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Abstract:  
Let R be a commutative ring with identity 1 and M be a unitary left  -module. 

A submodule N of an R-module M is said to be pure relative to submodule T of M 

(Simply T-pure) if for each ideal A of R,           (    )  In this 

paper, the properties of the following concepts were studied: Pure essential 

submodules relative to submodule T of M (Simply T-pure essential),Pure closed 

submodules relative to submodule T of M (Simply T-pure closed) and relative pure 

complement submodule relative to submodule T of M (Simply T-pure complement) 

and T-purely extending. We prove that; Let M be a T-purely extending module and let 

N be a T-pure submodule of M. If M has the T-PIP, then N is T-purely extending. 

 
Key words: T-pure submodule, T-pure essential submodule and T-pure closed 

submodule. 
 

Introduction: 
In this paper we assume that   is 

commutative ring with identity and all 

 -modules are unitary left  -module. 

A submodule   of an  -module   is 

called pure submodule if for every 

finitely generated ideal   of  ,   
      [1]. A submodule   of an  -

module   is said to be  -essential if 

for every pure submodule   of 

M,       implies ={0} [2]. 

Following [3], A submodule   of an 

 -module   is called pure relative to 

submodule   of   (Simply  -pure) 

if           (    ) for 

each ideal   of  . It is clear that every 

pure submodule is  -pure. 

In this paper we introduce the concepts 

of  -pure essential submodules, -pure 

closed subomdules and relative  -pure 

complement submodules and we prove 

that; Let A and C be submodules of an 

R-module M,then there exist T-p-

closed submodule H in M which is T-

pure such that C is T-pure closed in H. 

In [4] an  -module   is called purely 

extending module if every submodule 

is essential in pure submodule. We 

introduce the concept of  -

purelyextending module. We prove 

that; Let M be an R-module, then M is 

T-purely extending if and only if every 

T-p-closed submodule of M is T-direct 

summand of M. 

 

1-Main results: 

The notion of purity for abelian group 

was generalized to modules over 

arbitrary rings. In [2], the concept of P-

essential was studied. In this section, 

the notion of T-p-essential submodules 

was introduced. 
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Definition 1.1. A submodule   of an 

 -module   is called pure essential 

relative to submodule   of   (Simply 

 -p-essential) if for every  -pure 

submodule   with       implies 

     M is called  -p-essential 

extension of  . 

It is clear that every P-essential 

is  -p-essential for every submodule 

but the converse may not be true in 

general, the submodule 4 as  4 - 

module. Let  ={  ̅  ̅}, =  ̅ 4 is ( ̅ 4)-

pure,      ̅  4, thus     ̅ 4. 

Hence   is  -p-essential but not P-

essential. 

The following result is 

analogous to a similar concerning P-

essential submodule of a module. 

Theorem 1.2. Let       and let 

    then: 

1. If   is  -p- essential in M, then   is 

 -p-essential in  . 

2. If   is  -pure in M and     and 

K is  -p-essential in  , then K is  -p-

essential in   and   is  -p-essential in 

 . 

3. If   has  -pure finite intersection 

property and if   is  -pure in  , 

then   is  -p-essential in   if and only 

if   is  -p-essential in   and   is  -p-

essential in  . 

Proof: 1. we have to show that       -

p-essential in M. Let L be T-pure 

submodule of M with        since 

     then         
  ,thus        Since K is T-p-

essential in M then      Hence N is 

T-p-essential in  . 

2. Let L be T-pure submodule of N 

with        since   is submodule 

of   and   is  -p-essential in  , 

therefore      therefore     
       thus      hence K is -p-

essential in  . Now we have to show 

that   is  -P-essential in  . Let   be 

 -pure submodule of   with     
   thus           so      
Hence   is  -p-essential in    
3.⟹It is clear. 

⟸ Suppose that   is  -p-essential in 

  and   is  -p-essential in  , we have 

to show that   is  -p-essential   in  . 

Let   be  -pure submodule of   

with        By assumption     

is  -pure in  , thus     is  -pure in 

  by [remark 5] since   is  -p-

essential in N and   (   )    

thus       and also since   is  -

p-essential hence      Thus    is -

p-essential in  . 

Corollary 1.3. Let Μ be an  -module 

that has  -pure finite intersection 

property .If   is  -pure in  , then 

    is -p-essential in   if and only 

if   is  -p-essential in   and   is  -p-

essential in   for any submodule   of 

 . 

Proof: ⟹The proof follows by 

theorem (1.2). 

⟸Let   be  -pure submodule of   

with   (   )     by assumption 

    is   pure in   and since   is 

 -p-essential in M, then        So 

again since   is  -p-essential in   

then      therefore     is  -p-

essential in  . 

Remark 1.4. If   is  -p-essential in   

and    is T-p-essential in   , then 

     is not T-p-essential in       , 

for example see example 4.6 in [2]. 

            In [3], a submodule   of an  -

module   is said to be relative direct 

summand to a submodule   of   

(Simply  -direct summand) if there 

exist a submodule   of   with 

      and         It is clear 

that every direct summand is  -direct 

summand. 

Remark 1.5. 1. Every  -direct 

summand of an  -module   is  -pure 

submodule. 

2. Let   be an R-module and      
If   is  -pure submodule of   and   

is any submodule of  , then     is 

 -pure submodule in  . 
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3. Let          then     is  -

p-essential in   if and only if   is  - 

p-essential in   and   is  -p-essential 

in  , where          
4. If     and H is T-pure in M, then 

    is T-pure in M.  

          In [2], a submodule   of an  -

module   is called a pure closed 

submodule of        dose not contain 

a proper p-essential extension of  . We 

introduce the concept of relative pure 

closed submodule to submodule. 

Definition1.6. Let   be an  -module 

and let   be submodule of  . A 

submodule   of an  -module   is 

called relative pure closed submodule 

to submodule   of   (Simply  -p-

closed)           dose not contain a 

proper  -p-essential extension of  . 

Proposition 1.7.  Any  -direct 

summand of an  -module M is  -pure 

closed. 

Proof: Let       , where       

submodules of . If    -p-essential in 

     then by [remark 1.5 (2)]     

is         . But   (   )  
   but       and so       
Proposition 1.8. Let        and 

      -p-closed in         and   is 

 -p-essential in , then 
 

  
 is  -p-

essential in 
 

 
. 

Proof: Let  
 

 
 be T-pure in 

 

 
 with 

 

  
 

 

 
  

 

 
 , then        

But K is T-p-essential in M, thus 

    and     and      , 

hence  
 

 
 
 

 
. 

Theorem 1.9. Let C be a T-p-essential 

submodules of an R-module M with C 
  T, then there exists T-p-closed 

submodule H in M which is T-pure 

such that C is T-pure closed in H. 

Proof: let V= { K: K is T-pure 

submodule of M such that C is T-p-

essential in K}.  V≠∅,(since T is T-

pure submodule of M, T   T and C is 

T-p-essential in M then by 

theorem(1.2) C is T-p-essential in T).  

By Zorn's Lemma, V has a maximal 

element say H. To show that H is T-p-

closed in M, let L be a submodule of M 

such that H is T-p-essential in L. Since 

C is T-p-essential in H and H is T-p-

essential in L, then by theorem(1.2) C 

is T-p-essential in L and thus H=L. 

Let      be submodules of 

an                        is 

called pure relative complement 

of        is maximal with the 

property     * +, -  We introduce 

the concept of relative pure 

complement relative to submodule 

T    (Simply T-p-complement). 

Definition 1.10. Let       be two 

submodules of an -module   with 

   T-pure in    is called relative T-p-

complement of         is maximal 

with     T  
Compare the following result with 

proposition (4.14) in [2]. 

Proposition 1.11. Every submodule of 

an  -module   has a relative  -p-

complement in  

Proof: Let N be a given submodule of 

M and consider the set S= {K M, K is 

T-pure in M with N⋂K T}. It is clear 

that S≠∅ by [2], and every chain of S 

has an upper bound. By Zorn's Lemma, 

S has maximal element which means N 

has relative T-p-complement in M. 

The following proposition gives the 

relation between T-p-closed submodule 

and relative T -p-complement 

submodule. 

Proposition 1.12. Let N be a 

submodule of an R-module M and T   

F, for every T-pure submodule F of M. 

If N is relative T-p-complement for 

some K of M, then N is T-p-closed in 

M. 

Proof: Let L be T-pure submodule of 

M with N is T-p-essential. We have 

N⋂K   T, (N ⋂ K) ⋂ L   T ⋂ 

L sinceL is T-pure in M, then   is 

T-pure in L by remark (1.5) thus N ⋂ 

(K ⋂ L)   T ⋂ L=T ,hence L=N, 

hence N is T-p-closed in M. 
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         In [4], an R-module is called 

purely extending module, if every 

submodule of M is essential in a pure 

submodule of M. We introduce the 

concept of relative purely extending 

module to submodule T of M (simply 

T-purely extending). 

Definition 1.13. Let M be an R-

module, M is called T-purely 

extending module if every submodule 

is T-p-essential in T-pure submodule 

of M. 

The following theorem gives a 

characterization of T-purely extending 

module.  

Theorem 1.14.Let M be an R-module, 

then M is T-purely extending if and 

only if every T-p-closed submodule of 

M is T-direct summand of M and every 

submodule is submodule of T. 

Proof: Suppose M is an T-purely 

extending and let K be a T-p-closed 

submodule of M. Then there exists a T-

pure submodule B of M such that K is 

T-p-essential in B. Conversely, let A 

be T-p-essential submodule of M, by 

theorem (1.9) there exists a T-p-closed 

submodule H in M such that A is T-p-

essential in H. Since H is T-p-closed in 

M, then by our assumption H is T-pure 

in M and hence M is T-purely 

extending. 

Remark 1.15. Every purely extending 

module M is T-purely extending. 

Proof: Let A be a submodule of an R-

module M. Since M is purely 

extending, then there exists a pure 

submodule B of M such that A is 

essential in B. Thus B is T-pure in M 

and hence M is T-purely extending. 

Proposition 1.16. If an R-module M is 

T-purely extending and N is T-p-

closed submodule of M, then 
 

 
  is T-

purely extending. 

Proof: Let 
 

  
 be a submodule of 

 

 
 . 

Since M is T-purely extending, then 

there exists a T-pure submodule A of 

M such that K is T-p-essential in A and 

since N   K and N is T-p-closed in M 

then by proposition (1.8) 
 

 
  is T-p-

essential in 
 

 
. But A is T-pure in M, so 

by remark (1.5) 
 

 
  is T-pure in  

 

 
. 

         In [5], an R-module M has the 

relative pure to submodule T of M 

intersection property (Simply T-PIP) if 

the intersection of any two   T-pure 

submodule is T-pure submodule. 

Now, we give a condition which a pure 

submodule of T-purely extending 

module is T-purely extending. 

Corollary 1.17. The homomorphic 

image of T-purely extending is T-

purely extending if every submodule is 

T-p-closed. 

Proposition 1.18. Let M be a T-purely 

extending module and let N be a T-

pure submodule of M with N T. If M 

has the T-PIP, then N is T-purely 

extending. 

Proof: Let A be a T-p-closed 

submodule in N, then by theorem (1.9) 

there exists a T-p-closed submodule B 

in M such that A is T-p-essential in B. 

Since N is T-p-essential in N, then 

A=A ⋂ N is T-p-essential in B ⋂ N   
N  but A is T-p-closed in N, therefore 

A=B ⋂ N   Since M is T-purely 

extending and B is T-p-closed in M, 

then by theorem (1.13) B is T-pure in 

M. But N is T-pure in M and M has the 

T-PIP, so A=B⋂ N is T-pure in M and 

hence A is T-pure in N. Thus N is T-

purely extending.  
 

References: 
[1] Fath, C. 1973. Algebra I, rings, 

Modules and Categories, Springer 

Verlag, Berlin, Heid el berg, and 

New York. 



 Baghdad Science Journal  Vol.12(4)2015 
 

388 

[2] Nada, M. Al.thani. 1997.  Pure 

Baer Injective Modules, Internat. 

J.Math. Math. Sci. 20(3): 529-538. 

[3] Mehdi, S. Abbas. 2013. Purity and 

Projectivity Relative to 

Submodule, Iraqi J. Statistic. 

Sci.(25): 49-63. 

[4] Al-Zubaidey, Z. T. S. 2005. On 

Purely Extending Modules, M.S.c 

Thesis, College of Science, 

University of Baghdad. 

[5] Ali, M. J. M. and Al Hassani, U. 

S. 2013. A Note on Pure 

Submodules Relative to 

Submodule, Journal of Al-Nahrain 

University Science. 16(4): 220-

224. 

 

 

 نتائج حول انمقاساث انجزئيت اننقيت باننسبت انى مقاس جزئي
 

 أديب نور رياض     دخيمشيرين عودة 
 

 جاهعة بغذاد-كلٍة العلوم للبٌات–قسن الشٌاضٍات 
 

 :انخلاصت
.ٌسوى الوقاس الجزئً  ة هقاساً أٌسشاً أحادٌاً على الحلق  Mو لٍكي  1حلقة أبذالٍة رات عٌصش هحاٌذ    لتكي  

N  ًأرا كاى:  هي   ًقٍاً بالٌسبة الى الوقاس الجزئ 

 .Rفً    لكل هثالً  (    )           

والوقاسات الجزئٍة  خواص الوقاسات الجزئٍة الجوهشٌة الٌقٍة بالٌسبة الى هقاس جزئًتن دساسة فً هزا البحث 

الوغلقة الٌقٍة بالٌسبة الى هقاس جزئً والوقاسات الجزئٍة الوكولة الٌقٍة بالٌسبة الى هقاس جزئً و كزلك تن 

 قاس جزئً.دساسة بعض خواص الوقاسات التوسٍعٍة الٌقٍة بالٌسبة الى ه

 
،  هقٍاس جزئً Tهي الٌوط  جوهشي ًقً،  هقٍاس جزئً Tهقٍاس جزئً هخلص هي الٌوط  انكهماث انمفتاحيت:

 .Tهي الٌوط  هغلق ًقً
 

 

 


