DOI: http://dx.doi.org/10.21123/bsj.2016.13.1.0198

On (σ, τ) -Derivations and Commutativity of Prime and Semi prime Γ -rings

Afrah Mohammad Ibraheem

Department of Mathematics, College of Education, Al-Mustansiriyah University

E-mail: Afrah.diyar@yahoo.com

Received 1, January, 2015 Accepted 4, April, 2015

@0\$0

NoDerivatives 4.0 International License

Abstract:

Let R be a Γ -ring, and σ , τ be two automorphisms of R. An additive mapping d from a Γ -ring R into itself is called a (σ,τ) -derivation on R if $d(\alpha\alpha b) = d(\alpha)\alpha \sigma(b) + \tau(\alpha)\alpha d(b)$, holds for all $\alpha, b \in \mathbb{R}$ and $\alpha \in \Gamma$. d is called strong commutativity preserving (SCP) on R if $[d(\alpha), d(b)]_{\alpha} = [\alpha, b]_{\alpha}^{(\sigma,\tau)}$ holds for all $\alpha, b \in \mathbb{R}$ and $\alpha \in \Gamma$. In this paper, we investigate the commutativity of R by the strong commutativity preserving (σ, τ) derivation d satisfied some properties, when R is prime and semi prime Γ -ring.

Key words: Prime Γ -ring, Semi prime Γ -ring, (σ,τ) -derivation, Strong commutativity preserving (σ,τ) -derivation, Commutativity.

Introduction

Let R and Γ be two additive abelian groups. If for any a, b, c \in R and α , $\beta \in \Gamma$, the following conditions are satisfied,

(i) a α b ∈R

(ii) $(a+b)\alpha c = a\alpha c + b\alpha c$, $a(\alpha +\beta)b = a\alpha b + a\beta b$, $a\alpha(b+c) = a\alpha b + a\alpha c$

(iii) $(a\alpha b)\beta c = a\alpha(b\beta c)$, then R is called a Γ -ring (see [4]).

The set $Z(R) = \{a \in R | a\alpha b = b\alpha a, \forall b \in R, and\alpha \in \Gamma\}$ is called the center of R.A Γ -ring R is called prime if a $\Gamma R \Gamma b = 0$ with a, b $\in R$ implies a = 0 or b = 0, and R is called semi prime if a $\Gamma R \Gamma a = 0$ with a $\in R$ implies a = 0. The notion of a (resp. semi-) prime Γ -ring is an extension for the notion of a (resp. semi-) prime ring. In [1] F.J.Jing defined a derivation on Γ -ring as follows, an additive map d from a Γ -ring R into itself is called a derivation on R if d(a\alpha b) = d(a)\alpha b +a\alpha d(b), holds for all a, b \in R and $\alpha \in \Gamma$, and in [2] S.

Ali and M.Salahudin Khan defined (σ, τ) -derivation on R ,for two endomorphism σ and τ as follows: an additive map d from R into R is called a (σ, τ) -derivation on R if $d(a\alpha b) =$ $d(a)\alpha\sigma(b) + \tau(a)\alpha d(b)$, holds for all a,b $\in R$ and $\alpha \in \Gamma$.

A mapping f from R into itself is commuting if $[f(a), a]_{\alpha} = 0$, and centralizing if $[f(a), a]_{\alpha} \in Z(\mathbb{R})$ for all a \in R, $\alpha \in \Gamma$. And a map f from a Γ -ring into itself is called strong R commutativity preserving (SCP) on R if $[f(a), f(b)]_{\alpha} = [a, b]_{\alpha}$ holds for all a, b $\in \mathbb{R}$ and $\alpha \in \Gamma$. The notion of a strong commutativity preserving map was first introduced by Bell and Mason [3]. and in [4] X. Jing Ma, and Y. Zhou proved that a semi prime Γ -ring with a strong commutativity preserving derivation on itself must be commutative. In this paper, we obtain that a Γ -ring R with a strong

commutativity preserving (σ,τ)derivation d on itself must be commutative, when R is prime and semi prime Γ -ring. We write $[a, b]_{\alpha} =$ aαb –bαa. Throughout this paper R will **Γ-ring** denote а satisfying an assumption (*).... $a\alpha b\beta c = a\beta b\alpha c$, for all a,b,c $\in \mathbb{R}$ and $\alpha, \beta \in \Gamma$. We will often use the identities: (i) $[a, b]_{\alpha}^{(\sigma,\tau)} = a\alpha\sigma(b) - \tau(b)\alpha a.$ (ii) $[a\beta b, c]_{\alpha}^{(\sigma,\tau)} = a\beta[b, c]_{\alpha}^{(\sigma,\tau)} +$ $[a, \tau(c)]_{\alpha} \beta b = a\beta [b, \sigma(c)]_{\alpha} +$ $[a,c]^{(\sigma,\tau)}_{\alpha}\beta b.$ (iii) $[a, b\beta c]_{\alpha}^{(\sigma,\tau)} = \tau$ (b) $\beta [a, c]_{\alpha}^{(\sigma,\tau)} +$ $[a, b]^{(\sigma, \tau)}_{\alpha}\beta \sigma(c).$

Main Results

First we prove the following lemmas.

Lemma 1:

Let R be a prime Γ -ring, and d be a non zero (σ, τ) -derivation of R. For any $a \in R$, if $d(R)\Gamma a = \{0\}$ then a = 0, and if $a\Gamma d(R) =$ $\{0\}$ then a = 0. **Proof:** Assume that $d(R)\Gamma a = \{0\}$, for $a \in R$. Let $r \in R$ and $\alpha \in \Gamma$, then we have (1) $d(r)\alpha a = 0$. Replacing r by r\betab, $b \in R$ in (1), we get, $(2)d(r)\beta\sigma(b)\alpha a + \tau(r)\beta d(b)\alpha a = 0$. for all $a,r,b \in R$ and $\alpha,\beta \in \Gamma$. By using (1) in (2), and since σ is

By using (1) in (2), and since σ is automorphism, we get

 $d(r)\beta$ b $\alpha a = 0$. for all $a,b,r\in R$ and $\alpha,\beta\in\Gamma$. Since R is a prime and $d \neq 0$, then we have a=0.

A similar argument works if $a\Gamma d(R) = \{0\}$.

Lemma 2:

Let R be 2-torsion free prime and d be $a(\sigma,\tau)$ -derivation, and d can be commuted with σ and τ . If $d^2=0$ then d = 0.

Proof:

Let, for all a, b \in R, $\alpha \in \Gamma$. From the hypothesis we have (1) $0 = d^2(a\alpha b)$ $= d(d(a)\alpha\sigma(b) + \tau(a)\alpha d(b))$ $=d^{2}(a)\alpha\sigma^{2}(b)+\tau(d(a))\alpha d(\sigma(b))$ +d($\tau(a)$) $\alpha\sigma(d(b))$ + $\tau^2(a) \alpha d^2(b)$ Then, we get $0 = \tau(d(a))\alpha d(\sigma(b)) + d(\tau(a))\alpha \sigma(d(b))$ $= 2\tau(d(a))\alpha\sigma(d(b))$ $(2) = \tau (d(a))\alpha\sigma(d(b))$ Taking b β c, c \in R instead of b in (2), we get $0 = \tau (d(a))\alpha\sigma(d(b\beta c))$ $= \tau (d(a))\alpha\sigma(d(b)\beta\sigma(c) + \tau (b)\beta d(c))$ $= \tau (d(a)\alpha\sigma(d(b)\beta\sigma(c)) + \tau(d(a))\alpha\sigma(\tau(b))$ $\beta d(c)$), by equation (2), we get $0 = \tau (d(a))\alpha\sigma(\tau(b)\beta\sigma(d(c)))$ $= \tau (d(a)) \Gamma R \Gamma \sigma(d(c))$ Since σ and τ are automorphisms, and R is prime then d(a) = 0 or d(c) = 0 and as a result we get d = 0.

Theorem 3:

Let R be a prime Γ -ring with a non zero (σ , τ)-derivation d. If d is a strong commutativity preserving then R is commutative ring.

Proof:

For all $a,b\in \mathbb{R}$ and $\alpha\in\Gamma$, we have (1) $[d(a),d(b)]_{\alpha} = [a,b]_{\alpha}^{(\sigma,\tau)}$. Replacing a by a β c in (1), we get $[d(a\beta c), d(b)]_{\alpha} = [a\beta c, b]_{\alpha}^{(\sigma, \tau)}$, then, (2) d(a) $\beta[\sigma(c),d(b)]_{\alpha}+[d(a),d(b)]_{\alpha}\beta\sigma(c)$ + $\tau(a)\beta[d(c),d(b)]_{\alpha}$ + $[\tau(a),d(b)]_{\alpha}\beta d(c)$ = $a\beta[c,b]_{\alpha}+[a,\tau(b)]_{\alpha}\beta c$, for all $a,b,c\in \mathbb{R}$ and $\alpha, \beta \in \Gamma$ Replacing $\tau(b)$ by b and $\sigma(c)$ by c in (2) and using (1), we get $(3)d(a)\beta[c,d(b)]_{\alpha}+[\tau(a),d(b)]_{\alpha}\beta d(c)=0$, Replacing $\tau(a)$ by ain (3), we get (4) $d(a)\beta[c,d(b)]_{\alpha}+[a,d(b)]_{\alpha}\beta d(c)=$ 0 , for all a,b,c∈R and α , β ∈Γ. Multiplying (4) by λr on the right, we get (5) $d(a)\beta[c,d(b)]_{\alpha}\lambda r + [a,d(b)]_{\alpha}\beta d(c)\lambda r =$ 0, for all a,b,c,r \in R and α , β , $\lambda \in \Gamma$. Again replacing c by $c\lambda r$ in (4), we get

(6) $d(a)\beta c\lambda[r,d(b)]_{\alpha} + d(a)\beta[c,d(b)]_{\alpha}\lambda r + [a,d(b)]_{\alpha}\beta d(c)\lambda\sigma(r) + [a,d(b)]_{\alpha}\beta\tau(c)\lambda d(r) = 0$

Replacing $\sigma(r)$ by r in (6), we get

(7) $d(a)\beta c\lambda[r,d(b)]_{\alpha}+d(a)\beta[c,d(b)]_{\alpha}\lambda r + [a,d(b)]_{\alpha}\beta d(c)\lambda r+[a,d(b)]_{\alpha}\beta \tau(c)\lambda d(r)=0$,

for all a,b,c,r \in R and α , β , $\lambda \in \Gamma$.

Comparing (5) and (7), we get

(8) $d(a)\beta c\lambda[r,d(b)]_{\alpha}+[a,d(b)]_{\alpha}\beta\tau(c)\lambda d(r)$ =0,

Replacing a by d(b) in (8) ,we get

(9) $d^2(a)\beta \ c \ \lambda \ [r,d(b)]_{\alpha}=0$, for all $a,b,c,r\in R$ and $\alpha,\beta,\lambda\in\Gamma$.

Since R is a prime, we have

 $d^{2}(a)=0$ or $[r,d(b)]_{\alpha}=0$. If $d^{2}(a) = 0$ for all $a\in \mathbb{R}$. Then from lemma 2, d = 0 is obtained. But this is a contradiction. That is

(10) $[r,d(b)]_{\alpha}=0$, for all $b,r \in \mathbb{R}$ and $\alpha \in \Gamma$.

Replacing d(b) by $t\beta d(b)$, $t\in R$ in (10), and using (10) again, we get

(11) [r, t]_{α} β d(b) =0 , for all r,t,b \in R and α , $\beta \in \Gamma$.

By using lemma 1 in (11), we get

 $[r, t]_{\alpha} = 0$, for all r,t $\in R$ and $\alpha \in \Gamma$. Hence R is commutative ring.

Theorem 4:

Let R be a prime Γ -ring, and d is a strong commutativity preserving (σ, τ) derivation. If $\sigma = \tau$ then either R is commutative ring or d =0.

Proof:

By hypothesis, we have (1) $[d(a),d(b)]_{\alpha} = [a,b]_{\alpha}^{(\sigma,\tau)}$, for all $a,b\in R$ and $\alpha\in\Gamma$ Replacing b by b β c in (1), we get $[d(a),d(b\beta c)]_{\alpha} = [a,b\beta c]_{\alpha}^{(\sigma,\tau)}$, then, (2) $d(b)\beta[d(a),\sigma(c)]_{\alpha} + [d(a),d(b)]_{\alpha}\beta\sigma(c)$ $+\sigma(b)\beta[d(a),d(c)]_{\alpha} + [d(a),\sigma(b)]_{\alpha}\beta d(c) =$ $\sigma(b)\beta[a,c]_{\alpha}^{(\sigma,\tau)} + [a,b]_{\alpha}^{(\sigma,\tau)}\beta\sigma(c)$, for all $a,b,c\in R$ and $\alpha,\beta\in\Gamma$ By using (1) in (2), we get (3) $d(b)\beta[d(a),\sigma(c)]_{\alpha} +$ $[d(a),\sigma(b)]_{\alpha}\beta d(c) = 0$. Replacing $\sigma(b)$ by d(a) in (3), we get (4)d(b) β [d(a), σ (c)] $_{\alpha}$ = 0,for all a,b,c \in R and α , $\beta \in \Gamma$.

Replacing $\sigma(c)$ by $\sigma(c)\delta r$ in (4) ,we get (5) $d(b)\beta \sigma(c)\delta [d(a), r]_{\alpha} + d(b)\beta [d(a),\sigma(c)]_{\alpha}\delta r = 0$, for all a,b,c,r \in R and $\alpha,\beta,\delta\in\Gamma$.

Using (4) in (5), and replacing r by d(b) in (5) ,we get

(6) $d(b)\beta \sigma(c)\delta [d(a), d(b)]_{\alpha}=0.$

By using (1) in (6), and since σ is automorphism, we have

d(b) β c δ [a, b]_{α}=0, for all a,b,c \in R and α , β , $\delta \in \Gamma$.

Since R is a prime, we have d(b) = 0 or $[a, b]_{\alpha} = 0$, for all $a, b \in \mathbb{R}$ and $\alpha \in \Gamma$

That's mean d=o or R is commutative.

Theorem 5:

Let R be a prime Γ -ring with a (σ,τ) -derivation d such that $[d(a),d(b)]_{\alpha} = [a^2, b^2]_{\alpha}^{(\sigma,\tau)}$, then d= 0 or d is commuting.

Proof:

For all $a, b \in \mathbb{R}$ and $\alpha \in \Gamma$, we have (1) $[d(a),d(b)]_{\alpha} = [a^2, b^2]_{\alpha}^{(\sigma,\tau)}$. Replacing a by a+b in (1), we have $[(a^2 +$ $[d(a),d(b)]_{\alpha}+$ $[d(b),d(b)]_{\alpha} =$ $a\beta b + b\beta a + b^2), b^2]^{(\sigma,\tau)}_{\alpha}$ By using (1), we have (2) $[a\beta b, b^2]^{(\sigma,\tau)}_{\alpha} + [b\beta a, b^2]^{(\sigma,\tau)}_{\alpha} = 0$, for all $a, b \in \mathbb{R}$ and $\alpha, \beta \in \Gamma$. Replacing aby $d(b)\delta b$ in (2), we have $[d(b)\delta b\beta b, b^2]^{(\sigma,\tau)}_{\alpha} + [b\beta d(b)\delta b, b^2]^{(\sigma,\tau)}_{\alpha} = 0, \text{ then}$ $[d(b)\delta b\beta b + b\beta d(b)\delta b, b^2]_{\alpha}^{(\sigma,\tau)} = 0.$ This implies $[d(b^2)\beta b, b^2]^{(\sigma,\tau)}_{\alpha} = 0$, then $d(b^2)\beta[b, b^2]_{\alpha} + [d(b^2), \tau(b^2)]_{\alpha}\beta b = 0$,then we have (3) $[d(b^2), \tau(b^2)]_{\alpha} \beta b = 0$, for all $b \in \mathbb{R}$ and $\alpha \in \Gamma$. Replacing $b^2by c$ in (3), we have (4) $[d(c), \tau(c)]_{\alpha} \beta b = 0$, for all $c \in \mathbb{R}$ and $\alpha \in \Gamma$ Replacing $\tau(c)$ by c and b by $b\lambda d(c)$ in (4) and using (1), we have

 $[d(c), c]_{\alpha} \beta b \lambda d(c)=0$, for all $c,b \in \mathbb{R}$ and $\alpha, \beta, \lambda \in \Gamma$

Since R is a prime, we have d(c) = 0 or $[d(c), c]_{\alpha}$, for all $c \in \mathbb{R}$ and $\alpha \in \Gamma$.

Thus d=o or d is commuting.

Theorem 6:

Let R be a semi prime Γ -ring. If d is a strong commutativity preserving (σ,τ) -derivation, then d is commuting. **Proof:**

If d=0, then $[a, b]_{\alpha}^{(\sigma, \tau)} = 0$, for all $a, b \in \mathbb{R}$ and $\alpha \in \Gamma$.

Replacing b by d(a) in (1) we get

 $[a, d(a)]^{(\sigma, \tau)}_{\alpha} = 0$, for all $a \in \mathbb{R}$ and $\alpha \in \Gamma$. Thus d is commuting.

Now, If $d\neq 0$, then by hypothesis, we get

(1) d(a),d(b)]_a = $[a, b]_{\alpha}^{(\sigma,\tau)}$, for all $a, b \in \mathbb{R}$ and $\alpha \in \Gamma$

Replacing a by a β c in (1), we get

 $[d(a\beta c),d(b)]_{\alpha} = [a\beta c,b]_{\alpha}^{(\sigma,\tau)}$, then,

 $(2)d(a)\beta[\sigma(c),d(b)]_{\alpha}+[d(a),d(b)]_{\alpha}\beta\sigma(c)$ + $\tau(a)\beta[d(c),d(b)]_{\alpha}$ +[$\tau(a),d(b)]_{\alpha}\beta d(c)$ =

 $a\beta[c, \sigma(b)]_{\alpha}+[a, b]_{\alpha}^{(\sigma,\tau)}\beta c$, for all a,b,c \in R and $\alpha,\beta\in\Gamma$

Replacing $\sigma(c)$ by c in (2) and using (1), we get

(3) $d(a)\beta[\sigma(c),d(b)]_{\alpha}+\tau(a)\beta[d(c),d(b)]_{\alpha}$

+ $[\tau(a),d(b)]_{\alpha}\beta d(c) = a\beta[c,\sigma(b)]_{\alpha}$ Replacing $\tau(a)$ by a and $\sigma(b)$ by b in

(3) and using (1), we get

(4) $d(a)\beta[\sigma(c),d(b)]_{\alpha}+ [a,d(b)]_{\alpha}\beta d(c)$ = 0, for all a,b,c \in R and α , $\beta \in \Gamma$.

Replacing $\sigma(c)$ by d(b) in (4), we get

(5) $[a,d(b)]_{\alpha}\beta d(c)=0$, for all $a,b,c\in \mathbb{R}$ and $\alpha, \beta \in \Gamma$.

Replacing a by $b\lambda a$ in (5), and using(5), we get

 $(6)[b,d(b)]_{\alpha\lambda}$ a β d(c)=0, for all a,b,c \in R and α , β , $\lambda \in \Gamma$.

Multiply (6) from left by d(c), and from right by $[b, d(b)]_{\alpha}$, then we get

 $d(c)\delta[b, d(b)]_{\alpha\lambda} a \beta d(c)\delta[b, d(b)]_{\alpha} = 0,$ for all $a,b,c\in \mathbb{R}$ and $\alpha,\beta,\lambda,\delta\in\Gamma$.

Since R is a semi prime, then:

 $d(c)\delta [b, d(b)]_{\alpha} = 0$, for all $b, c \in \mathbb{R}$ and α,δ ∈Γ.

By using lemma 1, we get $[b,d(b)]_{\alpha} = 0$, for all $b \in \mathbb{R}$ and $\alpha \in \Gamma$. That's complete the proof.

Theorem 7:

Let R be a semi prime Γ -ring with a non zero (σ,τ) -derivation d. If d is a strong commutativity preserving such that $[d(a), \tau(a)]_{\alpha} = 0$, then $d \subseteq Z(R)$. **Proof:** For all $a, b \in \mathbb{R}$ and $\alpha \in \Gamma$, we have (1) $[d(a),d(b)]_{\alpha} = [a,b]_{\alpha}^{(\sigma,\tau)}$. Replacing b by abb in (1), we get

 $[d(a),d(a\beta b)]_{\alpha} = [a,a\beta b]_{\alpha}^{(\sigma,\tau)}$, then: (2) $d(a)\beta [d(a),\sigma(b)]_{\alpha} + [d(a),d(a)]_{\alpha} \sigma(b)$ + $\tau(a)\beta[d(a), d(b)]_{\alpha}$ + $[d(a), \tau(a)]_{\alpha}\beta d(b)$ $= \tau(\mathbf{a})\beta[\mathbf{a},\mathbf{b}]_{\alpha}^{(\sigma,\tau)} + [\mathbf{a},\mathbf{a}]_{\alpha}^{(\sigma,\tau)}\beta \sigma(\mathbf{b}), \text{ for }$

all a,b \in R and α , $\beta \in \Gamma$

By using (1) in (2), we get

(3) d(a) β [d(a), σ (b)] $_{\alpha}$ +[d(a), τ (a)] $_{\alpha}\beta$ d(b) =0.

Replacing $\sigma(b)$ by r,and using the hypothesis in (3), we get

(4) $d(a)\beta [d(a), r]_{\alpha} = 0$, for all $a, b, r \in \mathbb{R}$ and $\alpha, \beta \in \Gamma$.

Replacing rby r\deltab in (4), and using (4), we get

(5) $d(a)\beta r \delta [d(a), b]_{\alpha} = 0$, for all a,b,c,r \in R and α , β , $\delta \in \Gamma$.

Multiply (5) from left by $[d(a), b]_{\alpha}$, and from right by d(a), then we get

 $[d(a), b]_{\alpha}\lambda d(a) \beta r \delta [d(a), b]_{\alpha}\lambda d(a) = 0,$ for all $a,b\in R$ and $\alpha,\beta,\delta,\lambda\in\Gamma$.

Since R is a semi prime, we have

 $[d(a), b]_{\alpha}\lambda d(a) = 0$, for all $a, b \in \mathbb{R}$ and α.λΕΓ.

By using lemma 1, we get

 $[d(a), b]_{\alpha} = 0$, for all $a, b \in \mathbb{R}$ and $\alpha \in \Gamma$. That's mean $d\subseteq Z(R)$.

Theorem 8:

Let R be a semi prime Γ -ring with a (σ,τ) -derivation d such that

 $[d^{2}(a),d^{2}(b)]_{\alpha} = \begin{bmatrix} a & , b \end{bmatrix}_{\alpha}^{(\sigma,\tau)}$, then R is a commutative.

Proof:

For all $a,b\in R$ and $\alpha\in\Gamma$, we have : (σ.τ)

(1)
$$[d^{2}(a), d^{2}(b)]_{\alpha} = \begin{bmatrix} a & , b \end{bmatrix}_{\alpha}^{(0)}$$

Replacing $[d^2(a), d^2(b)]_{\alpha}$ by $[[d^{2}(a),d^{2}(b)]_{\alpha}, c]_{\beta}$ in (1), $c \in \mathbb{R}$, we get $[[d^{2}(a),d^{2}(b)]_{\alpha},c]_{\beta} = [a,b]_{\alpha}^{(\sigma,\tau)}, \text{then}$ we have (2) $[d^{2}(a)\alpha d^{2}(b),c]_{\beta} - [d^{2}(b)\alpha d^{2}(a),c]_{\beta} =$ [a, b]_{α}^(σ,τ), then we have (3) d²(a) α [d²(b),c]_{β} +[d²(a),c]_{β} α d²(b) $d^{2}(b)\alpha[d^{2}(a),c]_{\beta} - [d^{2}(b),c]_{\beta} \alpha d^{2}(a) =$ [a, b]_{α}^(σ,τ), for all a,b,c \in R and α.β∈Γ. Replacing c by $d^{2}(b)\delta d^{2}(a)$ in (3), we get: $d^{2}(a)\alpha[d^{2}(b),d^{2}(b)\delta d^{2}(a)]_{\beta}+[d^{2}(a),d^{2}(b)\delta]_{\beta}$ $d^{2}(a)]_{\beta}\alpha d^{2}(b) - (b)\alpha [d^{2}(a), d^{2}(b)\delta d^{2}(a)]_{\beta}$ - $[d^{2}(b), d^{2}(b)\delta d^{2}(a)]_{\beta} \alpha d^{2}(a) =$ $\begin{bmatrix} a & b \end{bmatrix}_{\alpha}^{(\sigma,\tau)}, \text{ then we have} \\ (4) & d^2(a)\alpha d^2(b)\delta[d^2(b),d^2(a)]_{\beta} + \end{bmatrix}$ $[d^{2}(a),d^{2}(b)]_{\beta}\delta d^{2}(a)\alpha d^{2}(b)$ $d^{2}(b)\alpha[d^{2}(a),d^{2}(b)]_{\beta}\delta d^{2}(a)$ $d^{2}(b)\delta[d^{2}(b),d^{2}(a)]_{\beta}\alpha d^{2}(a) =$ $\begin{bmatrix} a & , b \end{bmatrix}^{(\sigma,\tau)}_{\alpha}$, for all $a, b \in \mathbb{R}$ and $\alpha, \beta, \delta \in \Gamma$ Using (1) in (4), and since σ and τ are automorphism, we get (5) $d^{2}(a)\alpha d^{2}(b)\delta [b, a]_{\beta}^{(\sigma, \tau)} +$ $[a,b]^{(\sigma,\tau)}_{\beta}\delta d^2(a)\alpha d^2(b) = [a, b]^{(\sigma,\tau)}_{\alpha}$, for all $a,b\in R$ and $\alpha,\beta,\delta\in\Gamma$. Replacing c by $[a, b]^{(\sigma, \tau)}_{\beta}$ in (2),we get
$$\begin{split} [d^{2}(a)\alpha d^{2}(b), \ [a, b]_{\beta}^{(\sigma, \tau)}]_{\beta} - \\ [d^{2}(b)\alpha d^{2}(a), [a, b]_{\beta}^{(\sigma, \tau)}]_{\beta} \end{split}$$
= $\begin{bmatrix} a & , b \end{bmatrix}_{\alpha}^{(\sigma,\tau)}$, for all $a, b \in R$ and $\alpha, \beta \in \Gamma$, then $d^{2}(a)\alpha d^{2}(b)\beta [a,b]_{\beta}^{(\sigma,\tau)}$ -(6) $[a, b]_{\beta}^{(\sigma,\tau)}\beta d^2(a)\alpha d^2(b) - d^2(b)\alpha d^2(a)\beta$ $[a, b]_{\beta}^{(\sigma, \tau)} + [a, b]_{\beta}^{(\sigma, \tau)}\beta d^{2}(b)\alpha d^{2}(a) =$ $\begin{bmatrix} a & , b \end{bmatrix}_{\alpha}^{(\sigma,\tau)}$, for all $a, b \in \mathbb{R}$ and $\alpha, \beta \in \Gamma$. Putting $\beta = \delta$, and comparing (6) with (5), we get $d^2(a)\alpha d^2(b)\delta[a,b]^{(\sigma,\tau)}_{\beta}-$ (7) $[a, b]_{\beta}^{(\sigma, \tau)} \delta d^{2}(a) \alpha d^{2}(b) - d^{2}(b) \alpha d^{2}(a) \delta$

 $[a, b]^{(\sigma,\tau)}_{\beta} + [a,b]^{(\sigma,\tau)}_{\beta} \delta d^2(b) \alpha d^2(a)$ $d^{2}(a)\alpha d^{2}(b)\delta [b, a]_{\beta}^{(\sigma,\tau)}$ - $[a, b]_{\beta}^{(\sigma, \tau)} \delta d^{2}(a) \alpha d^{2}(b) = 0$, for all $a, b \in \mathbb{R}$ and $\alpha, \beta, \delta \in \Gamma$. Now, from (1) we have (8) $d^{2}(a)\alpha d^{2}(b) - [a, b]_{\alpha}^{(\sigma,\tau)} =$ $d^{2}(b)\alpha d^{2}(a)$, for all $a, b \in \mathbb{R}$ and $\alpha \in \Gamma$. Substitute (8) in (7), and since σ and τ are automorphism, we get (9) $d^{2}(a)\alpha d^{2}(b)\delta[a, b]_{\beta}^{(\sigma, \tau)} +$ $[b, a]_{\beta}^{(\sigma, \tau)} \delta d^{2}(a) \alpha d^{2}(b) = 0, \text{for all } a, b \in R$ and $\alpha, \beta, \delta \in \Gamma$. Replacing $d^{2}(a)\alpha d^{2}(b)$ by r in (9), we have (10) $r \delta [a, b]_{\beta}^{(\sigma,\tau)} + [b, a]_{\beta}^{(\sigma,\tau)} \delta r = 0,$ for all $a,b,r \in \mathbb{R}$ and $\beta, \delta \in \Gamma$. Replacing a by $a\lambda b$ in (10), we get (11) $r\delta[a, \tau(b)]_{\beta} \lambda b + [b, a]_{\beta}^{(\sigma, \tau)} \lambda \sigma(b) \delta$ r = 0, for all $a, b, r \in \mathbb{R}$ and $\beta, \delta, \lambda \in \Gamma$. Since σ and τ are automorphism, and by using (10) in (11), we get (12) $[b, a]_{\beta}^{(\sigma, \tau)} \lambda [b, r]_{\delta}^{(\sigma, \tau)} = 0$, for all a,b,r \in R and β , λ , $\delta \in \Gamma$. Replacing r by rya in (12), and using (12), we get (13) [b, a]^{(σ,τ)}_{β} $\lambda \tau(r) \gamma[b, a]^{<math>(\sigma,\tau)}_{\delta} = 0$, for all a,b,r \in R and β , λ , δ , $\gamma \in$ Γ . Putting $\beta = \delta$ in (13). Since τ is automorphism and R is semi prime, then we get: [b, a]^{(σ,τ)}_{β} = 0, for all a,b \in R and $\beta\in\Gamma$. Hence R is a commutative.

References:

- Jing F.J. 1987. On derivations of Γrings, Qu fu Shifon Daxue Xuebeo Ziran Kexue Ban, 13(4): 159-161.
- [2] Shakir A. and Mohammad S. K., 2013. On orthogonal (σ,τ)derivations in semi prime Γ-rings, International Electronic Journal of Algebra, 13(2): 23-39.
- [3] Bell, H.E. and Mason, G. 1992. On

- derivations in near rings and rings, Math. J. Okayama Univ., 34(1): 135–144.
- [4] Xiaowei X.; Jing M. and Yuan Z. 2012. Left derivations and strong

commutativity preserving maps on semi prime Γ -rings, Cornell University Library, 1(19): 1-9.

حول الاشتقاقات -(σ,τ) والابدالية على الحلقات الأولية وشبه الاولية من النمط -Γ

افراح محمد ابراهيم

قسم الرياضيات / كلية التربية / الجامعة المستنصرية

الخلاصة:

لتكن R حلقة من النمط- Γ و σ, τ دوال متشاكلة خارجيا ً على R. التطبيق الجمعي d من R الى نفسها d. $\alpha \in \Gamma$ و π على $a, b \in \mathbb{R}$ و $a, b \in \mathbb{R}$ و $a(a\alpha b) = d(a)\alpha\sigma(b) + \tau(a)\alpha d(b)$ و $a, b \in \mathbb{R}$ و (σ, τ) يتحقق لكل R اذا كان $(\sigma, \tau)_{\alpha}^{(\sigma, \tau)}$ محافظ على الإبدالية القوية على R اذا كان $[d(a), d(b)]_{\alpha} = [a, b]_{\alpha}^{(\sigma, \tau)}$ اذا كان R اذا كان $(\sigma, \tau)_{\alpha} = a, b \in \mathbb{R}$ لكل $n \in \mathbb{R}$

في هذا البحث نحقق الابدالية على R عن طريق الإشتقاق(σ,τ) المحافظ على الابدالية القوية محققين بعض الخواص عندما تكون Rحلقة اولية وشبه اولية من النمط - Γ.

الكلمات المفتاحية :الحلقة الاولية من النمط - Γ ،الحلقة شبه الاولية من النمط-Γ ،الاشتقاق(σ,τ) ، الاشتقاق(σ,τ)