A New Three Step Iterative Method without Second Derivative for Solving Nonlinear Equations

Abstract

Raghad I. Sabri Applied Science Department , University of Technology. Received 30, April, 2014 Accepted 1, June, 2014 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licens Abstract: In this paper, an efficient new procedure is proposed to modify third -order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third -order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921], using three steps based on Newton equation, finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples.

Key words: nonlinear equations, Newton method, iterative method, three- step method, order of convergence.

Introduction:

Iterative methods play a crucial role in approximating the solution of nonlinear equation $(x)=0$.
One of the most famous iterative methods is the classical Newton method, which is a well known basic method and possesses quadratic order of convergence.
Several different methods were developed by number of researchers for the computation the root of the nonlinear equations, these numerical methods have been suggested using Taylor series , Homotopy analysis method ,Hermit interpolation method and other techniques, see [1-11].

In this paper , a new three-step iterative method was suggested without second derivative by considering a suitable approximate of $f^{\prime \prime}\left(x_{n}\right)$ [12] using Taylor series to find a simple root of nonlinear equation. The new method is sixth-order convergent was proved. Several examples are
presented showing the accuracy of the proposed method .
Construction of new method and convergence criteria:
To illustrate the procedure of constructing our new iterative method , the following iterative method was considered:
Algorithm 1.1: For a given x_{\circ}, compute the approximate solution x_{n+1} by the iterative scheme:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

which is known as Newton method and has quadratic convergence .
Rostom and Fuad [13] have obtained the following third order iterative method.

[^0]\[

$$
\begin{gathered}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}-\frac{f\left(x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right)}{f^{\prime}\left(x_{n}\right)}+\frac{f^{2}\left(x_{n}\right) f^{\prime \prime}\left(x_{n}\right)}{2 f^{\prime 2}\left(x_{n}\right)} \\
-\frac{\left(2 f\left(x_{n}\right) f^{\prime 2}\left(x_{n}\right)+2 f\left(x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right) f^{\prime 2}\left(x_{n}\right)-f^{2}\left(x_{n}\right) f^{\prime \prime}\left(x_{n}\right)\right)^{2} f^{\prime \prime}\left(x_{n}\right)}{8 f^{\prime 7}\left(x_{n}\right)}
\end{gathered}
$$
\]

Use Taylor's series to approximate
$f^{\prime \prime}\left(x_{n}\right)$ in (Algorithm 1.2) with

$$
\begin{equation*}
f^{\prime \prime}\left(x_{n}\right) \approx \frac{2 f\left(y_{n}\right) f^{\prime}\left(x_{n}\right)^{2}}{f\left(x_{n}\right)^{2}} \tag{1}
\end{equation*}
$$

where $y_{n}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$,
$f^{\prime}\left(x_{n}\right) \neq 0 \ldots$. 2)
Substituting (1) into (Algorithm 1.2), then the following iterative scheme was constructed:

Algorithm 1.3: For a given x_{0}, compute the approximate solution x_{n+1} by the iterative scheme:
$y_{n}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$.
$x_{n+1}=x_{n}-\left[\frac{f\left(x_{n}\right)+f\left(y_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right]$
To obtain a new three-step method of order six , a Newton method was used to rise the order of convergence, we have

Algorithm 1.4: For a given x_{0}, compute the approximate solution x_{n+1} by the iterative scheme:
$y_{n}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$.
$z_{n}=x_{n}-\left[\frac{f\left(x_{n}\right)+f\left(y_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right]$
$x_{n+1}=z_{n}-\frac{f\left(z_{n}\right)}{f^{\prime}\left(z_{n}\right)} \quad \ldots$ (5)
Using the linear interpolation on two points $\left(x_{n}, f^{\prime}\left(x_{n}\right)\right)$ and $\left(y_{n}, f^{\prime}\left(y_{n}\right)\right)$
$f^{\prime}\left(x_{n}\right) \approx \frac{x-x_{n}}{y_{n}-x_{n}} f^{\prime}\left(y_{n}\right)+$
$\frac{x-y_{n}}{x_{n}-y_{n}} f^{\prime}\left(x_{n}\right)$
to obtain the approximation

$$
\begin{align*}
& f^{\prime}\left(z_{n}\right) \approx \frac{z_{n}-x_{n}}{y_{n}-x_{n}} f^{\prime}\left(y_{n}\right)+ \\
& \frac{z_{n}-y_{n}}{x_{n}-y_{n}} f^{\prime}\left(x_{n}\right) \tag{7}
\end{align*}
$$

$$
\begin{align*}
& f^{\prime}\left(z_{n}\right)= \\
& \frac{f^{\prime}\left(y_{n}\right)\left[f\left(x_{n}\right)+f\left(y_{n}\right)\right]-f^{\prime}\left(x_{n}\right) f\left(y_{n}\right)}{f\left(x_{n}\right)} \tag{8}
\end{align*}
$$

Combining (5) and (8) , the following new iterative method free from second derivative was suggested for solving nonlinear equation.

Algorithm 1.5: For a given x_{0}, compute the approximate solution x_{n+1} by the iterative scheme:
$y_{n}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$.
$z_{n}=x_{n}-\left[\frac{f\left(x_{n}\right)+f\left(y_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right]$.
$x_{n+1}=$
$z_{n}-\frac{f\left(z_{n}\right) f\left(x_{n}\right)}{f^{\prime}\left(y_{n}\right)\left[f\left(x_{n}\right)+f\left(y_{n}\right)\right]-f^{\prime}\left(x_{n}\right) f\left(y_{n}\right)}$

For the new method defined by (Algorithm 1.5), We have the following analysis of convergence .

Theorem 1: let f be the scalar function sufficiently smooth in the real open domain D , and r is a simple zero of f.If x_{0} is sufficiently close to r, then the method defined by (Algorithm 1.5) has six- order convergence satisfied the following error equation
$e_{n+1}=\left[c_{2}^{3}\left(188+8 c_{2}^{2}-194 c_{3}\right)+\right.$
$c_{2}^{2} c_{4}\left(62 c_{2}-62\right)+c_{2}^{4}\left(4+8 c_{2}\right)+$ $\left.c_{5}\left(13 c_{2}-13 c_{3}\right)\right] e_{n}^{6}+O\left(e_{n}^{7}\right)$
where $\quad c_{j}=\frac{f^{(j)}(r)}{j!f^{\prime}(r)}, j=2,3, \ldots$

proof:

let $e_{n}=x_{n}-r$ be the error at nth iteration and r is a simple zero of f. Assume that $d_{n}=y_{n}-r$ where
$y_{n}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$.
Using Taylor's expansion and taking into account $(r)=0$, we have
$f\left(x_{n}\right)=f^{\prime}(r) e_{n}+\frac{1}{2!} f^{\prime \prime}(r)\left(e_{n}\right)^{2}+$
$\frac{1}{3!} f^{\prime \prime \prime}(r)\left(e_{n}\right)^{3}+\frac{1}{4!} f^{(i v)}(r)\left(e_{n}\right)^{4}+$
$\frac{1}{5!} f^{(v)}(r)\left(e_{n}\right)^{5}+\frac{1}{6!} f^{v i)}(r)\left(e_{n}\right)^{6}+$
$o\left(e_{n}{ }^{7}\right) \quad \ldots(10)$
$f\left(x_{n}\right)=f^{\prime}(r)\left\{e_{n}+c_{2} e_{n}^{2}+c_{3} e_{n}^{3}+\right.$
$\left.c_{4} e_{n}^{4}+c_{5} e_{n}^{5}+c_{6} e_{n}^{6}+o\left(e_{n}{ }^{7}\right)\right\} . .$.
(11)
$f^{\prime}\left(x_{n}\right)=f^{\prime}(r)\left\{1+2 c_{2} e_{n}+3 c_{3} e_{n}^{2}+\right.$
$4 c_{4} e_{n}^{3}+5 c_{5} e_{n}^{4}+6 c_{6} e_{n}^{5}+7 c_{7} e_{n}^{6}+\mathrm{o}\left(e_{n}^{7}\right)$
\} ..(12)
Dividing (11) by (12) gives
$\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=\left\{e_{n}-c_{2} e_{n}^{2}+\right.$
$2\left(c_{2}^{2}-c_{3}\right) e_{n}^{3}+\left(7 c_{2} c_{3}-4 c_{2}^{3}-\right.$
$\left.3 c_{4}\right) e_{n}^{4}+\left(8 c_{2}^{4}+10 c_{2} c_{4}+6 c_{3}^{2}-\right.$
$\left.4 c_{5}-20 c_{3} c_{2}^{2}\right) e_{n}^{5}+\left(13 c_{2} c_{5}+\right.$
$52 c_{3} c_{2}^{3}+17 c_{4} c_{3}-28 c_{4} c_{2}^{2}-$
$\left.\left.16 c_{2}^{5}\right) e_{n}^{6}+o\left(e_{n}^{7}\right)\right\} \ldots$ (13)
Thus, we have
$d_{n}=e_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$.

$$
=\left\{r+c_{2} e_{n}^{2}+2\left(c_{3}-c_{2}^{2}\right) e_{n}^{3}+\right.
$$

$\left(4 c_{2}^{3}-7 c_{2} c_{3}+3 c_{4}\right) e_{n}^{4}+$
$\left(4 c_{5}-10 c_{2} c_{4}-6 c_{3}^{2}-8 c_{2}^{4}+\right.$
$\left.20 c_{3} c_{2}^{2}\right) e_{n}^{5}+\left(16 c_{2}^{5}-17 c_{3} c_{4}+\right.$
$28 c_{2}^{2} c_{4}+33 c_{2} c_{3}^{2}-52 c_{2}^{3} c_{3}-$
$\left.\left.13 c_{2} c_{5}+5 c_{6}\right) e_{n}^{6}+o\left(e_{n}^{7}\right)\right\} \ldots$
Furthermore , Taylor expansion of
$f\left(y_{n}\right)$ about r is given as follow:
$f\left(y_{n}\right)=f(r)+f^{\prime}(r) d_{n}+$
$\frac{1}{2!} f^{\prime \prime}(r)\left(d_{n}\right)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(r)\left(d_{n}\right)^{3}+$
$\frac{1}{4!} f^{(i v)}(r)\left(d_{n}\right)^{4}+$
$\left.\frac{1}{5!} f^{(v)}(r)\left(d_{n}\right)^{5}+\ldots\right\}$
Then we have

$$
f\left(y_{n}\right)=f^{\prime}(r)\left\{c_{2} e_{n}^{2}+2\left(c_{3}-\right.\right.
$$

$\left.c_{2}^{2}\right) e_{n}^{3}+\left(5 c_{2}^{3}-7 c_{2} c_{3}+3 c_{4}\right) e_{n}^{4}+$
$\left(4 c_{5}-12 c_{2}^{4}-10 c_{2} c_{4}+24 c_{2}^{2} c_{3}-\right.$
$\left.6 c_{3}^{2}\right) e_{n}^{5}+\left(5 c_{6}-73 c_{2}^{3} c_{3}+34 c_{2}^{2} c_{4}+\right.$ $37 c_{3}^{2} c_{2}+28 c_{2}^{5}-17 c_{3} c_{4}-$
$\left.\left.13 c_{2} c_{5}\right) e_{\mathrm{n}}^{6}+\mathrm{o}\left(\mathrm{e}_{\mathrm{n}}^{7}\right)\right\} \ldots$
And

$$
\begin{align*}
& f^{\prime}\left(y_{n}\right)=f^{\prime}(r)\left\{1+2 c_{2}^{2} e_{n}^{2}+\right. \tag{16}\\
& 4\left(c_{2} c_{3}-c_{2}^{3}\right) e_{n}^{3}+\left(6 c_{2} c_{4}-11 c_{3} c_{2}^{2}+\right. \\
& \left.8 c_{2}^{4}\right) e_{n}^{4}+\left(8 c_{2} c_{3}+28 c_{3} c_{2}^{3}-\right. \\
& \left.20 c_{4} c_{2}^{2}-16 c_{2}^{5}\right) \mathrm{e}_{\mathrm{n}}^{5}+\left(32 c_{2}^{6}+\right. \\
& 56 c_{4} c_{2}^{3}-26 c_{5} c_{2}^{2}-16 c_{2} c_{3} c_{4}+ \\
& \left.\left.72 c_{3}^{3}-64 c_{3} c_{2}^{4}\right) \mathrm{e}_{\mathrm{n}}^{6}+\mathrm{o}\left(\mathrm{e}_{\mathrm{n}}^{7}\right)\right\} \tag{17}
\end{align*}
$$

Substituting (11),(16),(17) into z_{n} in
(9) , to get

$$
\begin{aligned}
& u_{n}=e_{n}-\frac{f\left(x_{n}\right)+f\left(y_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
& \quad=\left\{r+2 c_{2}^{2} e_{n}^{3}-\left(9 c_{2}^{3}-7 c_{2} c_{3}\right) e_{n}^{4}-\right.
\end{aligned}
$$

$$
\left(44 c_{2}^{2} c_{3}-30 c_{2}^{4}-10 c_{2} c_{4}-\right.
$$

$$
\left.6 c_{3}^{2}\right) e_{n}^{5}-\left(62 c_{2}^{2} c_{4}-188 c_{2}^{3} c_{3}+\right.
$$

$$
70 c_{3}^{2} c_{2}+88 c_{2}^{5}-17 c_{3} c_{4}-
$$

$$
\begin{equation*}
\left.\left.13 \mathrm{c}_{2} c_{5}\right) \mathrm{e}_{\mathrm{n}}^{6}+\mathrm{o}\left(\mathrm{e}_{\mathrm{n}}^{7}\right)\right\} \tag{18}
\end{equation*}
$$

where
$u_{n}=z_{n}-r$.
Now, expand $f\left(z_{n}\right)$ about r to obtain
$f\left(z_{n}\right)=f^{\prime}(r)\left\{2 c_{2}^{2} e_{n}^{3}-\right.$
$\left(9 c_{2}^{3}-7 c_{2} c_{3}\right) e_{n}^{4}-\left(44 c_{2}^{2} c_{3}-\right.$
$\left.30 c_{2}^{4}-10 c_{2} c_{4}-6 c_{3}^{2}\right) e_{n}^{5}-$
$\left(62 c_{2}^{2} c_{4}-188 c_{2}^{3} c_{3}+4 c_{2}^{4}+\right.$
$70 c_{3}^{2} c_{2}+88 c_{2}^{5}-17 c_{3} c_{4}-$
$\left.\left.13 c_{2} c_{5}\right) e_{\mathrm{n}}^{6}+\mathrm{o}\left(\mathrm{e}_{\mathrm{n}}^{7}\right)\right\}$

According to (11),(12),(16),(17) and (19) we have
$\frac{f\left(z_{n}\right) f\left(x_{n}\right)}{f^{\prime}\left(y_{n}\right)\left[f\left(x_{n}\right)+f\left(y_{n}\right)\right]-f^{\prime}\left(x_{n}\right) f\left(y_{n}\right)}=$
$\left\{2 c_{2}^{2} e_{n}^{3}+\left(7 c_{2} c_{3}-9 c_{2}^{3}\right) e_{n}^{3}+\right.$
$\left(30 c_{2}^{4}-44 c_{2}^{2} c_{3}+10 c_{2} c_{4}+\right.$
$\left.6 \mathrm{c}_{3}^{2}\right) e_{n}^{5}+\left(194 c_{2}^{3} \mathrm{c}_{3}-62 \mathrm{c}_{2}^{2} \mathrm{c}_{4}-\right.$
$70 c_{2} c_{3}^{2}-96 c_{2}^{5}+17 c_{3} c_{4}+13 c_{3} c_{5}-$
$\left.\left.4 c_{2}^{4}\right) \mathrm{e}_{\mathrm{n}}^{6}+\mathrm{o}\left(\mathrm{e}_{\mathrm{n}}^{7}\right)\right\}$

Now , substituting (18) and (20) into (9) leads to
$x_{n+1}=r+\left(188 c_{2}^{3}-62 c_{2}^{2} c_{4}+8 c_{2}^{5}-\right.$ $194 c_{2}^{3} c_{3}+13 c_{2} c_{5}-13 c_{3} c_{5}+$
$\left.62 c_{2}^{3} \mathrm{c}_{4}+4 c_{2}^{4}\right) \mathrm{e}_{\mathrm{n}}^{6}+\mathrm{o}\left(\mathrm{e}_{\mathrm{n}}^{7}\right) \quad \ldots$

Using the relation $e_{n}=x_{n}-\mathrm{r}$ in (21) , we get
$e_{n+1}=\left[c_{2}^{3}\left(188+8 c_{2}^{2}-194 c_{3}\right)+\right.$ $c_{2}^{2} c_{4}\left(62 c_{2}-62\right)+c_{2}^{4}\left(4+8 c_{2}\right)+$ $\left.c_{5}\left(13 c_{2}-13 c_{3}\right)\right] \mathrm{e}_{\mathrm{n}}^{6}+\mathrm{o}\left(\mathrm{e}_{\mathrm{n}}^{7}\right)$... (22)
From eq.(22), we conclude that the new iterative method defined by (9) in (Algorithm 1.5) has a sixth-order convergence.

2- Numerical implementations and Discussion:

In this section, some test problems are presented to compare the efficiency of the proposed method (TSM) . The following table (1) given the test functions and their solution r, found up to the $10^{\text {th }}$ decimal places.

Tabel(1)

Functions	Solution
$f_{1}(x)=x^{2}-\exp (x)-3 x+2$	$\mathrm{r}=0.257530285$
$f_{2}(x)=x^{3}-4 \mathrm{x}^{2}-10$	$\mathrm{r}=1.365230013$
$f_{3}(x)=(x+2) \exp (x)-1$	$\mathrm{r}=-0.442854401$
$f_{4}(x)=(x-1)^{3}-1$	$\mathrm{r}=2$
$f_{5}(x)=\operatorname{xexp}\left(x^{2}\right)-\sin ^{2}(x)+$	$\mathrm{r}=-$
$3 \cos (x)+5$	1.207647827
$f_{6}(x)=\exp \left(x^{2}+7 x-30\right)-1$	$\mathrm{r}=3$

Let $\left|f\left(x_{n+1}\right)\right|<\varepsilon$ be the stopping criteria for computer programs, where $\varepsilon=10^{-15}$. All numerical computations are worked out in matlab 7.8. Table(2) represents comparison between the new method defined by (Algorithm 1.5) and other
well known methods that are presented in (Homeier (HM) [14], Chun (CM) [15] , Rostom (N1)[13]) and classical Newton method(NM).

Tabel(2)Numerical examples for different functions

Discussion:

In this paper, a new three -step iterative method without second derivative was suggested for finding roots of nonlinear equations. Analysis of the convergence is performed to show that the convergence order of the new method is six. Numerical results indicate that the new method takes a less number of iteration than the other methods.

Reference:

[1] Chun, C. 2007. Some improvements of Jarrat's methods with sixth order convergence,

Appl. Math. Comput. 190: 14321437.
[2] Muhammad, H. and Muhammad, R. 2010. Three-Step Iterative Method with Sixth Order Convergence for Solving Nonlinear Equations. Int. J. Math .4(50): $2459-2463$.
[3] Yun, J. H. 2008. A note on threestep iterative method for nonlinear equations, Appl. Math. Comput. 202:401-405.
[4] Sharma, J. R. and Sharma, R . 2010. A new family of modified Ostrowski's methods with accelerated eighth order convergence, Numer. Algorithms. 54:445-458.
[5] Frontini, M. 2003. Hermite interpolation and a new iterative method for the computation of the roots of nonlinear equations, calcolo. 40:109-119 .
[6] Noor, M. A.; Khan, W. A.; Noor, K. and AL-Said, E. 2011. Higher order iterative methods free from second derivative for solving nonlinear equations, Int. J. physic. Sci .6(8) : 1887-1893.
[7] Noor, M. A. 2008. On iterative method for nonlinear equations using homotopy perturbation technique, Appl. Math. Inform Sci. 4:227-235.
[8] Noor, M. A. 2010. Some iterative methods for solving nonlinear equations using homotopy
perturbation method, Int. J. computer Math. 87:141-149.
[9] Noor, M. A. and Khan, W. A. 2012. New iterative methods for nonlinear equations using homotopy perturbation method , Appl. Math. Comput . 219:35653574.
[10] Wang, P. 2011. A third-order family of Newton-like iteration methods for solving nonlinear equations, J. Numer. Math. Stoch . 3(1):13-19.
[11] Abbasbandy, S. 2003. Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method, Appl. Math . compute. 145: 887893.
[12] Li, Y. and Zhang, P. 2010. Some new variants of Chebyshev-Hally methods free from second derivative , Int. J. nonlinear Sci .9(2):201-206.
[13] Saeed, R. K. and Khthr, F. W. 2011. New third -order iterative method for solving nonlinear equations , J. Appl. Sci .7(6): 916921.
[14] Homeier, H. H. H. 2005. On Newton-type methods with cubic convergence. J. Comp. Appl. Math.193: 425-432 .
[15] Chun, C. 2005. Iterative method improving Newton's method by decomposition methods,Comput Math. Appl. 50: 1559-1568.

طريقة تكرارية جديدة ذات ثلاث خطوات لاتحتوي على مشتقة ثانية لحل المعادلات اللاخطية

رغذ ابراهيم صبري

الجامعة التكنولوجية، قسم العلوم التطبيقة.

الخلاصة:

في هذا البحث ، تم عرض خوارزميةة(طريقة) جدبدة كفوعة لتطوير الطريقة النكرارية من الرتبة الثالثة المقدمة من قبل الباحثين رستم وفؤاد ، باستخدام ثلاث خطوات مستندة على معادلة نيوتن ، طريقة الفروق المحددة (المنتهية) والاندراج الخطي . تم توضيح تحليل الاقتراب لبيان أداء وكفاءة الطريقة الجديدة لحل المعادلات اللاخطية. كفاءة الطريقة الجديدة تم توضيحها عن طريق الامثلّة العددبة.

الكلمات المفتاحية: المعادلات اللاخطية ، طريقة نيوتن، الطربقة النكرارية، الطريقة ذات ثلاث خطوات ، رتبة
النقارب

[^0]: Algorithm 1.2: For a given x_{0}, compute the approximate solution x_{n+1} by the iterative scheme:

