On (σ, τ)-Derivations and Commutativity of Prime and Semi prime Γ-rings

Afrah Mohammad Ibraheem
Department of Mathematics, College of Education, Al-Mustansiriyah University
E-mail: Afrah.diyar@yahoo.com
Received 1, January, 2015
Accepted 4, April, 2015 NoDerivatives 4.0 International Licens

Abstract:

Let R be a Γ-ring, and σ, τ be two automorphisms of R . An additive mapping d from a Γ-ring R into itself is called a (σ, τ)-derivation on R if $\mathrm{d}(\mathrm{a} \alpha \mathrm{b})=\mathrm{d}(\mathrm{a}) \alpha \sigma(\mathrm{b})+$ $\tau(a) \alpha d(b)$, holds for all $a, b \in R$ and $\alpha \in \Gamma$. d is called strong commutativity preserving (SCP) on R if $[\mathrm{d}(\mathrm{a}), \mathrm{d}(\mathrm{b})]_{\alpha}=[\mathrm{a}, \mathrm{b}]_{\alpha}^{(\sigma, \tau)}$ holds for all $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ and $\alpha \in \Gamma$. In this paper, we investigate the commutativity of R by the strong commutativity preserving (σ, τ)derivation d satisfied some properties, when R is prime and semi prime Γ-ring.

Key words: Prime Γ-ring, Semi prime Γ-ring, (σ, τ)-derivation, Strong commutativity preserving (σ, τ)-derivation, Commutativity.

Introduction

Let R and Γ be two additive abelian groups. If for any $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$ and α, β $\in \Gamma$, the following conditions are satisfied,
(i) $a \alpha b \in R$
(ii) $(\mathrm{a}+\mathrm{b}) \alpha \mathrm{c}=\mathrm{a} \alpha \mathrm{c}+\mathrm{b} \alpha \mathrm{c}, \mathrm{a}(\alpha+\beta) \mathrm{b}$ $=a \alpha b+a \beta b, a \alpha(b+c)=a \alpha b+a \alpha c$
(iii) $(a \alpha b) \beta c=a \alpha(b \beta c)$, then R is called a Γ-ring (see [4]).
The set $Z(R)=\{a \in R \mid a \alpha b=b \alpha a, \forall b$ $\in R$, and $\alpha \in \Gamma\}$ is called the center of R.A Γ-ring R is called prime if $\mathrm{a} \Gamma \mathrm{R} \Gamma \mathrm{b}$ $=0$ with $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ implies $\mathrm{a}=0$ or $\mathrm{b}=0$, and R is called semi prime if $\mathrm{a} Г \mathrm{R} \Gamma \mathrm{a}=$ 0 with a $\in \mathrm{R}$ implies $\mathrm{a}=0$. The notion of a (resp. semi-) prime Γ-ring is an extension for the notion of a (resp. semi-) prime ring. In [1] F.J.Jing defined a derivation on Γ-ring as follows, an additive map d from a Γ ring R into itself is called a derivation on R if $d(a \alpha b)=d(a) \alpha b+a \alpha d(b)$, holds for all $a, b \in R$ and $\alpha \in \Gamma$, and in [2] S.

Ali and M.Salahudin Khan defined (σ, τ)-derivation on R ,for two endomorphism σ and τ as follows: an additive map d from R into R is called a (σ, τ)-derivation on R if $\mathrm{d}(\mathrm{a} \alpha \mathrm{b})=$ $\mathrm{d}(\mathrm{a}) \alpha \sigma(\mathrm{b})+\tau(\mathrm{a}) \alpha \mathrm{d}(\mathrm{b})$, holds for all a,b $\in \mathrm{R}$ and $\alpha \in \Gamma$.
A mapping f from R into itself is commuting if $[f(a), a]_{\alpha}=0$, and centralizing if $[\mathrm{f}(\mathrm{a}), \mathrm{a}]_{\alpha} \in \mathrm{Z}(\mathrm{R})$ for all $a \in R, \alpha \in \Gamma$. And a map f from a Γ-ring R into itself is called strong commutativity preserving (SCP) on R if $[\mathrm{f}(\mathrm{a}), \mathrm{f}(\mathrm{b})]_{\alpha}=[\mathrm{a}, \mathrm{b}]_{\alpha}$ holds for all a, b $\in \mathrm{R}$ and $\alpha \in \Gamma$. The notion of a strong commutativity preserving map was first introduced by Bell and Mason [3], and in [4] X. Jing Ma, and Y. Zhou proved that a semi prime Γ-ring with a strong commutativity preserving derivation on itself must be commutative. In this paper, we obtain that a Γ-ring R with a strong
commutativity preserving (σ, τ) derivation d on itself must be commutative, when R is prime and semi prime Γ-ring. We write $[\mathrm{a}, \mathrm{b}]_{\alpha}=$ aab-baa. Throughout this paper R will denote a Γ-ring satisfying an assumption $\left({ }^{*}\right) \ldots, a \alpha b \beta c=a \beta b \alpha c$, for all a,b,c $\in \mathrm{R}$ and $\alpha, \beta \in \Gamma$.
We will often use the identities:
(i) $[\mathrm{a}, \mathrm{b}]_{\alpha}^{(\sigma, \tau)}=\mathrm{a} \alpha \sigma(\mathrm{b})-\tau(\mathrm{b}) \alpha \mathrm{a}$.
(ii) $[\mathrm{a} \beta \mathrm{b}, \mathrm{c}]_{\alpha}^{(\sigma, \tau)}=\mathrm{a} \beta[\mathrm{b}, \mathrm{c}]_{\alpha}^{(\sigma, \tau)}+$
$[\mathrm{a}, \tau(\mathrm{c})]_{\alpha} \beta \mathrm{b}=\mathrm{a} \beta[\mathrm{b}, \sigma(\mathrm{c})]_{\alpha}+$ $[\mathrm{a}, \mathrm{c}]_{\alpha}^{(\sigma, \tau)} \beta \mathrm{b}$.
(iii) $[\mathrm{a}, \mathrm{b} \beta \mathrm{c}]_{\alpha}^{(\sigma, \tau)}=\tau(\mathrm{b}) \beta[\mathrm{a}, \mathrm{c}]_{\alpha}^{(\sigma, \tau)}+$
$[\mathrm{a}, \mathrm{b}]_{\alpha}^{(\sigma, \tau)} \beta \sigma(\mathrm{c})$.

Main Results

First we prove the following lemmas.

Lemma 1:

Let R be a prime Γ-ring, and d be a non zero (σ, τ)-derivation of R. For any $a \in R$, if
$\mathrm{d}(\mathrm{R}) \Gamma \mathrm{a}=\{0\}$ then $\mathrm{a}=0$, and if $\mathrm{a} \Gamma \mathrm{d}(\mathrm{R})=$ $\{0\}$ then $a=0$.

Proof:

Assume that $\mathrm{d}(\mathrm{R}) \Gamma \mathrm{a}=\{0\}$, for $\mathrm{a} \in \mathrm{R}$.
Let $\mathrm{r} \in \mathrm{R}$ and $\alpha \in \Gamma$, then we have
(1) $\mathrm{d}(\mathrm{r}) \mathrm{aa}=0$.

Replacing r by $r \beta b, b \in R$ in (1), we get,
(2) $\mathrm{d}(\mathrm{r}) \beta \sigma(\mathrm{b}) \alpha \mathrm{a}+\tau(\mathrm{r}) \beta \mathrm{d}(\mathrm{b}) \alpha \mathrm{a}=0$. for all a,r,b $\in \mathrm{R}$ and $\alpha, \beta \in \Gamma$.
By using (1) in (2), and since σ is automorphism, we get
$\mathrm{d}(\mathrm{r}) \beta \mathrm{b} \alpha \mathrm{a}=0$. for all $\mathrm{a}, \mathrm{b}, \mathrm{r} \in \mathrm{R}$ and $\alpha, \beta \in \Gamma$. Since R is a prime and $d \neq 0$, then we have $\mathrm{a}=0$.
A similar argument works if $a \Gamma d(R)=$ $\{0\}$.

Lemma 2:

Let R be 2 -torsion free prime and d be $\mathrm{a}(\sigma, \tau)$-derivation, and d can be commuted with σ and τ. If $\mathrm{d}^{2}=0$ then d $=0$.

Proof:

Let, for all $a, b \in R, \alpha \in \Gamma$. From the hypothesis we have
(1) $0=d^{2}(a \alpha b)$

$$
=\mathrm{d}(\mathrm{~d}(\mathrm{a}) \alpha \sigma(\mathrm{b})+\tau(\mathrm{a}) \alpha \mathrm{d}(\mathrm{~b}))
$$

$$
=\mathrm{d}^{2}(\mathrm{a}) \alpha \sigma^{2}(\mathrm{~b})+\tau(\mathrm{d}(\mathrm{a})) \alpha \mathrm{d}(\sigma(\mathrm{~b}))
$$

$+\mathrm{d}(\tau(\mathrm{a})) \alpha \sigma(\mathrm{d}(\mathrm{b}))+\tau^{2}(\mathrm{a}) \alpha \mathrm{d}^{2}(\mathrm{~b})$
Then, we get
$0=\tau(\mathrm{d}(\mathrm{a})) \alpha \mathrm{d}(\sigma(\mathrm{b}))+\mathrm{d}(\tau(\mathrm{a})) \alpha \sigma(\mathrm{d}(\mathrm{b}))$

$$
=2 \tau(\mathrm{~d}(\mathrm{a})) \alpha \sigma(\mathrm{d}(\mathrm{~b}))
$$

(2) $=\tau(\mathrm{d}(\mathrm{a})) \alpha \sigma(\mathrm{d}(\mathrm{b}))$

Taking $b \beta c, c \in R$ instead of b in (2), we get $0=\tau(\mathrm{d}(\mathrm{a})) \alpha \sigma(\mathrm{d}(\mathrm{b} \beta \mathrm{c}))$
$=\tau(\mathrm{d}(\mathrm{a})) \alpha \sigma(\mathrm{d}(\mathrm{b}) \beta \sigma(\mathrm{c})+\tau(\mathrm{b}) \beta \mathrm{d}(\mathrm{c}))$
$=\tau(\mathrm{d}(\mathrm{a}) \alpha \sigma(\mathrm{d}(\mathrm{b}) \beta \sigma(\mathrm{c}))+\tau(\mathrm{d}(\mathrm{a})) \alpha \sigma(\tau(\mathrm{b})$
$\beta \mathrm{d}(\mathrm{c})$), by equation (2), we get
$0=\tau(\mathrm{d}(\mathrm{a})) \alpha \sigma(\tau(\mathrm{b}) \beta \sigma(\mathrm{d}(\mathrm{c}))$
$=\tau(\mathrm{d}(\mathrm{a})) \Gamma R \Gamma \sigma(\mathrm{~d}(\mathrm{c}))$
Since σ and τ are automorphisms, and R is prime then $d(a)=0$ or $d(c)=0$ and as a result we get $\mathrm{d}=0$.

Theorem 3:

Let R be a prime Γ-ring with a non zero (σ, τ)-derivation d. If d is a strong commutativity preserving then R is commutative ring.

Proof:

For all $a, b \in R$ and $\alpha \in \Gamma$, we have
(1) $[\mathrm{d}(\mathrm{a}), \mathrm{d}(\mathrm{b})]_{\alpha}=[\mathrm{a}, \mathrm{b}]_{\alpha}^{(\sigma, \tau)}$.

Replacing a by $\mathrm{a} \beta \mathrm{c}$ in (1), we get
$[\mathrm{d}(\mathrm{a} \beta \mathrm{c}), \mathrm{d}(\mathrm{b})]_{\alpha}=[\mathrm{a} \beta \mathrm{c}, \mathrm{b}]_{\alpha}^{(\sigma, \tau)}$,then,
(2) $\mathrm{d}(\mathrm{a}) \beta[\sigma(\mathrm{c}), \mathrm{d}(\mathrm{b})]_{\alpha}+[\mathrm{d}(\mathrm{a}), \mathrm{d}(\mathrm{b})]_{\alpha} \beta \sigma(\mathrm{c})$
$+\tau(\mathrm{a}) \beta[\mathrm{d}(\mathrm{c}), \mathrm{d}(\mathrm{b})]_{\alpha}+[\tau(\mathrm{a}), \mathrm{d}(\mathrm{b})]_{\alpha} \beta \mathrm{d}(\mathrm{c})=$ $\mathrm{a} \beta[\mathrm{c}, \mathrm{b}]_{\alpha}+[\mathrm{a}, \tau(\mathrm{b})]_{\alpha} \beta \mathrm{c}$, for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$ and $\alpha, \beta \in \Gamma$
Replacing $\tau(\mathrm{b})$ by b and $\sigma(\mathrm{c})$ by c in (2) and using (1), we get
(3) $\mathrm{d}(\mathrm{a}) \beta[\mathrm{c}, \mathrm{d}(\mathrm{b})]_{\alpha}+[\tau(\mathrm{a}), \mathrm{d}(\mathrm{b})]_{\alpha} \beta \mathrm{d}(\mathrm{c})=0$, Replacing τ (a) by ain (3), we get
(4) $\mathrm{d}(\mathrm{a}) \beta[\mathrm{c}, \mathrm{d}(\mathrm{b})]_{\alpha}+[\mathrm{a}, \mathrm{d}(\mathrm{b})]_{\alpha} \beta \mathrm{d}(\mathrm{c})=0$,for all $a, b, c \in R$ and $\alpha, \beta \in \Gamma$.
Multiplying (4) by λr on the right, we get
(5) $\mathrm{d}(\mathrm{a}) \beta[\mathrm{c}, \mathrm{d}(\mathrm{b})]_{\alpha} \lambda \mathrm{r}+[\mathrm{a}, \mathrm{d}(\mathrm{b})]_{\alpha} \beta \mathrm{d}(\mathrm{c}) \lambda \mathrm{r}=$ 0 , for all $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{r} \in \mathrm{R}$ and $\alpha, \beta, \lambda \in \Gamma$.
Again replacing c by $c \lambda r$ in (4), we get
(6) $\mathrm{d}(\mathrm{a}) \beta \mathrm{c} \lambda[\mathrm{r}, \mathrm{d}(\mathrm{b})]_{\alpha}+\mathrm{d}(\mathrm{a}) \beta[\mathrm{c}, \mathrm{d}(\mathrm{b})]_{\alpha} \lambda \mathrm{r}+$ $[\mathrm{a}, \mathrm{d}(\mathrm{b})]_{\alpha} \beta \mathrm{d}(\mathrm{c}) \lambda \sigma(\mathrm{r})+[\mathrm{a}, \mathrm{d}(\mathrm{b})]_{\alpha} \beta \tau(\mathrm{c}) \lambda \mathrm{d}(\mathrm{r})$ $=0$
Replacing $\sigma(\mathrm{r})$ by r in (6), we get
(7) $\mathrm{d}(\mathrm{a}) \beta \mathrm{c} \lambda[\mathrm{r}, \mathrm{d}(\mathrm{b})]_{\alpha}+\mathrm{d}(\mathrm{a}) \beta[\mathrm{c}, \mathrm{d}(\mathrm{b})]_{\alpha} \lambda \mathrm{r}+$ $[\mathrm{a}, \mathrm{d}(\mathrm{b})]_{\alpha} \beta \mathrm{d}(\mathrm{c}) \lambda \mathrm{r}+[\mathrm{a}, \mathrm{d}(\mathrm{b})]_{\alpha} \beta \tau(\mathrm{c}) \lambda \mathrm{d}(\mathrm{r})=0$, for all $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{r} \in \mathrm{R}$ and $\alpha, \beta, \lambda \in \Gamma$.
Comparing (5) and (7), we get
(8) $\mathrm{d}(\mathrm{a}) \beta \mathrm{c} \lambda[\mathrm{r}, \mathrm{d}(\mathrm{b})]_{\alpha}+[\mathrm{a}, \mathrm{d}(\mathrm{b})]_{\alpha} \beta \tau(\mathrm{c}) \lambda \mathrm{d}(\mathrm{r})$ $=0$,
Replacing a by $\mathrm{d}(\mathrm{b})$ in (8), we get
(9) $d^{2}(a) \beta$ c $\lambda[r, d(b)]_{\alpha}=0$, for all $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{r} \in \mathrm{R}$ and $\alpha, \beta, \lambda \in \Gamma$.
Since R is a prime, we have
$d^{2}(a)=0$ or $[r, d(b)]_{\alpha}=0$. If $d^{2}(a)=0$ for all $a \in R$. Then from lemma $2, d=0$ is obtained. But this is a contradiction. That is
(10) $[\mathrm{r}, \mathrm{d}(\mathrm{b})]_{\alpha}=0$, for all $\mathrm{b}, \mathrm{r} \in \mathrm{R}$ and $\alpha \in \Gamma$.
Replacing $d(b)$ by $t \beta d(b), t \in R$ in (10), and using (10) again, we get
(11) $[\mathrm{r}, \mathrm{t}]_{\alpha} \beta \mathrm{d}(\mathrm{b})=0$, for all $\mathrm{r}, \mathrm{t}, \mathrm{b} \in \mathrm{R}$ and $\alpha, \beta \in \Gamma$.
By using lemma 1 in (11), we get
$[\mathrm{r}, \mathrm{t}]_{\alpha}=0$, for all $\mathrm{r}, \mathrm{t} \in \mathrm{R}$ and $\alpha \in \Gamma$. Hence R is commutative ring.

Theorem 4:

Let R be a prime Γ-ring, and d is a strong commutativity preserving (σ, τ) derivation. If $\sigma=\tau$ then either R is commutative ring or $\mathrm{d}=0$.

Proof:

By hypothesis, we have
(1) $[\mathrm{d}(\mathrm{a}), \mathrm{d}(\mathrm{b})]_{\alpha}=[\mathrm{a}, \mathrm{b}]_{\alpha}^{(\sigma, \tau)}$, for all $a, b \in R$ and $\alpha \in \Gamma$
Replacing b by $b \beta c$ in (1), we get
$[\mathrm{d}(\mathrm{a}), \mathrm{d}(\mathrm{b} \beta \mathrm{c})]_{\alpha}=[\mathrm{a}, \mathrm{b} \beta \mathrm{c}]_{\alpha}^{(\sigma, \tau)}$, then,
(2) $\mathrm{d}(\mathrm{b}) \beta[\mathrm{d}(\mathrm{a}), \sigma(\mathrm{c})]_{\alpha}+[\mathrm{d}(\mathrm{a}), \mathrm{d}(\mathrm{b})]_{\alpha} \beta \sigma(\mathrm{c})$ $+\sigma(\mathrm{b}) \beta[\mathrm{d}(\mathrm{a}), \mathrm{d}(\mathrm{c})]_{\alpha}+[\mathrm{d}(\mathrm{a}), \sigma(\mathrm{b})]_{\alpha} \beta \mathrm{d}(\mathrm{c})=$ $\sigma(\mathrm{b}) \beta[\mathrm{a}, \mathrm{c}]_{\alpha}^{(\sigma, \tau)}+[\mathrm{a}, \mathrm{b}]_{\alpha}^{(\sigma, \tau)} \beta \sigma(\mathrm{c})$, for all $a, b, c \in R$ and $\alpha, \beta \in \Gamma$
By using (1) in (2), we get
(3) $\mathrm{d}(\mathrm{b}) \beta[\mathrm{d}(\mathrm{a}), \sigma(\mathrm{c})]_{\alpha}+$
$[\mathrm{d}(\mathrm{a}), \sigma(\mathrm{b})]_{\alpha} \beta \mathrm{d}(\mathrm{c})=0$.
Replacing $\sigma(\mathrm{b})$ by $\mathrm{d}(\mathrm{a})$ in (3), we get
(4)d(b) $\beta[\mathrm{d}(\mathrm{a}), \sigma(\mathrm{c})]_{\alpha}=0$, for all a,b,c $\in \mathrm{R}$ and $\alpha, \beta \in \Gamma$.
Replacing $\sigma(\mathrm{c})$ by $\sigma(\mathrm{c}) \delta \mathrm{r}$ in (4), we get
(5) $\mathrm{d}(\mathrm{b}) \beta \sigma(\mathrm{c}) \delta[\mathrm{d}(\mathrm{a}), \mathrm{r}]_{\alpha}+\mathrm{d}(\mathrm{b}) \beta$ $[\mathrm{d}(\mathrm{a}), \sigma(\mathrm{c})]_{\alpha} \delta \mathrm{r}=0$, for all $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{r} \in \mathrm{R}$ and $\alpha, \beta, \delta \in \Gamma$.
Using (4) in (5), and replacing r by $\mathrm{d}(\mathrm{b})$ in (5), we get
(6) $\mathrm{d}(\mathrm{b}) \beta \sigma(\mathrm{c}) \delta[\mathrm{d}(\mathrm{a}), \mathrm{d}(\mathrm{b})]_{\alpha}=0$.

By using (1) in (6), and since σ is automorphism, we have
$\mathrm{d}(\mathrm{b}) \beta \mathrm{c} \delta[\mathrm{a}, \mathrm{b}]_{\alpha}=0$, for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$ and $\alpha, \beta, \delta \in \Gamma$.
Since R is a prime, we have $d(b)=0$ or $[\mathrm{a}, \mathrm{b}]_{\alpha}=0$, for all $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ and $\alpha \in \Gamma$
That's mean $d=o$ or R is commutative.

Theorem 5:

Let R be a prime Γ-ring with a (σ, τ)-derivation d such that $[\mathrm{d}(\mathrm{a}), \mathrm{d}(\mathrm{b})]_{\alpha}=\left[\mathrm{a}^{2}, \mathrm{~b}^{2}\right]_{\alpha}^{(\sigma, \tau)}$, then $\mathrm{d}=0$ or d is commuting.

Proof:

For all $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ and $\alpha \in \Gamma$, we have
(1) $[\mathrm{d}(\mathrm{a}), \mathrm{d}(\mathrm{b})]_{\alpha}=\left[\mathrm{a}^{2}, \mathrm{~b}^{2}\right]_{\alpha}^{(\sigma, \tau)}$.

Replacing a by a+b in (1), we have
$[\mathrm{d}(\mathrm{a}), \mathrm{d}(\mathrm{b})]_{\alpha}+\quad[\mathrm{d}(\mathrm{b}), \mathrm{d}(\mathrm{b})]_{\alpha}=\quad\left[\left(\mathrm{a}^{2}+\right.\right.$ $\left.\left.a \beta b+b \beta a+b^{2}\right), b^{2}\right]_{\alpha}^{(\sigma, \tau)}$.
By using (1),we have
(2) $\left[\mathrm{a} \beta \mathrm{b}, \mathrm{b}^{2}\right]_{\alpha}^{(\sigma, \tau)}+\left[\mathrm{b} \beta \mathrm{a}, \mathrm{b}^{2}\right]_{\alpha}^{(\sigma, \tau)}=0$, for all $a, b \in \mathrm{R}$ and $\alpha, \beta \in \Gamma$.
Replacing aby $\mathrm{d}(\mathrm{b}) \delta \mathrm{b}$ in (2), we have
$\left[\mathrm{d}(\mathrm{b}) \delta \mathrm{b} \beta \mathrm{b}, \mathrm{b}^{2}\right]_{\alpha}^{(\sigma, \tau)}+$
$\left[\mathrm{b} \beta \mathrm{d}(\mathrm{b}) \delta \mathrm{b}, \mathrm{b}^{2}\right]_{\alpha}^{(\sigma, \tau)}=0$, then
$\left[\mathrm{d}(\mathrm{b}) \delta \mathrm{b} \beta \mathrm{b}+\mathrm{b} \beta \mathrm{d}(\mathrm{b}) \delta \mathrm{b}, \mathrm{b}^{2}\right]_{\alpha}^{(\sigma, \tau)}=0$.
This implies
$\left[\mathrm{d}\left(\mathrm{b}^{2}\right) \beta \mathrm{b}, \mathrm{b}^{2}\right]_{\alpha}^{(\sigma, \tau)}=0$, then $d\left(b^{2}\right) \beta\left[b, b^{2}\right]_{\alpha}+\left[d\left(b^{2}\right), \tau\left(b^{2}\right)\right]_{\alpha} \beta b=0$,then we have
(3) $\left[d\left(b^{2}\right), \tau\left(b^{2}\right)\right]_{\alpha} \beta b=0$, for all $b \in R$ and $\alpha \in \Gamma$.
Replacing b^{2} by c in (3), we have
(4) $[d(c), \tau(c)]_{\alpha} \beta b=0$, for all $c \in R$ and $\alpha \in \Gamma$
Replacing $\tau(\mathrm{c})$ by c and b by $\mathrm{b} \lambda \mathrm{d}(\mathrm{c})$ in (4) and using (1), we have
$[\mathrm{d}(\mathrm{c}), \mathrm{c}]_{\alpha} \beta \mathrm{b} \quad \lambda \mathrm{d}(\mathrm{c})=0$, for all $\mathrm{c}, \mathrm{b} \in \mathrm{R}$ and $\alpha, \beta, \lambda \in \Gamma$
Since R is a prime, we have $d(c)=0$ or $[\mathrm{d}(\mathrm{c}), \mathrm{c}]_{\alpha}$, for all $\mathrm{c} \in \mathrm{R}$ and $\alpha \in \Gamma$.
Thus $\mathrm{d}=\mathrm{o}$ or d is commuting.

Theorem 6:

Let R be a semi prime Γ-ring. If d is a strong commutativity preserving (σ, τ)-derivation, then d is commuting.

Proof:

If $d=0$, then $[a, b]_{\alpha}^{(\sigma, \tau)}=0$, for all $a, b \in R$ and $\alpha \in \Gamma$.
Replacing b by d(a) in (1) we get
$[\mathrm{a}, \mathrm{d}(\mathrm{a})]_{\alpha}^{(\sigma, \tau)}=0$, for all $\mathrm{a} \in \mathrm{R}$ and $\alpha \in \Gamma$.Thus d is commuting.
Now, If $\mathrm{d} \neq 0$, then by hypothesis, we get
(1) $\mathrm{d}(\mathrm{a}), \mathrm{d}(\mathrm{b})]_{\alpha}=[\mathrm{a}, \mathrm{b}]_{\alpha}^{(\sigma, \tau)}$, for all $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ and $\alpha \in \Gamma$
Replacing a by a $\beta \mathrm{c}$ in (1), we get $[\mathrm{d}(\mathrm{a} \beta \mathrm{c}), \mathrm{d}(\mathrm{b})]_{\alpha}=[\mathrm{a} \beta \mathrm{c}, \mathrm{b}]_{\alpha}^{(\sigma, \tau)}$,then, (2) $\mathrm{d}(\mathrm{a}) \beta[\sigma(\mathrm{c}), \mathrm{d}(\mathrm{b})]_{\alpha}+[\mathrm{d}(\mathrm{a}), \mathrm{d}(\mathrm{b})]_{\alpha} \beta \sigma(\mathrm{c})$
$+\tau(\mathrm{a}) \beta[\mathrm{d}(\mathrm{c}), \mathrm{d}(\mathrm{b})]_{\alpha}+[\tau(\mathrm{a}), \mathrm{d}(\mathrm{b})]_{\alpha} \beta \mathrm{d}(\mathrm{c})=$
$\mathrm{a} \beta[\mathrm{c}, \quad \sigma(\mathrm{b})]_{\alpha}+[\mathrm{a}, \quad \mathrm{b}]_{\alpha}^{(\sigma, \tau)} \beta \mathrm{c}, \quad$ for all $a, b, c \in R$ and $\alpha, \beta \in \Gamma$
Replacing $\sigma(\mathrm{c})$ by c in (2) and using (1), we get
(3) $\mathrm{d}(\mathrm{a}) \beta[\sigma(\mathrm{c}), \mathrm{d}(\mathrm{b})]_{\alpha}+\tau(\mathrm{a}) \beta[\mathrm{d}(\mathrm{c}), \mathrm{d}(\mathrm{b})]_{\alpha}$ $+[\tau(\mathrm{a}), \mathrm{d}(\mathrm{b})]_{\alpha} \beta \mathrm{d}(\mathrm{c})=\mathrm{a} \beta[\mathrm{c}, \sigma(\mathrm{b})]_{\alpha}$
Replacing $\tau(\mathrm{a})$ by a and $\sigma(\mathrm{b})$ by b in
(3) and using (1), we get
(4) $\mathrm{d}(\mathrm{a}) \beta[\sigma(\mathrm{c}), \mathrm{d}(\mathrm{b})]_{\alpha}+[\mathrm{a}, \mathrm{d}(\mathrm{b})]_{\alpha} \beta \mathrm{d}(\mathrm{c})$
$=0$, for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$ and $\alpha, \beta \in \Gamma$.
Replacing $\sigma(c)$ by $d(b)$ in (4), we get
(5) $[\mathrm{a}, \mathrm{d}(\mathrm{b})]_{\alpha} \beta \mathrm{d}(\mathrm{c})=0$, for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$ and $\alpha, \beta \in \Gamma$.
Replacing a by b $\lambda \mathrm{a}$ in (5), and using(5), we get
(6) $[\mathrm{b}, \mathrm{d}(\mathrm{b})]_{\alpha} \lambda$ a $\beta \quad \mathrm{d}(\mathrm{c})=0$, for all $a, b, c \in R$ and $\alpha, \beta, \lambda \in \Gamma$.
Multiply (6) from left by d(c), and from right by $[\mathrm{b}, \mathrm{d}(\mathrm{b})]_{\alpha}$, then we get
$\mathrm{d}(\mathrm{c}) \delta[\mathrm{b}, \mathrm{d}(\mathrm{b})]_{\alpha} \lambda$ a $\beta \mathrm{d}(\mathrm{c}) \delta[\mathrm{b}, \mathrm{d}(\mathrm{b})]_{\alpha}=0$, for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$ and $\alpha, \beta, \lambda, \delta \in \Gamma$.
Since R is a semi prime, then:
$\mathrm{d}(\mathrm{c}) \delta[\mathrm{b}, \mathrm{d}(\mathrm{b})]_{\alpha}=0$, for all $\mathrm{b}, \mathrm{c} \in \mathrm{R}$ and $\alpha, \delta \in \Gamma$.

By using lemma 1 ,we get
$[\mathrm{b}, \mathrm{d}(\mathrm{b})]_{\alpha}=0$, for all $\mathrm{b} \in \mathrm{R}$ and $\alpha \in \Gamma$.
That's complete the proof.

Theorem 7:

Let R be a semi prime Γ-ring with a non zero (σ, τ)-derivation d. If d is a strong commutativity preserving such that $[\mathrm{d}(\mathrm{a}), \tau(\mathrm{a})]_{\alpha}=0$, then $\mathrm{d} \subseteq \mathrm{Z}(\mathrm{R})$.

Proof:

For all $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ and $\alpha \in \Gamma$, we have
(1) $[\mathrm{d}(\mathrm{a}), \mathrm{d}(\mathrm{b})]_{\alpha}=[\mathrm{a}, \mathrm{b}]_{\alpha}^{(\sigma, \tau)}$.

Replacing b by $a \beta b$ in (1), we get
$[\mathrm{d}(\mathrm{a}), \mathrm{d}(\mathrm{a} \beta \mathrm{b})]_{\alpha}=[\mathrm{a}, \mathrm{a} \beta \mathrm{b}]_{\alpha}^{(\sigma, \tau)}$,then:
(2) $\mathrm{d}(\mathrm{a}) \beta[\mathrm{d}(\mathrm{a}), \sigma(\mathrm{b})]_{\alpha}+[\mathrm{d}(\mathrm{a}), \mathrm{d}(\mathrm{a})]_{\alpha} \sigma(\mathrm{b})$
$+\tau(\mathrm{a}) \beta[\mathrm{d}(\mathrm{a}), \mathrm{d}(\mathrm{b})]_{\alpha}+[\mathrm{d}(\mathrm{a}), \tau(\mathrm{a})]_{\alpha} \beta \mathrm{d}(\mathrm{b})$
$=\tau(\mathrm{a}) \beta[\mathrm{a}, \mathrm{b}]_{\alpha}^{(\sigma, \tau)}+[\mathrm{a}, \mathrm{a}]_{\alpha}^{(\sigma, \tau)} \beta \sigma(\mathrm{b})$, for
all $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ and $\alpha, \beta \in \Gamma$
By using (1) in (2), we get
(3) $d(a) \beta[d(a), \sigma(b)]_{\alpha}+[d(a), \tau(a)]_{\alpha} \beta d(b)$ $=0$.
Replacing $\sigma(b)$ by r, and using the hypothesis in (3), we get
(4) $d(a) \beta[d(a), r]_{\alpha}=0$,for all $a, b, r \in R$ and $\alpha, \beta \in \Gamma$.
Replacing rby r $\delta \mathrm{b}$ in (4) , and using (4), we get
(5) $\mathrm{d}(\mathrm{a}) \beta \mathrm{r} \delta[\mathrm{d}(\mathrm{a}), \mathrm{b}]_{\alpha}=0$, for all $a, b, c, r \in R$ and $\alpha, \beta, \delta \in \Gamma$.
Multiply (5) from left by [d(a) ,b] $]_{\alpha}$, and from right by $d(a)$, then we get
$[\mathrm{d}(\mathrm{a}), \mathrm{b}]_{\alpha} \lambda \mathrm{d}(\mathrm{a}) \beta \mathrm{r} \delta[\mathrm{d}(\mathrm{a}), \mathrm{b}]_{\alpha} \lambda \mathrm{d}(\mathrm{a})=0$, for all $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ and $\alpha, \beta, \delta, \lambda \in \Gamma$.
Since R is a semi prime, we have
$[d(a), b]_{\alpha} \lambda d(a)=0$,for all $a, b \in R$ and $\alpha, \lambda \in \Gamma$.
By using lemma 1, we get
$[d(a), b]_{\alpha}=0$, for all $a, b \in R$ and $\alpha \in \Gamma$. That's mean $d \subseteq Z(R)$.

Theorem 8:

Let R be a semi prime Γ-ring with a (σ, τ)-derivation d such that $\left[\mathrm{d}^{2}(\mathrm{a}), \mathrm{d}^{2}(\mathrm{~b})\right]_{\alpha}=[\mathrm{a}, \mathrm{b}]_{\alpha}^{(\sigma, \tau)}$, then R is a commutative.

Proof:

For all $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ and $\alpha \in \Gamma$, we have :
(1) $\left[\mathrm{d}^{2}(\mathrm{a}), \mathrm{d}^{2}(\mathrm{~b})\right]_{\alpha}=[\mathrm{a}, \mathrm{b}]_{\alpha}^{(\sigma, \tau)}$

Replacing $\left[\mathrm{d}^{2}(\mathrm{a}), \mathrm{d}^{2}(\mathrm{~b})\right]_{\alpha}$ by $\left[\left[d^{2}(a), d^{2}(b)\right]_{\alpha}, c\right]_{\beta}$ in (1), $c \in R$, we get $\left[\left[\mathrm{d}^{2}(\mathrm{a}), \mathrm{d}^{2}(\mathrm{~b})\right]_{\alpha}, \mathrm{c}\right]_{\beta}=[\mathrm{a}, \mathrm{b}]_{\alpha}^{(\sigma, \tau)}$,then we have
(2) $\left[\mathrm{d}^{2}(\mathrm{a}) \alpha \mathrm{d}^{2}(\mathrm{~b}), \mathrm{c}\right]_{\beta}-\left[\mathrm{d}^{2}(\mathrm{~b}) \alpha \mathrm{d}^{2}(\mathrm{a}), \mathrm{c}\right]_{\beta}=$ $[\mathrm{a}, \mathrm{b}]_{\alpha}^{(\sigma, \tau)}$,then we have
(3) $d^{2}(a) \alpha\left[d^{2}(b), c\right]_{\beta}+\left[d^{2}(a), c\right]_{\beta} \alpha d^{2}(b)-$ $\mathrm{d}^{2}(\mathrm{~b}) \alpha\left[\mathrm{d}^{2}(\mathrm{a}), \mathrm{c}\right]_{\beta}-\left[\mathrm{d}^{2}(\mathrm{~b}), \mathrm{c}\right]_{\beta} \alpha \mathrm{d}^{2}(\mathrm{a})=$ $[\mathrm{a}, \mathrm{b}]_{\alpha}^{(\sigma, \tau)}$,for all $a, b, c \in R$ and $\alpha, \beta \in \Gamma$.
Replacing c by $\mathrm{d}^{2}(\mathrm{~b}) \delta \mathrm{d}^{2}(\mathrm{a})$ in (3), we get: $d^{2}(a) \alpha\left[d^{2}(b), d^{2}(b) \delta d^{2}(a)\right]_{\beta}+\left[d^{2}(a), d^{2}(b) \delta\right.$ $\left.d^{2}(a)\right]_{\beta} \alpha d^{2}(b)-^{2}(b) \alpha\left[d^{2}(a), d^{2}(b) \delta d^{2}(a)\right]_{\beta}$ - $\left[d^{2}(b), d^{2}(b) \delta d^{2}(a)\right]_{\beta} \alpha d^{2}(a)=$ $[\mathrm{a}, \mathrm{b}]_{\alpha}^{(\sigma, \tau)}$, then we have
(4) $\quad d^{2}(a) \alpha d^{2}(b) \delta\left[d^{2}(b), d^{2}(a)\right]_{\beta}+$ $\left[d^{2}(a), d^{2}(b)\right]_{\beta} \delta d^{2}(a) \alpha d^{2}(b)-$ $d^{2}(b) \alpha\left[d^{2}(a), d^{2}(b)\right]_{\beta} \delta d^{2}(a)-$ $\mathrm{d}^{2}(\mathrm{~b}) \delta\left[\mathrm{d}^{2}(\mathrm{~b}), \mathrm{d}^{2}(\mathrm{a})\right]_{\beta} \alpha \mathrm{d}^{2}(\mathrm{a})=$ $[\mathrm{a}, \mathrm{b}]_{\alpha}^{(\sigma, \tau)}$,for all $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ and $\alpha, \beta, \delta \in \Gamma$ Using (1) in (4), and since σ and τ are automorphism, we get
(5) $\quad d^{2}(a) \alpha d^{2}(b) \delta[b, a]_{\beta}^{(\sigma, \tau)}+$
$[\mathrm{a}, \mathrm{b}]_{\beta}^{(\sigma, \tau)} \delta \mathrm{d}^{2}(\mathrm{a}) \alpha \mathrm{d}^{2}(\mathrm{~b})=[\mathrm{a}, \mathrm{b}]_{\alpha}^{(\sigma, \tau)}$,for all $a, b \in \mathrm{R}$ and $\alpha, \beta, \delta \in \Gamma$.
Replacing c by $[\mathrm{a}, \mathrm{b}]_{\beta}^{(\sigma, \tau)}$ in (2), we get $\left[d^{2}(a) \alpha d^{2}(b),[a, b]_{\beta}^{(\sigma, \tau)}\right]_{\beta}-$
$\left[d^{2}(b) \alpha d^{2}(a),[a, b]_{\beta}^{(\sigma, \tau)}\right]_{\beta}$
$=[\mathrm{a}, \mathrm{b}]_{\alpha}^{(\sigma, \tau)}$,for all $a, b \in \mathrm{R}$ and $\alpha, \beta \in \Gamma$, then
(6) $\quad d^{2}(a) \alpha d^{2}(b) \beta[a, b]_{\beta}^{(\sigma, \tau)}$ -
$[a, b]_{\beta}^{(\sigma, \tau)} \beta d^{2}(a) \alpha d^{2}(b)-d^{2}(b) \alpha d^{2}(a) \beta$
$[\mathrm{a}, \mathrm{b}]_{\beta}^{(\sigma, \tau)}+[\mathrm{a}, \mathrm{b}]_{\beta}^{(\sigma, \tau)} \beta \mathrm{d}^{2}(\mathrm{~b}) \alpha \mathrm{d}^{2}(\mathrm{a})=$
$[\mathrm{a}, \mathrm{b}]_{\alpha}^{(\sigma, \tau)}$, for all $a, b \in \mathrm{R}$ and $\alpha, \beta \in \Gamma$.
Putting $\beta=\delta$, and comparing (6) with (5), we get
(7) $\quad d^{2}(a) \alpha d^{2}(b) \delta[a, b]_{\beta}^{(\sigma, \tau)}-$
$[a, b]_{\beta}^{(\sigma, \tau)} \delta d^{2}(a) \alpha d^{2}(b)-d^{2}(b) \alpha d^{2}(a) \delta$
$[\mathrm{a}, \mathrm{b}]_{\beta}^{(\sigma, \tau)}+[\mathrm{a}, \mathrm{b}]_{\beta}^{(\sigma, \tau)} \delta \mathrm{d}^{2}(\mathrm{~b}) \alpha \mathrm{d}^{2}(\mathrm{a})-$ $\mathrm{d}^{2}(\mathrm{a}) \alpha \mathrm{d}^{2}(\mathrm{~b}) \delta[\mathrm{b}, \mathrm{a}]_{\beta}^{(\sigma, \tau)}-$
$[\mathrm{a}, \mathrm{b}]_{\beta}^{(\sigma, \tau)} \delta \mathrm{d}^{2}(\mathrm{a}) \alpha \mathrm{d}^{2}(\mathrm{~b})=0$, for all $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ and $\alpha, \beta, \delta \in \Gamma$.
Now, from (1) we have
(8) $d^{2}(a) \alpha d^{2}(b)-[a, b]_{\alpha}^{(\sigma, \tau)}=$ $d^{2}(b) \alpha d^{2}(a)$, for all $a, b \in R$ and $\alpha \in \Gamma$.
Substitute (8) in (7), and since σ and τ are automorphism, we get
(9) $d^{2}(a) \alpha d^{2}(b) \delta[a, b]_{\beta}^{(\sigma, \tau)}+$
$[\mathrm{b}, \mathrm{a}]_{\beta}^{(\sigma, \tau)} \delta \mathrm{d}^{2}(\mathrm{a}) \alpha \mathrm{d}^{2}(\mathrm{~b})=0$, for all $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ and $\alpha, \beta, \delta \in \Gamma$.
Replacing $\mathrm{d}^{2}(\mathrm{a}) \alpha \mathrm{d}^{2}(\mathrm{~b})$ by r in (9), we have
(10) $\mathrm{r} \delta[\mathrm{a}, \mathrm{b}]_{\beta}^{(\sigma, \tau)}+[\mathrm{b}, \mathrm{a}]_{\beta}^{(\sigma, \tau)} \delta \mathrm{r}=0$, for all $a, b, r \in R$ and $\beta, \delta \in \Gamma$.
Replacing a by $a \lambda b$ in (10), we get
(11) $\operatorname{r} \delta[a, \tau(b)]_{\beta} \lambda b+[b, a]_{\beta}^{(\sigma, \tau)} \lambda \sigma(b) \delta$ $\mathrm{r}=0$,for all $\mathrm{a}, \mathrm{b}, \mathrm{r} \in \mathrm{R}$ and $\beta, \delta, \lambda \in \Gamma$.
Since σ and τ are automorphism, and by using (10) in (11), we get
(12) $[\mathrm{b}, \mathrm{a}]_{\beta}^{(\sigma, \tau)} \lambda[\mathrm{b}, \mathrm{r}]_{\delta}^{(\sigma, \tau)}=0$, for all $\mathrm{a}, \mathrm{b}, \mathrm{r} \in \mathrm{R}$ and $\beta, \lambda, \delta \in \Gamma$.
Replacing r by rya in (12), and using (12), we get
(13) $[\mathrm{b}, \mathrm{a}]_{\beta}^{(\sigma, \tau)} \lambda \tau(\mathrm{r}) \gamma[\mathrm{b}, \mathrm{a}]_{\delta}^{(\sigma, \tau)}=0$, for all a,b,r $\in \mathrm{R}$ and $\beta, \lambda, \delta, \gamma \in \Gamma$.
Putting $\beta=\delta$ in (13). Since τ is automorphism and R is semi prime, then we get:
$[b, a]_{\beta}^{(\sigma, \tau)}=0$, for all $a, b \in R$ and $\beta \in \Gamma$.
Hence R is a commutative.

References:

[1] Jing F.J. 1987. On derivations of Γ rings, Qu fu Shifon Daxue Xuebeo Ziran Kexue Ban, 13(4): 159-161.
[2] Shakir A. and Mohammad S. K., 2013. On orthogonal (σ, τ) derivations in semi prime Γ-rings, International Electronic Journal of Algebra, 13(2): 23-39.
[3] Bell, H.E. and Mason, G. 1992. On
derivations in near rings and rings, Math. J. Okayama Univ., 34(1): 135-144.
[4] Xiaowei X.; Jing M. and Yuan Z. 2012. Left derivations and strong
commutativity preserving maps on semi prime Γ-rings, Cornell University Library, 1(19): 1-9.

حول الاشتقاقات -(σ) والابدالية على الحلقات الأولية وشبه الاولية من النمط -

 افراح محمد ابراهيمقسم الرياضيات / كلية التربية / الجامعة المستنصرية

لتكن R حلقة من النمط-
 تسمى إثتقاق) لكل
في هذا البحث نحقق الابدالية على R عن طريق الإشتقاق(C (σ) المحافظ على الابدالية القوية محققين بعض الخواص عندما تكون R الاقة اولية وشبه اولية من النمط -
(الكلمات المفتاحية :الحقة الاولية من النمط - Г ،الحلقة شبه الاولية من النمط-Г ،الاشتقاق(ه, σ) ،الاشتقاق ($\sigma, \tau)$ المحافظ على الابدالية القوية ،الابدالية.

