DOI: http://dx.doi.org/10.21123/bsj.2016.13.1.0053

Molecular Identification of Rhizosphere *Trichoderma* spp. and Their Antagonistic Impact Against Some Plant Pathogenic Fungi

Safaa Al-deen Ahmed Shanter Al-qaysi* Adel Hamdan Alwan**

*Department of Biology, College of Science for Women, University of Baghdad. **Department of Biology, College of Science, Al-mustansiriya University.

> Received 11, January, 2015 Accepted 16, March, 2015

EXAMPLE 1 This work is licensed under a <u>Creative Commons Attribution-NonCommercial-</u> <u>NoDerivatives 4.0 International Licens</u>

Abstract:

The main aim of this study was to molecular identification and determine the antagonistic impact of rhizosphere Trichoderma spp. against some phytopathogenic fungi, including (Magnaporthe grisea) pyricularia oryzae, Rhizoctonia solani and Macrophomina phasolina. Four Trichoderma isolates were isolated from rhizosphere soils of the different host plants in different locations of Egyptian governorates. The morphological characterization of isolated Trichoderma as well as using of (ITS1-5.8S-ITS2) ribosomal gene sequence acquisition and data analyses. By comparing the results of DNA sequences of ITS region, the fungi represented one isolate were positively identified as T. asperellum (1 isolate T1) and one as T. longibrachiatum (1 isolate T2) and two as Trichoderma harzianum (2 isolates T3 and T4). The results showed similarity value of (5.8S-ITS) region sequence of the two isolates, T1 (T. asperellum) and T2 (T. longibrachiatum) of (99%, 99%), respectively. The similarity value of (5.8S-ITS) region sequence with isolates of T3, T4 (T. harzianum) of (99%). On the other side, the results of molecular identification of phytopathogenic fungi represented high similarity value of (5.8S-ITS) region sequence and were identified as P.oryzae, R. solani and M. phasolina (99, 96 and 99%) respectively. Variations and genetic relationships among 4 Trichoderma isolates were investigated by using the Rapid Amplification of Polymorphic DNA (RAPD) profiles using ten random primers. All Trichoderma isolates were assessed for their antagonistic impact on phytopathogens P. oryzae, R. solani and M. phasolina. Though T. harzianum isolates were more affects than T. longibrachiatum and T. asperellum isolates, the percent inhibitory effect among T. harzianum isolates were vary much (44.8 to 91.6%). The inhibitory effect of T. asperellum isolates ranged from 42.2 to (86.0%), while T. longibrachiatum exhibiting affect ranged between (47.5%) to (83.8%).

Key words: Biological Control, *Trichoderma*, RAPD, Rhizosphere Soil, Plant Pathogens

Introduction:

Biological control agents (BCAs) could be available alternative way over chemicals treatments in management of fungal crop diseases. All members of genus *Trichoderma* are free living and known as imperfect fungi (Deuteromycetes), fast growing in culture and have the ability to produce several types of green spores. These occur worldwide and are commonly found in the soil environments and associated with roots of plant and debris [1]. The potential effect of Trichoderma species as biological control agents in plant disease control was introduced in the early 1930s by [2] who was first researcher elucidate the mycoparasitic activity of the members of Trichoderma genus against wide range of microorganisms like soil-born and bacterial fungal pathogens. Currently, commercial products of Trichoderma species are available in the market as biological control agents or can be used as amendments enhancers for plant growth [3]. Biological control mechanisms of Trichoderma species results either from competition activity for nutrients and area. on the other side Trichoderma species have ability to produce several compounds as a resist metabolites that either inhibit spore germination, kill the plant cells or decrease pH of the rizhospher soil, in the end all these mechanisms lead to kills the plant pathogens and preventing growth of these pathogens. Biological control agents may also parasitism/predation result from activity between the target pest (plant pathogens itself) and biological control agents such as Trichoderma Spp. thus through direct interaction with plant pathogens, which involves direct contacts and produce of some types of cell-wall-degrading enzymes, toxic compounds and secondary compounds/or antibiotics that act synergistically with some types of side enzymes. From the other Trichoderma products (BCAs) can play important role and clear positive effects on plants by increase the plant growth also can play role in the

stimulation of plant defense mechanisms [4,5,6]. Trichoderma species are green-spored ascomycetes present in nearly all types of temperate and tropical soils, they can present in decaying plant material and in the rhizosphere habits of plants [7]. There are many approaches that can be used to identify and characterized the genus of Trichoderma, these included that mycelia growth rate, morphological characters (phialides and phialospores) as well as colony features, recently molecular technique been has characterized several type of fungi like internal Trichoderma spp. The transcribed spacer (ITS) region of the and random amplified rDNA polymorphic DNA (RAPD) most widely used in the characterization of these fungi [8,9]. Trichoderma species are usually found colonizing plant root ecosystems, establishing symbiotic relationship with plants. However, the colonization of the root tissues are only limited at the root cortex due to the deposition of callose which restrict the penetration of hyphae, the callose barriers made Trichoderma become harmless to the plants [10]. Since weinding [2] reported that antagonistic impact of T. lingnorum (viride) against borne fungal pathogen soil of Rhizoctonia solani, several scientists have been widely studied Trichoderma species as bio-agents against wide range of fungal species that causes disease for plants [11,12,13]. Moreover, Trichoderma species have been studied as bio-agents against plant fungal pathogens isolated from many types of soil [14]. Data obtained from many studies showed that some isolates of Trichoderma spp. had a significant reducing potential on plants diseases caused by pathogenic fungi, also some species of these bio-agents are known as biocontrol agents from increased localized and systemic resistance to plant diseases (inducing the defensive mechanisms of host plant) as well as overall plant growth, such as several soil-borne fungal plant pathogens including (Magnaporthe grisea) pyricularia oryzae, Rhizoctonia solani and Macrophomina phasolina [15,16,17]. Therefore, the goal of this study was to molecular identification and determine an antagonistic impact of using different Trichoderma species as biocontrol agents to diminish and control of some fungal plant pathogens Phaseolina, R. solani including *M*. and P. oryza.

Materials and Methods: Fungal strains

In the present study, fungal biocontrol agents belonging to the genus Trichoderma sp. were collected from rhizosphere soils of different host plants in various locations of Egyptian governorates. Thirty-one soil samples collected from different agricultural fields and forests in Egypt. The soil particles tightly were adhered with root surface were removed separately and suspended in 10 ml of sterile distilled water. After serial dilution, one ml suspension from 10^6 dilutions was transferred to sterile Petri dishes containing Trichoderma specific media (TSM) that included different types of cultural media: (1) Potato-Dextrose-Agar (PDA, Biolife), (2) Malt Extract Agar (MEA; Biolife), (3) Rose Bengal Agar (Sigma Aldrich), (4) Oat Flour Agar (Sigma Aldrich) and incubated at (28)°C for 5 days. After incubation, the colonies were determined to be Trichoderma spp., according to [18] were purified.

Isolation of phytopathogenic fungi from Egypt plants:

Infected plants were collected; some pieces that showed symptoms of the infected plant parts were disinfested in 5% sodium hypochloride (NaOCl) for five minutes. Then, the samples were washed extensively with sterile distilled water and placed on Petri dishes containing potatodextrose-agar (PDA-Biolife) Sulfate streptomycin antibiotic (30 mg/L) was used to remove bacterial contamination and rose bengal (3.3 mL of 1% (w/v)), fungal isolates incubated at (25)°C for 72 hour according to [19,20,21]. The Fungal isolates were obtained from infected plants were purified and identified, according to [22, 23, 24, 25, 26, 27].

Genomic DNA Extraction from *Trichoderma* species and phytopathogenic Isolates:

For DNA extraction, mycelia were transferred from PDA to 250 mL Erlenmever flasks containing potatodextrose broth (PDB-Biolife). After 5 days growth at (28±2) °C the mycelia were firstly collected by filtering through muslin cloth, after that washed with distilled water, then frozen in liquid nitrogen and ground in a mortar according to the procedure recommended for DNA extraction and genomic of purification DNA purification kit (Gene JETTM). After that we are obtained DNA in concentration (50 to 100 ng/µl) and determined by using spectrophotometer at 260 nm, finally stored at (-20) °C for further use [28].

PCR Amplification and sequencing of ITS Region of *Trichoderma* Isolates:

PCR was performed by using Maxima Hot Start PCR master mix (Thermo) in 50 µl of mixture containing polymerase reaction buffer, nucleotide triphosphates deoxv (dNTPs), mix primers and (Taq) polymerase. enzyme DNA PCR reaction was accomplished in a total volume of (100 µl, containing 78 µl Deionized water, 10 µl 10 X Taq pol buffer, 1 µl of 1 U Taq Polymerase enzyme, 6 µl 2mM each of the four (dNTPs), 1.5 µl of 100 mM reveres and forward primers and 2 µl of 50 ng of template DNA. The PCR program was setting as an initial denaturing at 95 °C for 5 min. Followed by 30 cycles of denaturation at 95°C for 30 sec, annealing at 60°C for 30 sec extension at 70 °C for 2 min and final extension at 72°C for 10 min. Internal Transcribed Spacer (ITS)-1 Region of rDNA: Two universal primers were used in this study, ITS1 and ITS2 regions together with (5.8S) gene in rDNA were amplified using specific (5'-TCCGTA primer pair ITS1 GGTGAACCTGCGG-3') and ITS4 (5'-TCCTCCGCTTATTAGTATGC-3) according to [29]. The sequences designed were commercially by Medigene Company. A nuclear rDNA containing region. the internal transcribed spacer region-1 was polymerase amplified by chain using reactions the primer combinations ITS1 and ITS2. Sequences were specified by blasting the sequence with the available Genbank resources using NCBI-BLAST search [30, 31].

RAPD-PCR Reactions

A set of ten RAPD primers in (Table 2) were used in the detection of polymorphism. The amplification reaction was performed in 25 µl reaction volume containing 1X PCR buffer, 1.5 mM MgCl₂, 0.2 mM dNTPs, 1µM primer, 1U *Taq* DNA polymerase and 30 ng template DNA.

Antagonistic activity of *Trichoderma* isolates by using Dual cultures method

The *invitro* antagonistic activity test was accomplished using method described by [32]. Dual cultures were performed by using 7 days old cultures of test pathogens and *Trichoderma* spp. on PDA medium. The agar medium was inoculated with a 5-mm in diameter disc of antagonist positioned diametrically opposite a 5 mm in diameter disc of the pathogen, after that placed at a distance of 2 cm away from perimeter of petri dish. The experiment was conducted in triplicate and repeated twice for each antagonist. The plates were incubated at (28 ± 3) °C temperatures and the results are observed after six days for growth of Trichoderma isolates and test fungus. Data were obtained for percent inhibition of radial growth (PIRG) = $(R1-R2)/R1 \ge 100$. Where R1 = radialgrowth of pathogen in control. R2 =radial growth of pathogen in dual culture experiments with antagonists. The degree of antagonism between each of the Trichodema spp. and test pathogens in dual culture was scored on scale of (R1 - R5) that is, R1 =Trichoderma spp. completely overgrow the pathogen and covered the whole cultural medium surface (100% over growth). (R2) = Trichoderma spp. overgrew at least two-third of the cultural medium surface (75% over growth); (R3) = Trichoderma spp. and the pathogen each colonized one-half of the medium surface (more than onethird and less than two-third). The organism does not appeared to be dominant over the others. (50% over growth); (R4) = Trichoderma spp. and the pathogens contact point after inoculation; R5= Pathogens overgrow Trichoderma spp. [33].

Results:

MolecularidentificationofTrichodermaspeciesandphytophathogenic fungi.

In this study, four different isolates of Trichoderma were isolated in pure cultures from the rhizosphere zones of soil of different host plants in different locations of Egyptian governorates. All of the Trichoderma identified isolates were and characterized to species level with homology percentage of the nucleotide sequences of ITS region of rDNA at least (99%) (Table 1). According to the blast search results among of these isolates, the ITS region of four isolates (T1,T2,T3 and T4) submitted to National Center for Biotechnology Information (NCBI) and representing the first isolate identified as T. asperellum (T1), the second isolate identified as T. longibrachiatum (T2), while the isolates of (T3 and T4) identified as T. harzianum. On the other hand, isolates of plant pathogens were used in this study identified according to the ITS regions of and have ribosomal genes high similarity percentage of (5.8S-ITS) according to the blast results, these isolate were identified as (P.orvzae, R. solani and M. phasolina) and the

percentage of homology were (99, 96 and 99%) respectively (Table 1). The ITS region of rDNA was amplified using genus specific ITS-1 and ITS-2 universal primers, amplified products of size in the range of (609-649 base pair) was produced by the primers. In our study, results of rDNA sequencing were in agreement with results documented by [31] who reported the identification and genetic diversity of the Trichoderma isolates. These results were in agreement with several investigators who tested that the amplified rDNA fragment of an approximately (510 to 610 base pair) by using of ITS-PCR in Trichoderma spp. [9, 34, 35].

Table 1. Molecular identification and homology of *Trichoderma* isolates and test pathogens.

Isolates No.	Source of <i>Trichoderma</i> spp	Species Identified	Percentage of Homology (%)	Types of Sample soil	
1	Qualybia	T. asperellum (T1)	99	Rhizosphere soil	
2	Minufya	T. longibrachiatum(T2)	99	Rhizosphere soil	
3	Cairo	T. harzianum (T3)	99	Rhizosphere soil	
4	Giza	T. harzianum(T4)	99	Rhizosphere soil	
5	Cairo	P. oryzae	99	Rice leaves	
6	Giza	R. solani	96	Tubers of potato	
7	Qualybia	M. phasolina	99	Roots of strawberry	

Polymorphism as detected by Randomly Amplified Polymorphic DNA (RAPD) analysis:

RAPD markers were developed by [36]. RAPD technique utilizes arbitrary primed Polymerase chain reactions (PCR) involve the use of a single short (10 pb) oligonucleotides to amplify several discrete fragments of DNA products in low-stringency. RAPD markers require no prior knowledge of the DNA sequence, which makes them very suitable to investigate species that are not well known. The method is fast and easy to perform but it is not reproducibile, since small changes in the PCR conditions may lead to changes in the amplified fragments.

RAPD primer Ten pairs were employed to investigate the genetic polymorphism among four Trichoderma isolates. RAPD primers give better reproducible and scorable patterns and the amplification profiles were screened for the presence of polymorphism (Fig. 1). As shown in (Table 3), a total of 95 fragments were generated by the ten primers with an average of 9.5 fragments, the number of fragment per primer ranged from 7 while the number to 16. of polymorphic fragment varied from 2 to 9 and the average level of polymorphism was (38.2%). Primer 7 yielded the highest number of products (16 amplicons), while primer 3 yielded the lowest number of products (7

amplicons). The average number of polymorphic fragment/primer among *Trichoderma* isolates was 3.8. Furthermore, the size of the amplified

alleles varies with different primers and it is ranging from 300 to 6000 base pair.

Table 2. Total number of amplicons, monomorphic amplicons, polymorphic amplicons and percentage of polymorphism as revealed by RAPD markers among *Trichoderma* isolates

Primer	Total No. of amplicons	Monomorphic amplicons	Polymorphic amplicons	% of polymorphism
1	9	7	2	22.2
2	8	6	2	25
3	7	5	2	28.7
4	9	7	2	22.2
5	8	5	3	37.5
6	10	6	4	40
7	16	7	9	56.3
8	10	5	5	50
9	9	4	5	55.5
10	9	5	4	44.4
Total	95	57	38	38.2
average	9.5	5.7	3.8	

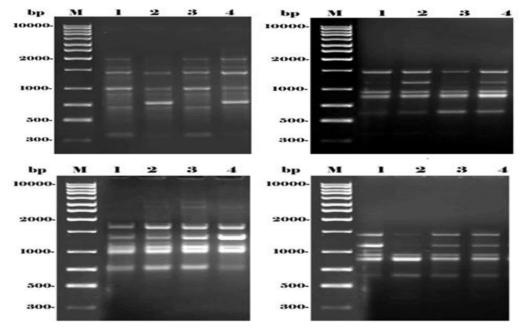


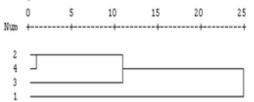
Fig. 1: RAPD profiles for *Trichoderma* isolates as detected with primers 1, 2, 3 and 4 Lanes 1 to 4. M: 1 Kb ladder DNA marker.

Genetic relationships among *Trichoderma* isolates.

To determine the genetic relationships among the isolated *Trichoderma*, the obtained data (1 for presence and 0 for absence) resulting from the ten RAPD primers were used to compute the similarity matrices according to [37]. These similar

matrices were used to generate a dendrogram using the UPGMA technique, as it shown in Table (3). The estimated genetic similarity is ranged from (83%) to (89%). This revealed moderate levels of genetic similarity among the *Trichoderma* isolates. The highest genetic similarity (89%) was found between the isolates

(T3 and T4), while the lowest genetic similarity (83%) was noted between *Trichoderma* isolates (T1 and T2).


Table 3: Genetic similarity matrices							
among Trichoderms	isolate	es as					
computed according	to	Dice					
coefficient from RAPDs.							

	1	2	3	4
1	100			
2	83	100		
3	86	86	100	
4	84	85	89	100
Cluster	· Anal	ysis as	Reveal	led by

RAPDs:

The UPGMA cluster analysis was performed to represent the genetic distances among *Trichoderma* isolates by drawing graph represent these (Fig. 2). The obtained dendrogram was divided into two main clusters; one cluster included (isolate T2). The other main cluster included two subclusters. One of these two subclusters contained the (isolate T1), the other subcluster included the two samples of (isolates T1, T3).

Dendrogram using Average Linkage (Between Groups)

Dendrogram Fig. 2: for the Trichoderma isolates constructed from the **RAPDs** data using **Unweighed Pair-group Arithmetic** (UPGMA) and similarity matrices computed according to Dice coefficient.

Four isolates of *Trichoderma* that were collected from rhizosphere soil of different host plants were tested for their antagonistic impact against the plant pathogens P. oryzae, R. solani and *M. phasolina*. Through the dual culture technique we observed that all four isolates had varying levels of inhibition against growth of phytopathogenic fungi. The rate of inhibition was calculated as percentage of overgrowth of Trichoderma in petri dish, the result of antagonistic activity by using Dual culture assay showed that isolates T. harzianum (T3 and T4) exhibited better inhibition of radial mycelial growth of P. oryzae were (91.6 and 87.5%) respectively followed by T. asperellum (T3) (83.8%) and T. longibrachiatum (T4) (86.0%), (Table 4 and Fig. 3). The results showed moderate inhibition against radial mycelial growth of M. phasolina (59.3, 63.6, 50.0 and 56.2%) for the isolates T3, T4, T1 and T2 respectively (Table 5 and Fig.3). Whereas the isolates of Trichoderma exhibited weak inhibition against mycelial growth of the R. solani and the results or RGM appears (50, 44.8, 42.2 and 47.5 %) for the T3, T4, T2 and isolates T1 respectively, (Table 6 and Fig. 3) showed the Dual culture plates and showing interaction between biological control agent T. harzianum T3 and phytopathogenic fungi P. oryzae, T3 covers the growth of *P*. oryzae > 90 %.

S. No	Test mycoflora	Geographic origin	Growth of antagonist (cm)	Growth of pathogen (cm)	PIMG (%)
1	T1	Qualybia	7.75	1.25	83.8
2	T2	Minufya	7.90	1.10	86.0
3	Т3	Cairo	8.14	0.86	91.6
4	T4	Giza	8.0	1.00	87.5

 Table 4. In vitro antagonistic activity of Trichoderma spp. against P. oryzae by using dual assay culture

Table 5. In vitro antagonistic activity of Trichoderma spp. against M. phasolina by
using dual assay culture

S. No	Test mycoflora	Geographic origin	Growth of antagonist(cm)	Growth of pathogen (cm)	PIMG (%)
1	T1	Qualybia	6.0	3.0	50.0
2	T2	Minufya	6.1	2.9	56.2
3	T3	Cairo	6.4	2.6	59.3
4	T4	Giza	6.6	2.4	63.6

Table 6. In vitro antagonisti	c activity	of	Trichoderma	spp.	against	R .	solani	by
using dual assay culture								

S. No	Test mycoflora	Geographic origin	Growth of antagonist (cm)	Growth of pathogen (cm)	PIMG (%)
1	T1	Qualybia	5.9	3.1	42.2
2	T2	Minufya	5.7	3.3	47.5
3	T3	Cairo	6.0	3.0	50.0
4	T4	Giza	5.8	3.2	44.8

Table 7. Antagonistic activity of *Trichoderma* spp. against phytopathogenic fungi by dual culture, using Bell's scale (R).

Twich a damma ann	Test pathogen				
Trichoderma spp	p. oryzae	R. solani	M. phasolina		
T. asperellum	R_2	R_4	\mathbf{R}_3		
T. longibrachiatum	R_2	R_4	R_3		
T. harzianum	R_2	R ₃	R_3		
T. harzianum	R ₂	R_4	R_3		

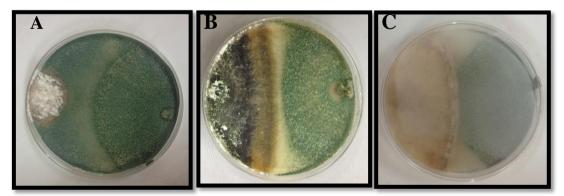


Fig.3. Dual culture technique of antagonist *T. harizainum* (isolateT1) against mycelial growth of test pathogens: (A) *P. oryzae*, (B) *R. solani* and (C) *M. phasolina* were cultured on PDA medium. Plates were incubated at (28 ± 3) °C for 6 days.

The right side of the plate has Trichoderma, and on the left has P. orvzae, whereas, T3 covers the growth of *M. phasolina* >50 % and *R. solani* >respectively. 40 During the confrontation period in dual culture method. the Trichoderma spp. colonized a wide area of the culture medium in the plates, which due to the speed of their mycelial growth, and thus was higher than that of the test phytopathogenic fungi. On the hand, pathogenic fungi strains were normally have slower growth rates than the pathogens. In addition, it was also noted that several Trichoderma strains sporulate large amount, when growing over the pathogenic colony, thereby indicating that they can be highly competitive for space and nutrients (Fig.3). Thus caused morphological deformations and disorganization in the structure of their cell wall, so that appearance becomes its rough. probably is due to the secretion of antifungal substances (enzymes and antibiotics) by T. harzianum (Fig.3 b and c). The disintegration of mycelial walls resulted in the total destructions of the colony of tested pathogen.

Discussion:

In this work, Morphological and Molecular identification (DNA sequencing of the 5.8S-ITS region) were carried out to identify the isolates that Trichoderma were obtained from rhizospere soil. Initially, the morphological identification suggests that these isolates were morphologically similar and phylogenetically very closely related to T. asperellum (T1), T. longibrachiatum (T2) and T. harzianum (T3 and 4). DNA sequencing of the ITS1-5.8S-ITS2 region may be the most widely reliable loci that can be used for the molecular identification of strains at the species level [38]. This method was used by comparing the results of

sequences of the 5.8S-ITS 1 and 2 region to the sequences deposited in (National Center for Biotechnology Information NCBI "Genbank. http://www.ncbi.nlm.nih.Gov/ BLAST"), results obtained from present study showed all isolates of Trichoderma, that can be identified to species level with the homology percentage of at least (99%) (Table 1). Many research teams focused their works on the investigation of biological control activity of Trichoderma species against fungal plant pathogens, and has been carried out mainly in controlling pathogens isolated from roots, while there are few application on their reports in controlling foliar diseases [39]. In the separated studies high antagonistic potential was observed by using Trichoderma spp. and used as biocontrol agents against many soils plant pathogen isolated from soil samples [13, 39, 40]. According to the experimental results, Trichoderma isolates had a potential biological control activity in a dual culture studies against the phytopathogenic fungi of P.oryzae, R. solani and M. phasolina. The present work of in vitro plate assays showed that T. harzianum is more effective in suppressing the growth of test pathogens followed by T. asperellum and T. longibrachiatum. The obtained results were in agreement with findings of [41], who reported that the bioagents T. Koningi and T. harzianum have reducing the radial growth of *M. phaseolina*, on the other hand Shalini and Kotasthans [42] evaluated the antagonistic activity of seventeen Trichoderma strains against plant pathogens of R. solani (in vitro), several Trichoderma strains including Т. harzianum, Τ. viride and Т. aureoviride were isolated from soil and investigated against the growth of plant pathogens R. solani, results showed good inhibition to pathogen. In previous study [16], achieved control of P. oryzae by 22 of Trichoderma isolates used investigated to antagonistic activity, from this study Trichoderma isolate number two (T2) was the most potential against plant pathogen (p. oryzae) when used as in dual culture with Bacillus substili. The using of microbes as a biological control agents is dependent upon the complex interactions that these helpful microbes establish with pathogens and plants in the soil ecosystem. Trichoderma spp. have several mechanisms for fungal antagonisms, produce antibiotics strains some (Antibiosis), myco-parasitism has been attributed to producing several degrading (lytic) enzyme produced by Trichoderma spp. such as chitinases, glucanases... ect. That attack and lysing cell wall of pathogens, nutrients competition are the well-known mechanisms involved in biological control of fungal pathogens by Trichoderma space spp. and dominance being equally important and mutually inclusive phenomenon addition. [17,43,44,45]. In many Trichodrema stimulate spp. can systemic and localized resistance to several plant pathogens Moreover, some isolates may increase the plant growth and development.

References:

- [1]Howell, C. R. 2003. Mechanisms employed by *Trichoderma* species in the biological control of plant diseases: The History and evolution of current concepts. Plant Dis. 87: 4-10.
- [2]Weindling, R. 1932. *Trichoderma lignorum* as a parasite of other soil fungi. Phytopatholo. 22: 837- 845.
- [3]Punja, Z. K. and Utkhede, R. S. 2003. Using fungi and yeasts to manage vegetable crop diseases. Trends in Biotechnolo. 21: 400-407.

- [4]Druzhinina, I.S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B.A., Kenerley, C.M., Monte, E., Mukherjee, P.K., Zeilinger, S., Grigoriev, I.V. and Kubicek, C.P. 2011. *Trichoderma*: the genomics of opportunistic success. Nat. Rev. Microbiol. 16:749-759
- [5]Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Barbetti, M. J., Li, H., Woo, S. L. and Lorito, M. 2008. A novel role for *Trichoderma* secondary metabolites in the interactions with plants. Physiol. Mol. Plant Pathol. 72: 80–86.
- [6]Benítez, T., Rincón, M. A., Limón, M. C. and Codón, A. C. 2004. Biological control mechanisms of *Trichoderma* strains. Int. Microbiol.7:249-260.
- [7]Schuster, A. and Schmoll, M. 2010.Biology and biotechnology of *Trichoderma*. Appl. Microbiol.Biotechnol. 87: 787-799.
- [8]Ospina-Giraldo, M.D., Royse, D.J., Thon, M.R., Chen, X. and Romaine, C.P .1998 Phylogenetic relationships of *T. harzianum* causing mushroom green mold in Europe and North America to other species of Trichoderma from worldwide sources. Mycolo. 90: 76-81.
- [9]Ospina, M.D., Royse, D.J., Chen, X. and Romaine, P. 1999. Molecular Phylogenetic analysis of biological control strains of *T. harzianum* and other biotypes of *Trichoderma* spp. Associated with mushroom green mold. Phytopathol. 89(4): 313-317.
- [10]Vinale, F., Sivasithamparamb,K., Ghisalbertic, L. E., Marraa, R., Wooa, L. Sh. and Loritoa, M. 2007. *Trichoderma*-plant-pathogen interactions. Soil Biol. Biochem. 40: 1-10.
- [11]Chet, I.; Benhamou, N. and Haran,S. 1998. Mycoparasitism and lytic enzymes. In: Harman, G.E. and Kubicek, C.P. (Eds.) *Trichoderma*

and *Gliocladium*. Vol 2. Enzymes, biological control, and commercial applications. Taylor and Francis, London. 153-172.

- [12]Howell, C.R. 1998. The role of antibiosis. In: Harman, G.E. and Kubicek, C.P. (Eds.) *Trichoderma* and *Gliocladium*. Vol 2. Enzymes, biological control, and commercial applications. Taylor and Francis, London. 173-184.
- [13]Harman, G.E., Howell, C.R., Viterbo, A., Chet, I. and Lorito, M. 2004. *Trichoderma* speciesopportunistic, a virulent plant symbionts. Nat. Rev. Microbiol. 2:43-56.
- [14]Chet, I. and Inbar, J. 1994. Biological Control of Fungal Pathogens. Appl. Biochem. Microbiol. 48: 37-43.
- [15]Aly, A. A.; Abdel-Sattar, A. M., Omar, R. M., Kamel A. and Abd-Elsalam, A. K. 2007. Differential Antagonism of *Trichoderma* spp. against *Macrophomina Phaseolina*. J. Plant Protect. Res. 47 (2): 91-102.
- [16]Nadarajah, K., Ali, Z. H. and Omar, S. N. 2014. The isolation and characterization of an endochitinase gene from a Malaysian isolate of *Trichoderma* sp. Aust. J. Crop Sci. 8(5):711-721.
- [17]Nadarajah, K. Ali, Z. H.and Omar, S. N. 2014. The isolation and characterization of an endochitinase gene from a Malaysian isolate of *Trichoderma* sp. Aust. J. Crop Sci. 8(5):711-721
- [18]Elad, Y, I and Henis, Y. 1981. A selective medium for improving quantitative isolation of *Trichoderma* spp. From soil. Phytoparasitica. 9:59-67.
- [19]Rifai, M. A. 1969. Revision of Genus *Trichoderma*. Mycol. Papers 116: 1-56.
- [20]Abou-Zeid, A.M., Mahmoud, Y.A.G. and Talhi, A.E. 2004. Effect of gaucho insecticide on the

efficacy of fungicides used to control root-rot and damping off diseases in cotton seedlings. Egyp. J. Microbiol. 9: 1-10.

- [21]Montealegre, J.R., Reyes, R., Perez, L.M., Herrera, R., Silva, P. and Besoain, X. 2003. Selection of bioantagonistic bacteria to be used in biological control of *Rhizoctonia solani* in tomato. Environ. Biotechnol. 6(2): 1-8.
- [22]Ismail, A.A. and Aly, A.A. 1997.
 Sensitivity of some isolates of *Rhizoctonia solani* isolated from cotton seedlings to the insecticide Gaucho in combination with seed-dressing fungicide used for controlling seedling disease. J. Agric. Sci. Mansoura Univ. 22 (12): 4511-4523.
- [23]Burgess, L.W., Lidell, C.M. and Summerell, B.A. 1988. Laboratory manual for *Fusarium* reseach. *Fusarium* Reseach Laboratory, Department of Plant Pathology and Agriculture Entomology, the University of Sydney.
- [24]Klich, M.A. and Pitt, J.I. 1988. A laboratory guide to common *Aspergillus* species and their teleomorphs. CSIRO Division of Food Processing, North Ryde, NSW, Australia, 116 pp.
- [25]Pitt, J.I. 1988. A laboratory Guide to Common *Penicillium* Species, 2nd edn. CSIRO Division of Food Processing, North Ryde, NSW, Australia.
- [26]Domsch, K., Gams, W. and Anderson, T. 1980. Compendium of Soil Fungi. Acad. Press, London, pp.889.
- [27]Alexopouls, C.J. and Mims, C.W.1979. Introductory Mycology. JohnWiley and Sons, New York.
- [28] Lee, S. B. and Taylor, J. W. 1990.Isolation of (DNA) from fungal mycelia and single spores. In M. A. Innis, Gelfand, D. H. and J. T. Sninsky, J.T. and White, T.J. (ed.),

PCR protocols: a guide to methods and applications. Academic Press, San Diego. Calif.

- [29]Raeder, U. and Broda, P. 1985. Rapid preparation of DNA from filamentous fungi. Letters in Applied Microbiology 1: 17-20.
- [30] White T., Bruns T., Lee S. and Taylor J. 1990. Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal RNA genes for phylogenetics. In: Innis Gelfand, M. A., Sninsky, D. H. and White, T.J., Eds, PCR Protocols: A Guide to Applications. Methods and Academic Press, New York, pp. 315-322.
- [31]Hermosa, M. R., Grondona, I., Iturriaga, E. A., Diaz-Minguez, J. M., Castro, C., Monte, E. and Garcia-Acha, I. 2000. Molecular characterization and identification of biocontrol isolates of *Trichoderma* spp. Appli Environ Microbiol. 66: 1890-1898.
- [32]Dennis, C.J. and Webster, J. 1971. Antagonism properties of species groups of *Trichoderma*, III Hyphal interaction. Trans. The British Mycological Society. 57:363-369.
- [33]Bell, D.K., Wells, H.D. and Markham, C.R. 1982. *In vitro* antagonism of *Trichoderma* species against six fungal plant pathogens. Phytopathol. 72(4):379-382.
- [34]Mukherjee, P.K., Verma, A. and Latha, J. 2002. PCR fingerprinting of some *Trichoderma* isolates from two Indian type culture collection-a need for re-identification of these economically importance fungi. Sci. Correspondence. 83(4): 372-374.
- [35]Venkateswarlu, R., Reddi, K.M., Reddy, E.N.P. and Sudhakar, P. 2008. Molecular characterization of *Trichoderma* spp. Used against *Fusarium* wilt with PCR based RAPD and ITS-PCR. J. Mycol. Plant Pathol. 38(3): 569-563.

- [36] Williams, J.G.K., Kubelik, A.R, Livak K.J., Rafalski, J.A. and Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535.
- [37]Jaccard, P. 1908. Novelles recherches sur la distribution florale. Bullettin de la Society Vaudoise des Science Naturelles 44: 223–270.
- [38]Kullnig-Gradinger, C.M, Szakacs, G. and Kubicek, C.P. 2002. Phylogeny and evolution of the genus *Trichoderma*: a multigene approach. Mycol.Res. 106: 757-767.
- [39]Blakeman, J.P. and Fokemma, N.J.1982. Potential for biological control of plant disease on the phylloplane. Annu. Rev. Phytopathol. 20:167-192.
- [40]Bhagat, S. and Pan, S. 2008. Variability in production of extracellular hydrolytic enzymes by *Trichoderma* spp and induction of resistance in Gram (*Cicer arietinum*). J. Bio. Con. 22: 57-66.
- [41]Gajera H.P., Bambharolia, R.P., Patel, S.V., Khatrani, T.J. and Goalkiya, B.A. 2012. Antagonism of *Trichoderma* spp. against *Macrophomina* phaseolina: Evaluation of Coiling and Cell Wall Degrading Enzymatic Activities. J. Plant Pathol Microbiol. 3 (7): 1-7
- [42]Shalini, S. and Kotasthane, A.S. 2007. Parasitism of *Rhizoctonia solani* by strains of *Trichoderma* spp. EJEAF Chemistry. 6: 2272-2281.
- [43]Ghildyal, A., Pandey, A. 2008. "Isolation of cold tolerant antifungal strains of *Trichoderma* sp. from glacial sites of Indian Nimalayan Region," Res. J. Microbiol. 3(8): 559-64.
- [44]Umamaheswari, B., Thakore, B. and More, T. 2009. Post-harvest management of ber (*Ziziphus*

mauritiana Lamk) fruit rot (*Alternaria alternata* (Fr.) Keissler) using *Trichoderma* species, fungicides and their combinations. Crop Protect. 28(6): 525-32. [45]Ranasingh, N., Saturabh, A. and Nedunchezhiyan, M. 2006. "Use of *Trichoderma* in disease management." Orissa Review, September-October: 68-70.

التشخيص الجزيئي للترايكوديرما المعزولة من التربة المحيطة بالجذور وفعلها التضادي تجاه بعض الفطريات الممرضة للنبات

عادل حمدان علوان **

صفاء الدين احمد شنتر القيسى*

*قسم علوم الحياة/ كلية العلوم للبنات/ جامعة بغداد ** قسم علوم الحياة/ كلية العلوم/ الجامعة المستنصرية

الخلاصة:

الهدف الرئيسي من هذه الدراسة هو التعريف على المستوى الجزيئي وتحديد الفعالية التضادية لفطر Trichoderma spp. ألمعزولة من التربة المحبطة لجذور النباتات تجاه بعض الممر ضات الفطرية للنبات والتي تضمنت (Magnaporthe grisea), Macrophomina phisolina, Rhizoctonia solani والتي Pyricularia oryzae. عزلت أربعة عزلات من Trichoderma spp. من التربة المحيطة لجذور بعض النباتات المضيفة من مواقع مختلفة من محافظات مختلفة في مصر. تم تشخيص عز لات .Trichoderma spp اعتمادا على المظهر الخارجي فضلا عن تعريفها على المستوى الجزيئي من خلال مقارنة نتائج تسلسل الحمض النووي على اساس تعريف المنطقة (ITS1-5.8S-ITS2) ومقارنة نتائج تسلسل الحامض النَّووي (DNA) لمنطقة ITS مع نتائج عز لات اصلية. اوضحت نتائج التعريف ان عزلة واحدة من بين العز لات الاربعة تعود الى (T. asperellum T1) ، عزلة واحدة تعود الى(T. longibrachiatum T2) وعزلتين تم تعريفها على انها (T. harzianum T3.T4) اوضحت التعريف الجزيئي نسبة شبه 99% لتسلسل المنطقة S-ITS5.8 للعزلتين (T. harizanum T3, T4) وكذلك نسبة شبه (99 %) لكل من (T. harizanum T3, T4 longibrachiatum T2) من جهة اخرى نتيجة التعريف الجزيئي للعز لات الفطرية للمرضة للنبات اوضحت نسبة شبه عالية وتم تعريفها على انها (P. orvzae, M. phisolina, R. solani) وبنسبة شبه (99، 96، 99%) على التوالي. بالنسبة للعلاقة الور أثبة بين عز لات التر ايكودير ما الاربعة تم بأستخدام تقنية (RAPD) ولعشرة بادئات تم اختيارها بصورة عشوائية. تم اختبار الفعل التضادي والمقاوم للعزيالت الاربعة لفطر Trichoderma تجاه الفطريات الممرضة قيد الدراسة وبينت النتائج ان T. harizanum كانت اكثرة قوة وفعالية في تثبيط الفطريات الممرضة عنه بالنسبة لفطر T. asperellum وسالفطريات الممرضة عنه بالنسبة ل التثبيط بالنُّسبة لفطر T. harzianum كانت متغايرة كثيرا حيث بلغت (44.8 الى 91.6%) . التاثير التثبيطي لفطر T. asperellum تراوح بين (42.2 الى 86.0%)، بينما اظهر الفطر T. longibrachiatum فعلا تثبيطيا تراوح بين (47.5 الى 83.8%) .

الكلمات المفتاحية: السيطرة الحيوبة، الترايكوديرما، الربد، التربة المحيطة لجذور النبات، ممرضات النبات.