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Abstract 
      Throughout this paper R represents commutative ring with identity and M is a 

unitary left R-module. The purpose of this paper is to investigate some new results 

(up to our knowledge) on the concept of weak essential submodules which introduced 

by Muna A. Ahmed, where a submodule N of an R-module M is called weak 

essential, if N ∩ P ≠ (0) for each nonzero semiprime submodule P of M. In this paper we 

rewrite this definition in another formula. Some new definitions are introduced and 

various properties of weak essential submodules are considered. 

 

Key words: Semiprime submodule, Essential submodules, Weak essential 

submodules, Weak uniform modules, Fully semi-semiprime modules and Fully 

essential* modules. 

 

Introduction: 
      Let R be a commutative ring with 

identity and let M be a unitary left R-

module. Assume that all R-modules 

under study contain semiprime 

submodules. It is well known that a 

submodule N of M is called essential, if 

whenever N ∩ L = (0), then L = (0) for 

each nonzero submodule L of M [1] and 

[2]. ]. A proper submodule P of M is 

called prime, if whenever rm  P for r 

R and m M, then either m  P or r  

(  
 M) [3]. A nonzero submodule N of M 

is called semi essential, if N ∩ P ≠ (0) for 

each nonzero prime submodule P of M 

[4]. This paper consists of three sections; 

in section 1, we give some remarks and 

examples, and discuss the transitivity 

property of weak essential submodules. In 

section 2, we introduce some new results 

(up to our knowledge) on the concept of 

weak essential submodules. Section 3, is 

devoted to the study ascending and 

descending chain conditions on weak 

essential submodules.  

        Muna in [5] introduced the concept 

of weak essential submodules as a 

generalization of the class of essential 

submodules. A proper submodule N of 

M is called semiprime , if 

for each rR and xM with rk xL, then 

rxL [6]. Equivalently, if r2 x  L, then 

rxL [7].  And a submodule N of M is 

called weak essential, if N ∩ L ≠ (0), for 

each nonzero semiprime submodule L of 

M. Muna saw in [5] that the class of 

weak essential submodules lies between 

the class of essential submodules and 

the class of semi essential submodules. 
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In this work we give some new results 

(up to our knowledge) about this class of 

submodules. 

       Firstly we rewrite the definition of 

weak essential submodules in another 

formula. In fact we did not find any 

reasonable reason to exclude the zero 

submodule from this definition. We find 

it may be useful in some cases instead of 

the origin formula.  

Definition (1): A submodule N of an R-

module M is called weak essential, if 

whenever N∩P = (0), then P = (0) for 

every semiprime submodule P of M. 

     We see that in order to add other 

results for weak essential submodules, it 

must be necessary giving some other 

simple remarks about this class of 

submodules as well as the remarks 

which were mentioned in [5].  

Remarks (2):  

1. When a submodule N of an R-

module M is nonzero in the Def (1), 

then N is a weak-essential submodule if 

N ∩ P ≠ (0) for each semiprime 

submodule P of M, and this is the same 

definition which is mentioned in [5]. 

2. Every module is a weak essential 

submodule in itself. 

3. In the concept of the essential 

submodules, (0) is an essential 

submodule of an R-module M if and 

only if M = (0). But in the concept of 

weak essential submodules this 

statement is not satisfying. In fact (0) 

≤weak (0), but sometimes (0) may be 

weak essential submodule in a nonzero 

module, for example ( ̅) is a weak 

essential submodule of the Z-module, 

Z5, and in other examples such as Z-

module Z, we note that (0) is not weak 

essential submodule. 

4. If (0) ≠ M, and the only 

semiprime submodule in M is zero, then 

(0) ≤weakM. 

5. The sum of two weak essential 

submodules is also weak essential 

submodule. 

Proof (5): Let M be an R-module and 

let L and K be two weak essential 

submodules of M. Note that L ≤ L+K, 

since L ≤weak M, so by [5, Rem(1.5)(2)], 

L+K ≤weak M. 

6.  Let M be an R-module, and let 

N ≤ M. Then for each R-module M' and 

for each homomorphism f: M → M' 

with ker f ∩ N ≠ (0), implies that N 

≤weak M. 

Proof (6): Let P be a nonzero semiprime 

submodule of M, and let π: M → 
 

 
 be 

the natural epimorphism. By assumption 

ker π ∩ N ≠ (0). But ker π = P, then P ∩ 

N ≠ (0), hence N ≤weak M. 

Proposition (3): Let f: M → M' be an 

isomorphism. If N ≤weak M, then f(N) 

≤weak M'. 

Proof: Let P be a nonzero semiprime 

submodule of M'. Since f is an 

epimorphism, and ker f = (0)  P, then  

f
-1

(P) is a semiprime submodule of M 

[7, P. 49 Prop (2.1)]. But N ≤weak M, 

then N ∩ f
-1

(P) ≠ (0), On the other hand 

f is a monomorphism thus f(N) ∩ P ≠ 

(0). 

       In the following proposition we 

prove the transitive property for nonzero 

submodules. Before that we need the 

following Lemma which appeared in [7, 

Prop (1.11), p.48]. 

Lemma (4): If P is a semiprime 

submodule of C and B is a submodule of 

an R-module C, such that B ≰ P, then P 

∩ B is a semiprime submodule in B. 

Proposition (5): Let C be an R-

modules, and let A, B be submodules of 

C such that (0) ≠A ≤ B ≤ C. If A ≤weak B 

and B ≤weak C, then A ≤weak C. 

Proof: Let P be a semiprime submodule 

of C such that A ∩ P = (0). Note that (0) 

= A ∩ P = (A ∩ P) ∩ B = A ∩ (P ∩ B). 

But P is a semiprime submodule of C, so 

we have two cases. If B ≤ P then (0) = A 

∩ (P ∩ B) = A ∩ B, hence A ∩ B = (0), 

but A ≤ B, so A ∩ B = A, which is 

implies that A = (0). But this is a 

contradiction with our assumption. Thus 

B ≰ P, and by Lemma (4), P ∩ B is a 

semiprime submodule of B. But A ≤weak 
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B, therefore P ∩ B = (0), and since B 

≤weak C, then P = (0), that is A ≤weak C. 

Remark (6): The condition A ≠ (0) in 

Prop (1.5) is necessary. In fact in the Z-

module Z8, ( ) is a weak essential 

submodule of { ,   } and { ,   } is a 

weak essential submodule of Z8, but ( ) 

not weak essential in Z8. 

      The converse of Prop (5) is not true 

in general, as the following example 

shows. 

Example (7): Consider the Z-module, 

Z36, the submodule (  ) is a weak 

essential submodule of Z36. But (  ) is 

not weak essential submodule of ( ). 

1.Other results on weak 

essential submodules 
        In this section we introduce other 

properties of weak essential 

submodules. We start by the following 

definition which is analogue of that in 

[8]. 

Definition (1.1): A nonzero R-module 

is called fully essential*, if every 

nonzero weak essential submodule of M 

is an essential submodule of M. 

        It is clear that every fully essential* 

module is a fully essential module, since 

every weak essential submodule is a 

semi-essential submodule [5]. 

       Recall that an R-module M is called 

fully semiprime, if every proper 

submodule of M is a semiprime 

submodule [9]. 

      Before giving the following 

proposition, we need to introduce the 

following lemma. 

Lemma (1.2):  Let A and B be 

submodules of an R-module M such that 

A ≤ B. If A is a semiprime submodule 

of M, then A is a semiprime submodule 

in B. 

Proof:  It is clear. 

Proposition (1.3): Let M be a fully 

semiprime R-module, and let N ≤ M. 

Then N ≤weak L if and only if N ≤e L for 

every submodule L of M. 

Proof: ⇒) Let L be a submodule of M 

and let  A be a submodule of L such that 

N ∩ A = (0), since M is a fully 

semiprime module then both of N and A 

are semiprime submodules of M, and by 

Lemma (1.2), N is a semiprime 

submodule of L. But N is a weak 

essential submodule of L, therefore A = 

(0), that is N is an essential submodule 

of L. 

⇐) It is clear. 

Corollary (1.4): If M is a fully 

semiprime module, then every nonzero 

weak essential submodule of M is an 

essential submodule of M. 

Corollary (1.5): Every fully semiprime 

module is a fully essential* module. 

        Recall that a nonzero R-module M 

is called weak uniform if every nonzero 

R-submodule of M is a weak essential. 

A ring R is called weak uniform if R is a 

weak uniform R-module, [5]. 

Proposition (1.6): Let M be an R-

module, then M is uniform module if 

and only if M is weak uniform and fully 

essential* module. 

Proof: ⇒) It is obvious. 

⇐) Let (0) ≠ N ≤ M. Since M is a weak 

uniform module, then is a weak essential 

submodule of M. But M is a fully 

essential* module, therefore N is an 

essential submodule of M, and we are 

done. 

Corollary (1.7): Let M be a fully 

semiprime R-module, then a nonzero 

module M is a uniform if and if M is a 

weak uniform module. 

       The following theorem gives the 

hereditary of "fully essential* property" 

between the ring R and the module M 

which defined on R. 

Theorem (1.8): Let M be a nonzero 

finitely generated, faithful and 

multiplication R-module. Then M is a 

fully essential* module if and only if R 

is a fully essential* ring. 

Proof: ⇒) Assume that M is a fully 

essential* module, and let I be a nonzero 

weak essential ideal of R, then IM is a 

submodule of M say N. Since M is a 

finitely generated, faithful and 

multiplication module so by [5,Th 
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(3.6)], N is a weak essential submodule 

of M. Since I ≠ (0) and M is a faithful 

module, then N ≠ (0).  But M is a fully 

essential* module, therefore N is an 

essential submodule of M. Since M is a 

faithful and multiplication module, thus 

I is an essential ideal of R [10, Th 

(2.13)], that is R is a fully essential* 

ring. 

⇐) Suppose that R is a fully essential* 

ring and let (0) ≠ N ≤weak M. Since M is 

a multiplication module, then there 

exists a weak essential ideal I of R such 

that N = IM [5]. By assumption I is an 

essential ideal of R. But M is a finitely 

generated faithful and multiplication 

module, then N is an essential 

submodule of M [10, Th (2.13)], and we 

are done. 

       The following proposition deals 

with the direct sum of weak essential 

submodules. 

Proposition (1.9): Let M = M1  M2 be 

a fully semiprime R-module where M1 

and M2 are submodules of M, and let (0) 

≠ K1 ≤ M1 and (0) ≠ K2 ≤ M2. Then K1 

 K2 is a weak essential submodule of 

M1  M2 if and only if K1 is a weak 

essential submodule of M1 and K2 is a 

weak essential submodule of M2. 

Proof: ⇒) Since M is a fully semiprime 

module, then by Cor (1.4), K1  K2 is an 

essential submodule of M1  M2, and by 

[11], K1 is an essential submodule of M1 

and K2 is an essential submodule of M2. 

But every essential submodule is a weak 

essential, therefore K ≤weak M1. 

⇐) It follows similarly 

      In the following proposition we give 

another case for the direct sum of weak 

essential submodules. 

Proposition (1.10): Let M = M1  M2 

be an R-module where M1 and M2 are 

submodules of M, and let K1 ≤ M1 and 

K2 ≤ M2. If K1  K2 is a weak essential 

submodule of M1  M2, then K1 is a 

weak essential submodule of M1, 

provided that every semiprime 

submodule of M1 is a semiprime 

submodule of M. 

Proof: Let P1 is a semiprime submodule 

of M1 such that K1 ∩ P1 = (0). By using 

some properties in set theory, we can 

easily show that (K1  K2) ∩ P1 = (0). 

But K1  K2 ≤weak M and by assumption 

P1 is a semiprime submodule of M, Thus 

P1 = (0). 

Let us introduce the following 

definition. 

Definition (1.11): Let M be an R-

module and let N be a submodule of M. 

A semiprime submodule L of M is 

called weak-relative intersection 

complement of N in M, if whenever 

N∩P = (0), where P is a semiprime 

submodule of M, such that L  P, then 

L = P. In other words L is a maximal 

submodule with the property N∩L = (0). 

Remark (1.12): It is well known that 

every submodule of an R-module has a 

relative complement [1, P.17]. We 

verify by example that not every 

submodule has a weak-relative 

intersection complement, for example; 

the submodule ( ) of Z4-module Z4 

hasn't weak-relative intersection 

complement, since there exists only one 

submodule ( ) of Z4 such that ( ) ∩ ( ) 

= ( ), and ( ) is not semiprime 

submodule of Z4 as Z4, i.e. ( ) is not 

semiprime ideal of the ring Z4. In fact 

( ) is not the only nilpotent ideal in the 

ring Z4, so by [1, P.2], ( ) is not 

nilpotent ideal of Z4. 
        Muna in [5] showed by example 

that the intersection of two weak 

essential submodules need not be weak 

essential submodule, and she satisfied 

that under certain condition, see [5, Prop 

(1.6)]. In this work we give a different 

condition. 

Proposition (1.13): Let M be an R-

module and let N1 and N2 be a weak 

essential submodules of M such that N1 

∩ N2 ≠ (0) and all semiprime 

submodules of N1 are semiprime 
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submodules of M, then N1 ∩ N2 ≤weak 

M. 

Proof: Let P be a semiprime submodule 

of M such that (N1 ∩ N2) ∩ P = (0). This 

implies that N2 ∩ (N1∩ P) = (0). If N1 ≤ 

P, then we have a contradiction with the 

assumption, thus N1 ≰ P. By Lemma 

(1.4), N1 ∩ P is a semiprime submodule 

of N1. Since N2 ≤weak M and by our 

assumption N1 ∩ P is a semiprime 

submodule of M, we have N1 ∩ P = (0). 

But N1 ≤weak M, therefore P = (0), hence 

N1 ∩ N2 ≤weak M. 

Note: The condition "all semiprime 

submodules of N1 are semiprime 

submodules of M" in Prop (1.13), can 

also be applied for N2. 

Proposition (1.14): Let M be an R-

module and N1 and N2 are weak 

essential submodule of M such that N2 

∩ P is a semiprime submodules of M for 

all semiprime submodule P of M, then 

N1 ∩ N2 ≤weak M. 

Proof: Let P be a semiprime submodule 

of M such that (N1 ∩ N2) ∩ P = (0). This 

implies that N1 ∩ (N2 ∩ P) = (0). Since 

N2 ∩ P is a semiprime submodule of M 

and N1 ≤weak M, then N2 ∩ P = (0). But 

N2 ≤weak M, thus P = (0). 

          As a generalization of the result in 

[11, Prop (5.21), P.75], we give the 

following proposition. 

Proposition (1.15):  Let N be a nonzero 

R-module of M, and let N' be a nonzero 

semiprime submodule of M. If N' is a 

weak relative intersection complement 

of N in M, then 
      

  
 is a weak 

essential submodule of 
 

   . 

Proof: Let g: M → 
 

   be a natural 

epimorphism, and let N' be a weak 

relative complement of N in M. Let 
 

   

be a nonzero semiprime submodule of 
 

   such that 
      

  
 ∩ 

 

   = (0). By [7], g
-

1
( 

 

  
) is a semiprime submodule of M [5, 

P.216], put g
-1

( 
 

  ) = P for some 

semiprime submodule P of M, then g(P) 

= 
 

  
 . Thus  

      

  
 ∩ 

 

  
 = (0), this 

implies that 
(      )    

  
 = (0) hence (N 

N') ∩ K = N'. By modular law N ∩K  

N', that is N ∩ K  N' ∩ N. Since N' is a 

weak relative complement of N in M, 

then N' is the maximal submodule with 

the property N ∩ N' = (0). It follows that 

N ∩ K = (0), and by maximality of N' 

we get K = N', therefore 
 

   = (0). That is 

      

  
 is a weak essential submodule of 

 

  . 

We need the following definition which 

appeared in [12]. 

Definition (1.16): Let M be an R-

module and N ≤ M. If there exists a 

semiprime submodule of M containing 

N, then the intersection of all semiprime 

submodule of M containing N is called 

semi-radical of N, and it is denoted by 

S- rad N. If there is no semiprime 

submodule of M containing N, then we 

say that S- rad N = M, in particular S- 

rad M = M. 

Proposition (1.17):  Let M be an R-

module and let (0) ≠ N ≤ M. If N' is a 

weak relative complement of N in M, 

and N' ≤ S-rad(M), then N  N' ≤weak M. 

Proof: Consider the natural 

epimorphism π: M → 
 

  .  Since N' is a 

weak relative complement of N in M, so 

by Prop (1.15), 
      

  
  ≤weak 

 

  
 . But ker 

π = N' and N' ≤ S-red(M), then by 

[5,Prop (2.3)(2)], π
-1

 (
      

  
) ≤weak M. 

Hence N  N' ≤weak M. 

      Recall that an R-module M is called 

multiplication, if for each submodule N 

of M, there exists an ideal I of R such 

that N=IM [13]. 

Proposition (1.18): Let M be a faithful 

and multiplication module such that M 

satisfies the condition (*), and let I, J be 

ideals of R. If IM ≤weak JM, then I ≤weak 

J, where: 

Condition (*): For any two ideals L and 

K of R, if L is a semiprime ideal of K, 
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then LM is a semiprime submodule of 

KM. 

Proof: Let P be a semiprime ideal of J 

such that I ∩ P = (0), then IM ∩ PM = 

(0). .  Since M is a faithful and 

multiplication, therefore IM ∩ PM = (0) 

[10, Th (1.7)]. By condition (*), PM is a 

semiprime submodule of JM. But IM 

≤weak JM, then PM = (0). Since M is a 

faithful module so P = (0), thus I ≤weak J. 

Note that the condition (*) which 

mentioned in Prop (1.18) is not hold in 

general, as shown in the following 

example. 

Example (1.19): The Z4-module, Z4 is 

not satisfying the condition (*), since 

there exists a prime ideal I = { ,   } of 

the ring Z4, with IZ4 not prime 

submodule of Z4. In fact IM = 

{∑                          = ( ) is 

not prime submodule of Z4. 

      The converse of Prop (1.18) is true 

without using the condition (*), but we 

need to add another condition as the 

following proposition shows.  

Proposition (1.20): Let M be a finitely 

generated, faithful and multiplication R-

module. If I ≤weak J then IM ≤weak JM for 

every ideals I and J of R. 

Proof: Let P be a semiprime submodule 

of JM such that IM ∩ P = (0). Since M 

is a multiplication and faithful module, 

then P = EM for some semiprime ideal 

E of R [14, Prop (2.5), P.36]. So IM ∩ 

EM = (0), this implies that (I ∩ E) M = 

(0). Since M is a faithful module, then I 

∩ E = (0). On the other hand since EM 

≤ JM and M is a finitely generated, 

faithful and multiplication module so by 

[10, Th (3.1)] E ≤ J. But E is a 

semiprime ideal of R, then by Lemma 

(1.2), E is a semiprime ideal of J. Since I 

is a weak essential ideal of J, then E = 

(0), and hence P = (0). That is IM ≤weak 

JM. 

      From Prop (1.18) and Prop (1.20) 

we have the following theorem. 

Theorem (1.21): Let M be a finitely 

generated, faithful and multiplication 

module such that M satisfies the 

condition (*). Then I ≤weak J if and only 

if IM ≤weak JM for every two ideals I and 

J of R. 

      It is well known that If a ring R has 

only one maximal ideal I, then I is an                  

essential ideal of R if and only if I ≠ (0). 

In the following proposition we 

generalize one direction of this 

statement for essential (hence weak 

essential) submodules.                                       

Proposition (1.22): if M is a nonzero 

multiplication module with only one 

nonzero maximal submodule N, then N 

is an essential (hence weak essential) 

submodule. 

Proof: It is clear. 

Remark (1.22): In [8, Prop (1.6), P. 7], 

if an R-module M is finitely generated, 

then every proper submodule of M is 

contained in a maximal submodule of 

M. If we use this statement and replace 

the condition "nonzero multiplication 

module" in Prop (1.22) by the condition 

"finitely generated module", then we get 

the same result. 

2.Modules with ACC (DCC) on 

weak essential submodules  
         Recall that an R-module M called 

satisfies ACC (DCC), if each ascending 

(descending) condition of submodules 

of M is finite [2]. In this section we 

study this property on a special class of 

submodules which is the class of weak 

essential submodules. We study the 

hereditary property for this definition 

between M and it's submodules, and 

between M and the ring R which defined 

on it. We start by the following 

definition. 

Definition (2.1): An R-module M is 

called satisfied the ascending chain 

condition (ACC) on weak essential 

submodules if each ascending chain of 

weak essential submodules N1  N2    

...  Nn    ...is finite. And M is called 

satisfied descending chain condition 

(DCC) on weak essential submodules if 

each descending chain of weak essential 

submodules N1  N2     ...   Nn   

… is finite. 
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       The proof of the following remark 

is obvious so it is omitted. 

Remark (2.2): 

Let M be an R-module and let N be an 

R-submodule of M such that N  

Srad(M). If M satisfies ACC (DCC) on 

weak essential R-submodules, then M/N 

satisfies ACC(DCC) on weak essential 

submodules. 

 

Proposition (2.3): 

Let M be an R-module, then M satisfies 

ACC on weak essential submodules if 

each weak essential submodule of M is 

finitely generated. 

Proof: Let N1  N2  ...  Nn  ... be 

an ascending chain of weak essential 

submodules 

of M. Put ∑      = N. By Rem (2)(5), N 

is a weak essential R-submodule of M. 

By assumption N is finitely generated, 

therefore there exists a finite set  of the 

index I such that ∑     = N. Hence the 

chain is finite. Similarity for satisfying 

DCC on weak essential submodules. 

       The following theorem gives the 

hereditary property for the ACC (DCC) 

between R-module M and R itself. 

Theorem (2.4): Let M be a finitely 

generated faithful multiplication R-

module. Then M satisfies ACC (DCC) 

on weak essential R-submodules if and 

only if R satisfies ACC (DCC) on weak 

essential ideals. 

Proof: We will prove the hereditary 

property between R-module M and R, 

for satisfying ACC on weak essential 

submodules, and similarity for the case 

DCC. Let E1  E2  ...  En  ...be an 

ascending chain of weak essential ideals 

of R. Then E1M  E2M  ...  EnM  

...is an ascending chain of weak 

essential submodules of M [5]. Since M 

satisfies ACC on semi- essential 

submodules, then there exists a positive 

integer n such that EnM = En+1M = … 

But M is a finitely generated faithful 

multiplication R-module, then 

En=En+1=... [10]. Hence R satisfies 

ACC on weak essential ideals. 

Conversely; let N1  N2  ...  Nn  

...be an ascending chain of weak 

essential submodules of M. Since M is 

multiplication, then Ni = Ei M for some 

weak essential 

ideals Ei of R,for each i=1,2,3,...,n,... 

[5].Thus E1M  E2M  ...  EnM  ..., 

and since M is a finitely generated 

faithful multiplication R-module, then 

E1  E2  ... En  ... is an ascending 

chain of weak essential ideals of R [10]. 

But R satisfies ACC on weak essential 

ideals, thus there exists a positive 

integer n such that En=En+1=... .Hence 

EnM=  En+1M=... .Therefore M satisfies 

ACC on weak essential submodules. 

Theorem (3.5): Let M be a finitely 

generated faithful multiplication R-

module, then the following statements 

are equivalent. 

1. M satisfies ACC (DCC) on weak 

essential R-submodules. 

2. R satisfies ACC (DCC) on weak 

essential ideals. 

3. S=End(M) satisfies ACC (DCC) on 

weak essential ideals, where S is the 

endomorphism ring of homomorphism. 

4. M satisfies ACC (DCC) on weak 

essential R-submodules as an S-module. 

 

Proof: 

(1)  (2) By Th (2.4). 

(2)   (3) Since M is a finitely 

generated faithful multiplication R-

module, then R  S [14]. Thus R 

satisfies ACC (DCC) on weak essential 

ideals if and only if S satisfies ACC 

(DCC) on weak essential ideals. 

(3)   (4) By Th (2.4) and R  S. 

(1)   (4) By [15], R  S. Therefore M 

satisfies ACC (DCC) on weak essential 

submodules as an S-module. 

 

Reference: 
[1] Goodearl, K. R. 1972. Ring Theory, 

Marccl Dekker, New York. 

[2] Kasch, F. 1982. Modules and Rings. 

London: Academic Press. 



 Baghdad Science Journal  Vol.13(3)2016 
 

060 

[3] Saymeh, S. A. 1979. On Prime R-

Submodules, Univ. Ndc. Tucuma'n 

Rev. Ser. A29, 129-136. 

[4] Mijbass, A. S. and Abdullah, N. K. 

2009. Semi-Essential Submodules 

and Semi-Uniform Modules. J. of 

Kirkuk University-Scientific studies, 

4 (1): 48-58. 

[5] Ahmed, M. A. 2010. Weak Essential 

Submodules, Um-Salama Science 

Journal, 23 (3): 214-221. 

[6] Dauns, J. and McDonald, B.R. 1980. 

Prime Modules and One-Sided Ideals 

in The Ring Theory and Algebra ІІІ, 

Proceedings of the Third Oklahoma 

conference:301-344. 

[7] Athab, E. A. 1996. Prime and 

Semiprime Submodules, M. SC. 

Thesis, university of Baghdad. 

[8] Ahmed, M. A. and Dakheel, S. O.  

2015. S-Maximal Submodules, J. of 

Baghdad for Science, 12(1): 210-220. 

[9] Behboodi, M; Karamzadeh, O. A. S 

and Koohy. H. 2004. Modules Whose 

Certain Submodule are Prime, 

Vietnam J. of Mathematics, 32(3): 

303-317. 

[10] El-Bast, Z. A. and Smith, P. F. 

1988. Multiplication Modules, 

Comm. In Algebra, 16: 755-779. 

[11] Anderson, F. W. and Fuller, K. R. 

1992. Rings and Categories of 

Modules, Springer-Verlag, New 

York., Academic Press Inc. London. 

[12] Tavallaee, H. A. and Varmazyar, R. 

2008. Semi-Radical of Submodules 

in Modules, IUST International 

Journal of Engineering Science, 

19(1-2): 21-27. 

[13] Barnard, A. 1981. Multiplication 

Modules, J. Algebra, 71: 174-178. 

[14] Ahmed, A. A. 1992. On 

Submodules of Multiplication 

Modules, M.Sc. Thesis, Univ. of 

Baghdad. 

[15] Naoum, A. G. 1990. On The Ring 

of Endomorphism of Finitely 

Generated multiplication modules, 

Periodica Mathematica Hungarica, 

21(3): 249-255. 

 

  

 المقاسات الجزئية الجوهرية الضعيفة بعض النتائج عن

 

 أحمدمنى عباس 

 
 جايعت بغذاد، كهٍت انعهىو نهبُاث ،قسى انشٌاضٍاث 

 

 

 الخلاصة:
. هذفُا فً هزا انبحث هى Rيقاساً أحادٌاً اٌسش عهى   Mحهقت ابذانٍت راث عُصش يحاٌذ، ونٍكٍ R نتكٍ       

يٍ  Nانتقصً عٍ بعض انُتائج انجذٌذة  حىل انًقاساث انجزئٍت انجىهشٌت انضعٍفت. حٍث ٌقال نهًقاس انجزئً 

M شي ضعٍف، إرا كاٌ بأَه شبه جىهN ∩ P ≠ 0  نكم يقاس جزئً شبه أونً غٍش صفشيP  ٍيM تى .

إعطاء بعض انتعاسٌف انجذٌذة راث انعلاقت بهزا انًفهىو، كًا قذيُا أٌضاً عذد يٍ انقضاٌا وانخىاص انجذٌذة 

 )عهى حذ عهًُا( نهزا انُىع يٍ انًقاساث انجزئٍت.

 

انًقاساث انجزئٍت انجىهشٌت  انًقاساث انجزئٍت انجىهشٌت،، شبه الأونٍتانًقاساث انجزئٍت الكلمات المفتاحية: 

 انًقاساث انًُتظًت انضعٍفت، انًقاساث الأونٍت وانًقاساث انجىهشٌت انًتكايهت يٍ انًُط *. انضعٍفت،

 
 


