mass loss at the completion of the reaction, R is the gas

constant, Ea is the activation energy in J mol⁻¹ and q is the heating rate. Since $I-2 RT/Ea \approx = I$, a plot of the lefthand side of the above equation against and ΔE^* was calculated from the slope and A (Arrhenius constant) was found from the intercept. The activation entropy ΔS^* , the activation enthalpy ΔH^* and the free energy of activation ΔG^* were calculated using the following equations:

$$S^* = 2: 303(logAh/KT)R; H^* = E^* - RT; G^*$$

= $H^* - T_S S^* \cdots 3$

Where K and h are the Boltzmann's and Planck's constants, respectively. The calculated values of ΔE^* , ΔS^* , ΔH^* and ΔG^* for the dehydration and the decomposition steps are given in Table (5). The activation energies of the decomposition were found to be in the range of 134–208 J mol⁻¹. According to the kinetic data obtained from TGA

curves. the negative values of activation entropies ΔS^* indicate more ordered activated complexes than the reactants and the reaction is slow[17].

Theoretical study

The vibration spectra Schiff base L were calculated by using a semi-empirical PM3 method. The results obtained for wave numbers are presented in Table (6), and the comparison with the experimental values indicates some deviations. These deviations may be due to the harmonic oscillator approximation and lack of electron correlation. It was reported [18] that frequencies coupled with Hartree- Fock Theory (HFT) approximation and quantum harmonic oscillator approximations tend to be 10% too high.

Optimized geometries' energy of metal complexes for ligand

Theoretical probable structures of metal complexes with ligand were calculated to search for the most probable building model stable structure. these shapes, show the calculated optima geometries for ligand and their metal complexes as shown in Figure (4). The results of PM3 method of calculation in the gas

123.314242

PtL

phase for binding energies and heat of formation of complexes are described in Table (6). The comparison of experimental and theoretical vibration frequencies is tabulated in Table (7).

Electrostatic potential (E.P)

Electron distribution governs the electrostatic potential of molecules and describes the interaction of energy of the molecular system with a positive point charge, so it is useful to find sites of reaction in a molecular positive charged species that tend to attack a molecule where the E.P. is strongly negative electrophilic attach[19]. The E.P of free ligand was calculated and plotted as 3D contour to investigate the reactive sites of the molecules, and one can interpret the stereochemistry and rates of many reactive involving soft electrophiles and nucleophiles in terms of the properties of frontier orbital's (HOMO and LUMO). Overlap between the HOMO and LUMO values was plotted as 3D contour to get more information about these molecules. The results of calculation showed that the LUMO of transition metal ion prefers to react with the HOMO of nitrogen atoms of ligand as shown in Figure (5).

Comp	PM3		Comp.	PM3	
Comp.	$\Delta \mathrm{H}_{f}^{\circ}$	ΔE_b		ΔH_f°	ΔE_b
L	1928.2795993	-3995.5384007	PdL	2136.4264527	-3877.3915473
MnL	88.4979704	-7397.4150296	FeL	210.8897177	-6927.125282
CoL	121.4043223	-7376.5386777	NiL	3450.3750690	-2634.2229310
CuL	265.543243	-4675.322179	ReL	132.76576297	-7652.546235

Table (5) Conformation energies in (kJ mol⁻¹) for the ligand and complexes

-6543.646497

Compound	C=O	C=N	M-N	M-O	M-Cl
L	*1728 *1692 ** 1726 **1700 ***0	*1640 *1600 **1650 **1603 ***0	-	-	-
MnL	*1700 *1688	*1578	*570 *508	*440	*356
	**1702 **1691	**1571	**582 ** 500	** 445	**360
	***0	***0	***0	***0	***0
CoL	*1697 *1678	*1610 *1590	*580 *530	*450 *421	*365
	**1700 **1670	** 1600 **1601	**578 **533	**444 **420	**362
	***0	***0	***0	***0	***0
NiL	*1708 *1682	*1621 *1590	*590 *557	*460 *444	*375
	**1703 **1681	**1624 **1591	**591 **555	**466 **442	**377
	***0	***0	***0	***0	***0
FeL	*1705 *1680	*1576	*577	*439 *420	*320
	**1702 **1681	**1573	**578	**433	**321
	***0	***0	***0	***0	***0
CuL	*1711 *1680	*1612 *1581	*580 *545	*470 *417	*317
	**1710 **1677	**1610 **1580	**581 **544	**476 **420	**312
	***0	***0	***0	***0	***0
PdL	*1700 **1703 ***0	*1620 *1578 **1611 **1580 ***0	*590 *530 **591 **533 ***0	*412 **410 ***)	-
PtL	*1714 *1669	*1617 *1571	*590 *572	*485	*318
	**1715 **1672	**1616 **1574	**600 **571	**488	**321
	***0	***0	***0	***0	***0
ReL	*1712 *1681	*1612 *1582	*588	*450 *433	*340 *312
	**1710 **1682	**1611 **1581	**589	**451 **431	**344 **311
	***0	***0	***0	***0	***0

Table (6) Comparison of experimental and theoretical vibration frequencies for ligand and complexes

*Experimental frequency. ** Theoretical frequency. *** Error% due to main difference in the experimental measurements and theoretical treatments of vibration spectrum.

Fig (4) Conformational structure of ligand and their complexes.

390

Fig (5) the calculated vibrational frequencies ligand and its complexes.

Microbiological investigation

The biological activity of ligand and their metal complexes was tested against bacteria; we used more than one test organism to increase the chance of detecting antibiotic principles in tested materials. The organisms used in the present investigation included two Gram positive bacteria (B. subtilis and S. aureus) and two Gram negative bacteria (E. coli and P. aeruginosa). results of the bactericidal The of screening the synthesized compounds are recorded in Table (7). An influence of the central ion of the complexes in the antibacterial activity against the tested Gram positive and

Gram negative organisms shows that the complexes have an enhanced activity compared to the ligand itself.

Table (7) Antibacterial activity data of ligands and their complexes as inhibition zone (mm).

Compou nd	Bacill us subtili s G+	Staphylococc us aureus G+	Escherich ia coli G	Pseudomon as aeruginosa G
L	18	16	19	18
MnL	22	21	23	16
CoL	20	21	24	21
NiL	15	23	21	22
FeL	18	23	22	20
CuL	20	22	19	26
PdL	21	16	18	19
PtL	22	22	19	24
ReL	21	22	23	24

Key to interpretation: Less than 10 mm=inactive, 10–15 mm=weakly active, 15–20 mm=moderately active, more than 20 mm= highly active.

References:

- 1. Anitha, C. Sheela, C. D. Tharmaraj, Ρ. and Sumathi. S. 2012. Spectroscopic studies and biological evaluation of some transition metal complexes of azo Schiff-base ligand (1-phenyl-2,3derived from dimethyl-4-aminopyrazol-5-one) and 5-((4-chlorophenyl)diazenyl)-2hydroxybenzaldehyde, Spectrochimica Acta Part A: Mole. and Biomolec. Spec., 96: 493-500.
- 2. Gupta, T. Patra, A. Dhar, K. S. Nethaji, M. and Chakravarty, A. R. 2005.Synthesis, Characterization Antiamoebic and Activity of Derivatives Benzimidazole and Their Vanadium and Molybdenum Complexes, J. Chem Sci. 117(12):12-18.
- 3. Samir, A. Abd El-Halim, H. F. Abd El-sadek, M.S. Yahia, I.S. and Wahab, L.A. 2012. Synthesis, thermal characterization, and antimicrobial activity of lanthanum, cerium, and thorium complexes of amino acid Schiff base ligand. J Therm Anal Calorim, 109(1): 671-681.
- 4- Foresman, J. C. and Frisch, C. 1996. Exploring Chemistry with Electronic Structure Methods, second ed. Gaussian Inc., Springer, Berlin.
- 5- EL-Wahed,M. G. Refat, M. S. and El-Megharbel, S.M. 2009. Spectroscopic, thermal and biological studies of coordination compounds of sulfasalazine drug: Mn(II), Hg(II), Cr(III), ZrO(II), VO(II) and Y(III) transition metal complexes. Indian Academy of Sciences, Bull. Mater. Sci. 32(2): 205-214.
- 6- Raman, N. Johnson, S. Joseph, J. Sakthivel, A. and Dhaveethu, J. 2008. Synthesis and Characterization of Zno Microcrstal Tubes"., J. Chil. Chem. Soc. 53(3):1599-1604.
- 7- Abbas, A. S. and Shaimaa A. Sh. 2011. Synthesis, characterization,

Stuctural Studies and Biological Activity of aNew Schiff Base –Azo Ligand and its Complexation with Selected Metal Ions, Oriental J. Chem. 27(3): 825-845.

- 8- Shaimaa,A.Sh. Yang,F. and Abbas, A.S. 2009. Synthesis and Characterization of Mixed Ligand Complexes of 8-Hydroxyquinoline and o-hydroxybenzylidene-1phenyl-2,3-dimethyl-4-amino-3pyrazolin-5-on with Fe(II), Co(II), Ni(II) and Cu(II) ions, European J. Scie. Resea, 33(4):702-709.
- 9- Nakamoto N. 2009. "Infrared and Raman Spectra of Inorganic and Coordination Compounds", 6th Ed, Part 2 John wiley and Sons, Inc., New Jersy.
- 10- Sliverstein R. M. and Webser X.
 F. 2005. "Spectrometric Identification of Organic Compounds". 7th Ed., Jon Wiley and Son, Inc. USA.
- 11- Lever, A.B.P. 1968. Inorganic Electronic Spectroscopy .New York.6.121.
- 12- Abbas, A.S. 2013. Metal Complexes of Multidentate Schiff Base-Azo Ligand: Synthesis, Characterization and Biological Activity, Dirasat, Pure Scie., 39 (1): 61-72.
- 13- Shaker, Sh. A. 2010. Preparation and Spectral Properties of Mixed-Ligand Complexes of VO(II), Ni(II), Zn(II), Pd(II), Cd(II) and Pb(II) with Dimethylglyoxime and N-Acetylglycine, E-J. Chem, 7 (4): 1598-1604.
- 14- Alhadi, A. A. Shaker, Sh. A. Yehye, W. A. Ali, H. M. and Abdullah, M. A. 2012. Synthesis magnetic and spectroscopic studies of Ni(II), Cu(II), Zn(II) and Cd(II) Complexes of a newly Schiff bas derived from 5-bromo-2-(hydroxybezylidene)-3,4,5-(trihydroxybenzohydrzide), Bull. Chem. Soc. Ethiop, 26 (1): 95-101.

- 15- Coats, A. W. and Redfern, J. P.1964. Kinetic parameters from thermogravimetric data. Nature, 201: 68–9.
- 16- Frost, A. A. and Pearson, R. G. 1964. Kinetics and Mechanism. 2nd ed., with permission of john wiley & sons, Inc Wiley, New York.
- 17- Anderson, W. P.; Behm, P. and Glennon, T. M. 1997. Searching the Conformational Space of Cyclic

Molecules: A Molecular Mechanics and Density Functional Theory Study of 9-Crown-3, J. Phys. Chem. A101:1920-1926.

18- Shaimaa. R. B. 2012. Synthesis, Spectral study and biological activity of some metal ions complexes with bidentate ligands, J. AL-Nahra. Uni. Sci. 15(3):30-42.

تحضير، تشخيص، تحلل حراري ودراسة تركيبية لمعقدات جديدة مع ليكاند رباعي السن

سحر صبيح حسن

عباس علي صالح الحمداني

قسم الكيمياء- كلية العلوم للبنات- جامعة بغداد – بغداد - العراق

الخلاصة:

حضرت بعض معقدات الليكاند 4-(5-(5-(1- يتائي مثل -3-اوكسو -2-فنيل باير از ولدين-4-ايل ايمين)-3،3-ثنائي مثل سايكلو هكسيل ثنائي ايمين امينو)- 1، 5 – ثنائي مثل -2- فنيل -1- باير از ول -3 (هيدروجين) – اون الجديدة المحضرة مع كل المنغنيز الثنائي، الحديد الثلاثي، الكوبلت الثنائي، النيكل الثنائي ، النحاس الثنائي ، البلاديوم الثنائي ، الرينيوم الخماسي والبلاتين الرباعي . شخصت معقدات الليكاند المحضرة بالطرق الطيفية والتقنية الكيميائية والفيزيائية . القيم الطيفية اقترحت ان الليكاند رباعي السن له القابلية على التناسق مع الايونات الفلزية عن طريق ذرتي النتروجين وذرتي الاوكسجين . الدراسات بينت ان الاشكال المناسق مع الايونات الفلزية عن طريق ذرتي النتروجين وذرتي الاوكسجين . الدراسات بينت ان الاشكال الشرموديناميكية لكل من طاقة التشيط ،طاقة جبس، الانتروبي ، الانثالبية وثابت الاستقرارية للمعقدات ككل بتقنية الترموديناميكية لكل من طاقة التشيط ،طاقة جبس، الانتروبي ، الانثالبية وثابت المحضرة نظريا باستخدام برنامج الموديناميكية لكل من طاقة التشيط ،طاقة جبس، الانتروبي ، الانثالبية وثابت المحضرة نظريا باستخدام برنامج وطاقة الترابل بدرجة الحرارة المطلقة لليكاند بالحالة الغازية وتحديد حرارة التكوين وطاقة الترابط بدرجة الحرارة المطلقة لليكاند بالحالة الحرة والمعقدات بطريقة الفعالية الهايبر كيم الثامن لتحديد الاشكال الهندسية الكثر استقراراً المركبات بالحالة الغازية وتحديد حرارة التكوين وطاقة الترابط بدرجة الحرارة المطلقة لليكاند بالحالة الحرة والمعقدات بطريقة 100 وطاقة الترابط بدرجة الحرارة المطلقة لليكاند بالحالة الحرة والمعقدات بطريقة 100 كما جريت دراسة الفعالية وطاقة الترابط بدرجة الحرارة المطلقة لليكاند بالحالة الحرة والمعقدات بطريقة 2001 كما جريت دراسة الفعالية

الكلمات المفتاحية: قواعد شف ليكندات رباعية السن ، تحاليل حرارية، الثوابت الترموديناميكية الحركية.