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Abstract

Throughout this paper R represents commutative ring with identity and M is a
unitary left R-module. The purpose of this paper is to investigate some new results
(up to our knowledge) on the concept of weak essential submodules which introduced
by Muna A. Ahmed, where a submodule N of an R-module M is called weak
essential, if N N P # (0) for each nonzero semiprime submodule P of M. In this paper we
rewrite this definition in another formula. Some new definitions are introduced and
various properties of weak essential submodules are considered.

Key words: Semiprime submodule, Essential submodules, Weak essential
submodules, Weak uniform modules, Fully semi-semiprime modules and Fully
essential* modules.

Introduction:

Let R be a commutative ring with (up to our knowledge) on the concept of
identity and let M be a unitary left R- weak essential submodules. Section 3, is
module. Assume that all R-modules devoted to the study ascending and
under  study contain  semiprime descending chain conditions on weak
submodules. It is well known that a  essential submodules.
submodule N of M is called essential, if Muna in [5] introduced the concept
whenever N N L = (0), then L = (0) for ~ of weak essential submodules as a
each nonzero submodule L of M [1] and  generalization of the class of essential
[2]. 1. A proper submodule P of M is  submodules. A proper submodule N of
called prime, if whenever rm e P for r M is called semiprime , if
eR and m eM, then eitherm e Porr < for each reR and xeM with r xeL, then
(P;M) [3]. A nonzero submodule N of M xeL [6]. Equivalently, if r* x e L, then
is called semi essential, if N N P # (0) for ~ rxeL [7]. And a submodule N of M is
each nonzero prime submodule P of M called weak essential, if N N L # (0), for
[4]. This paper consists of three sections; ~ each nonzero semiprime submodule L of
in section 1, we give some remarks and M. Muna saw in [5] that the class of
examples, and discuss the transitivity =~ weak essential submodules lies between
property of weak essential submodules. In the class of essential submodules and
section 2, we introduce some new results the class of semi essential submodules.
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In this work we give some new results
(up to our knowledge) about this class of
submodules.

Firstly we rewrite the definition of

weak essential submodules in another
formula. In fact we did not find any
reasonable reason to exclude the zero
submodule from this definition. We find
it may be useful in some cases instead of
the origin formula.
Definition (1): A submodule N of an R-
module M is called weak essential, if
whenever NNP = (0), then P = (0) for
every semiprime submodule P of M.

We see that in order to add other
results for weak essential submodules, it
must be necessary giving some other
simple remarks about this class of
submodules as well as the remarks
which were mentioned in [5].

Remarks (2):

1. When a submodule N of an R-
module M is nonzero in the Def (1),
then N is a weak-essential submodule if
N N P # (0) for each semiprime
submodule P of M, and this is the same
definition which is mentioned in [5].

2. Every module is a weak essential
submodule in itself.

3. In the concept of the essential
submodules, (0) is an essential
submodule of an R-module M if and
only if M = (0). But in the concept of
weak  essential  submodules this
statement is not satisfying. In fact (0)
<weak (0), but sometimes (0) may be
weak essential submodule in a nonzero
module, for example (0) is a weak
essential submodule of the Z-module,
Zs, and in other examples such as Z-
module Z, we note that (0) is not weak
essential submodule.

4. If (0) # M, and the only
semiprime submodule in M is zero, then
(0) SweakM-

5. The sum of two weak essential
submodules is also weak essential
submodule.

Proof (5): Let M be an R-module and
let L and K be two weak essential
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submodules of M. Note that L < L+K,
since L <weak M, so by [5, Rem(1.5)(2)],
LA+K <weak M.

6. Let M be an R-module, and let
N < M. Then for each R-module M' and
for each homomorphism f: M — M'
with ker f N N # (0), implies that N
Sweak M.

Proof (6): Let P be a nonzero semiprime

submodule of M, and let : M — % be

the natural epimorphism. By assumption
ker 1 N N # (0). But ker = P, then P N
N #(0), hence N <yeax M.

Proposition (3): Let f: M — M' be an
isomorphism. If N <yeax M, then f(N)
Sweak M.

Proof: Let P be a nonzero semiprime
submodule of M'. Since f is an
epimorphism, and ker f = (0) < P, then
£1(P) is a semiprime submodule of M
[7, P. 49 Prop (2.1)]. But N <peak M,
then N N 1(P) # (0), On the other hand
f is a monomorphism thus f(N) N P #
(0).

In the following proposition we
prove the transitive property for nonzero
submodules. Before that we need the
following Lemma which appeared in [7,
Prop (1.11), p.48].

Lemma (4): If P is a semiprime
submodule of C and B is a submodule of
an R-module C, such that B « P, then P
N B is a semiprime submodule in B.
Proposition (5): Let C be an R-
modules, and let A, B be submodules of
C such that (0) #A <B < C. If A <yeak B
and B <yeak C, then A <yea C.

Proof: Let P be a semiprime submodule
of C such that A N P = (0). Note that (0)
=ANP=(ANP)NB=AN(PNB).
But P is a semiprime submodule of C, so
we have two cases. If B <P then (0) = A
N (PN B)=ANB,hence AN B=(0),
but A < B, so A N B = A, which is
implies that A = (0). But this is a
contradiction with our assumption. Thus
B £« P, and by Lemma (4), P N B is a
semiprime submodule of B. But A <yeax
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B, therefore P N B = (0), and since B
<weak C, then P = (0), that is A <yeak C.
Remark (6): The condition A # (0) in
Prop (1.5) is necessary. In fact in the Z-
module Zg, (0) is a weak essential
submodule of {0,4 } and {0,4 } is a
weak essential submodule of Zg, but (0)
not weak essential in Zg.

The converse of Prop (5) is not true
in general, as the following example
shows.

Example (7): Consider the Z-module,
Z3s, the submodule (18) is a weak
essential submodule of Zz¢. But (ﬁ) is
not weak essential submodule of (2).

1.0ther results on weak

essential submodules

In this section we introduce other

properties of weak essential
submodules. We start by the following
definition which is analogue of that in
[8].
Definition (1.1): A nonzero R-module
is called fully essential*, if every
nonzero weak essential submodule of M
is an essential submodule of M.

It is clear that every fully essential*
module is a fully essential module, since
every weak essential submodule is a
semi-essential submodule [5].

Recall that an R-module M is called

fully semiprime, if every proper
submodule of M is a semiprime
submodule [9].

Before giving the following

proposition, we need to introduce the
following lemma.

Lemma (1.2): Let A and B be
submodules of an R-module M such that
A < B. If A is a semiprime submodule
of M, then A is a semiprime submodule
in B.

Proof: Itis clear.

Proposition (1.3): Let M be a fully
semiprime R-module, and let N < M.
Then N <yea L if and only if N <, L for
every submodule L of M.

Proof: =) Let L be a submodule of M
and let A be a submodule of L such that

601

N N A (0), since M is a fully
semiprime module then both of N and A
are semiprime submodules of M, and by
Lemma (1.2), N is a semiprime
submodule of L. But N is a weak
essential submodule of L, therefore A =
(0), that is N is an essential submodule
of L.

<) Itis clear.

Corollary (1.4): If M is a fully
semiprime module, then every nonzero
weak essential submodule of M is an
essential submodule of M.

Corollary (1.5): Every fully semiprime
module is a fully essential* module.

Recall that a nonzero R-module M
is called weak uniform if every nonzero
R-submodule of M is a weak essential.
Aring R is called weak uniform if R is a
weak uniform R-module, [5].
Proposition (1.6): Let M be an R-
module, then M is uniform module if
and only if M is weak uniform and fully
essential* module.

Proof: =) It is obvious.

<) Let (0) # N < M. Since M is a weak
uniform module, then is a weak essential
submodule of M. But M is a fully
essential* module, therefore N is an
essential submodule of M, and we are
done.

Corollary (1.7): Let M be a fully
semiprime R-module, then a nonzero
module M is a uniform if and if M is a
weak uniform module.

The following theorem gives the
hereditary of "fully essential* property"
between the ring R and the module M
which defined on R.

Theorem (1.8): Let M be a nonzero
finitely  generated, faithful  and
multiplication R-module. Then M is a
fully essential* module if and only if R
is a fully essential™ ring.

Proof: =) Assume that M is a fully
essential* module, and let | be a nonzero
weak essential ideal of R, then IM is a
submodule of M say N. Since M is a
finitely  generated, faithful and
multiplication module so by [5,Th
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(3.6)], N is a weak essential submodule
of M. Since | # (0) and M is a faithful
module, then N # (0). But M is a fully
essential* module, therefore N is an
essential submodule of M. Since M is a
faithful and multiplication module, thus
| is an essential ideal of R [10, Th
(2.13)], that is R is a fully essential*
ring.

<) Suppose that R is a fully essential*
ring and let (0) # N <yeak M. Since M is
a multiplication module, then there
exists a weak essential ideal I of R such
that N = IM [5]. By assumption | is an
essential ideal of R. But M is a finitely
generated faithful and multiplication
module, then N is an essential
submodule of M [10, Th (2.13)], and we
are done.

The following proposition deals
with the direct sum of weak essential
submodules.

Proposition (1.9): Let M = M; @ M, be
a fully semiprime R-module where M;
and M are submodules of M, and let (0)
# K; <M; and (0) # K; < M,. Then K;
@ K, is a weak essential submodule of
M; @ My if and only if K; is a weak
essential submodule of M; and K; is a
weak essential submodule of M.

Proof: =) Since M is a fully semiprime
module, then by Cor (1.4), K1 ® K3 is an
essential submodule of M; @ M, and by
[11], Ky is an essential submodule of My
and K is an essential submodule of M.
But every essential submodule is a weak
essential, therefore K <yeak M.

<) It follows similarly

In the following proposition we give
another case for the direct sum of weak
essential submodules.

Proposition (1.10): Let M = M; © M,
be an R-module where M; and M, are
submodules of M, and let K; < M; and
Ko <M. If K1 @ K3 is a weak essential
submodule of M; @ My, then Kj is a
weak essential submodule of My,
provided that every  semiprime
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submodule of M,
submodule of M.
Proof: Let Py is a semiprime submodule
of M; such that K; N Py = (0). By using
some properties in set theory, we can
easily show that (K; @ K;) N P; = (0).
But K; ©@ K, <weax M and by assumption
P1 is a semiprime submodule of M, Thus
P;= (0)
Let us
definition.
Definition (1.11): Let M be an R-
module and let N be a submodule of M.
A semiprime submodule L of M is
called weak-relative intersection
complement of N in M, if whenever
NNP = (0), where P is a semiprime
submodule of M, such that L < P, then
L = P. In other words L is a maximal
submodule with the property NNL = (0).
Remark (1.12): It is well known that
every submodule of an R-module has a
relative complement [1, P.17]. We
verify by example that not every
submodule has a  weak-relative
intersection complement, for example;
the submodule (2) of Z;-module Z,
hasn't weak-relative intersection
complement, since there exists only one

submodule (0) of Z4 such that (2) N (0)
= (0), and (0) is not semiprime
submodule of Z; as Z, i.e. (0) is not
semiprime ideal of the ring Z4. In fact
(0) is not the only nilpotent ideal in the
ring Zs, so by [1, P.2], (0) is not
nilpotent ideal of Z,.

Muna in [5] showed by example
that the intersection of two weak
essential submodules need not be weak
essential submodule, and she satisfied
that under certain condition, see [5, Prop
(1.6)]. In this work we give a different
condition.

Proposition (1.13): Let M be an R-
module and let N; and N, be a weak
essential submodules of M such that N
N Ny # (0) and all semiprime
submodules of N; are semiprime

IS a semiprime

introduce the following
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submodules of M, then N1 N Ny <yeax
M.
Proof: Let P be a semiprime submodule
of M such that (N1 N N2) N P =(0). This
implies that N, N (N1N P) = (0). If N; <
P, then we have a contradiction with the
assumption, thus N; £ P. By Lemma
(1.4), N1 N P is a semiprime submodule
of Nj. Since N, <yeak M and by our
assumption N; N P is a semiprime
submodule of M, we have N; N P = (0).
But N1 <weak M, therefore P = (0), hence
Nl N N2 <weak M.
Note: The condition "all semiprime
submodules of N; are semiprime
submodules of M™ in Prop (1.13), can
also be applied for No.
Proposition (1.14): Let M be an R-
module and N; and N, are weak
essential submodule of M such that N,
N P is a semiprime submodules of M for
all semiprime submodule P of M, then
Nl N N2 <weak M.
Proof: Let P be a semiprime submodule
of M such that (N; N N2) N P =(0). This
implies that N; N (N2 N P) = (0). Since
N2 N P is a semiprime submodule of M
and N; <weak M, then N, N P = (0). But
N2 <weak M, thus P = (0).

As a generalization of the result in
[11, Prop (5.21), P.75], we give the
following proposition.
Proposition (1.15): Let N be a nonzero
R-module of M, and let N' be a nonzero
semiprime submodule of M. If N' is a
weak relative intersection complement

of N in M, then N?\?N' is a weak
essential submodule of % :

Proof: Let g0 M — % be a natural
epimorphism, and let N' be a weak
relative complement of N in M. Let %
be a nonzero semiprime submodule of
S such that == 1 < = (0). By [7], ¢

(N,) IS a semiprime submodule of M [5,

P.216], put g (W) P for some
semiprime submodule P of M, then g(P)
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NEBNI

N = = (0), this

implies that = (0) hence (N®

N N K = N'. By modular law N NK <
N', thatis N N K = N' N N. Since N'is a
weak relative complement of N in M,
then N' is the maximal submodule with
the property N N N' = (0). It follows that
N N K = (0), and by maximality of N'
we get K = N', therefore 5 = (0). That is
NS@N
MN

_ K

=N Thus

(NEBN)nK
N/

" is a weak essentlal submodule of

o
We need the following definition which
appeared in [12].

Definition (1.16): Let M be an R-
module and N < M. If there exists a
semiprime submodule of M containing
N, then the intersection of all semiprime
submodule of M containing N is called
semi-radical of N, and it is denoted by
S- rad N. If there is no semiprime
submodule of M containing N, then we
say that S- rad N = M, in particular S-
rad M = M.

Proposition (1.17): Let M be an R-
module and let (0) # N < M. If N is a
weak relative complement of N in M,
and N' < S-rad(M), then N @ N' <yeak M.
Proof: Consider the natural

T Since N'is a
weak relative complement of N in M, so
by Prop (1.15), N@N' < But ker

_weak_
n = N' and N' S S- red(M) then by
[5,Prop (2.3)(2)], 7t (o

N/ ) Sweak M.
Hence N @ N' <yeak M.

Recall that an R-module M is called
multiplication, if for each submodule N
of M, there exists an ideal | of R such
that N=IM [13].

Proposition (1.18): Let M be a faithful
and multiplication module such that M
satisfies the condition (*), and let I, J be
ideals of R. If IM <yea JM, then I <yea
J, where:

Condition (*): For any two ideals L and
K of R, if L is a semiprime ideal of K,

epimorphism n: M —
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then LM is a semiprime submodule of
KM.

Proof: Let P be a semiprime ideal of J
such that I N P = (0), then IM N PM =
(0). . Since M is a faithful and
multiplication, therefore IM N PM = (0)
[10, Th (1.7)]. By condition (*), PM is a
semiprime submodule of JM. But IM
<weak JM, then PM = (0). Since M is a
faithful module so P = (0), thus I <yeak J.
Note that the condition (*) which
mentioned in Prop (1.18) is not hold in
general, as shown in the following
example.

Example (1.19): The Zs;-module, Z4 is
not satisfying the condition (*), since
there exists a prime ideal | = {0, 2 } of
the ring Z,, with 1Z, not prime
submodule of Z;. In fact IM
{Xaym;|a; elandm; €Z,} = (0) is
not prime submodule of Z,.

The converse of Prop (1.18) is true

without using the condition (*), but we
need to add another condition as the
following proposition shows.
Proposition (1.20): Let M be a finitely
generated, faithful and multiplication R-
module. If T <yeak J then IM <yeax JM for
every ideals | and J of R.
Proof: Let P be a semiprime submodule
of JM such that IM N P = (0). Since M
is a multiplication and faithful module,
then P = EM for some semiprime ideal
E of R [14, Prop (2.5), P.36]. So IM N
EM = (0), this implies that (I N E) M =
(0). Since M is a faithful module, then 1
N E = (0). On the other hand since EM
< JM and M is a finitely generated,
faithful and multiplication module so by
[10, Th (3.1)] E < J. But E is a
semiprime ideal of R, then by Lemma
(2.2), E is a semiprime ideal of J. Since |
is a weak essential ideal of J, then E =
(0), and hence P = (0). That is IM <yeax
JM.

From Prop (1.18) and Prop (1.20)
we have the following theorem.
Theorem (1.21): Let M be a finitely
generated, faithful and multiplication
module such that M satisfies the
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condition (*). Then I <y J if and only
if IM <yeax JM for every two ideals I and
Jof R.

It is well known that If a ring R has
only one maximal ideal I, then I is an
essential ideal of R if and only if I # (0).
In the following proposition we
generalize one direction of this
statement for essential (hence weak
essential) submodules.

Proposition (1.22): if M is a nonzero
multiplication module with only one
nonzero maximal submodule N, then N
is an essential (hence weak essential)
submodule.

Proof: Itis clear.

Remark (1.22): In [8, Prop (1.6), P. 7],
if an R-module M is finitely generated,
then every proper submodule of M is
contained in a maximal submodule of
M. If we use this statement and replace
the condition_"nonzero multiplication
module” in Prop (1.22) by the condition
"finitely generated module”, then we get
the same result.

2.Modules with ACC (DCC) on

weak essential submodules

Recall that an R-module M called
satisfies ACC (DCC), if each ascending
(descending) condition of submodules
of M is finite [2]. In this section we
study this property on a special class of
submodules which is the class of weak
essential submodules. We study the
hereditary property for this definition
between M and it's submodules, and
between M and the ring R which defined
on it. We start by the following
definition.
Definition (2.1): An R-module M is
called satisfied the ascending chain
condition (ACC) on weak essential
submodules if each ascending chain of
weak essential submodules Ny =« N2 <
.. Nn < ..is finite. And M is called
satisfied descending chain condition
(DCC) on weak essential submodules if
each descending chain of weak essential
submodules Ny > N2 o ..> Nn >
... 1s finite.
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The proof of the following remark
is obvious so it is omitted.
Remark (2.2):
Let M be an R-module and let N be an
R-submodule of M such that N <
Srad(M). If M satisfies ACC (DCC) on
weak essential R-submodules, then M/N
satisfies ACC(DCC) on weak essential
submodules.

Proposition (2.3):
Let M be an R-module, then M satisfies
ACC on weak essential submodules if
each weak essential submodule of M is
finitely generated.
Proof: Let Ny c N, = ... 2 N, < ... be
an ascending chain of weak essential
submodules
of M. Put ZieINi =N. By Rem (2)(5), N
is a weak essential R-submodule of M.
By assumption N is finitely generated,
therefore there exists a finite set o of the
index I such that }.,.; N; = N. Hence the
chain is finite. Similarity for satisfying
DCC on weak essential submodules.
The following theorem gives the
hereditary property for the ACC (DCC)
between R-module M and R itself.
Theorem (2.4): Let M be a finitely
generated faithful multiplication R-
module. Then M satisfies ACC (DCC)
on weak essential R-submodules if and
only if R satisfies ACC (DCC) on weak
essential ideals.
Proof: We will prove the hereditary
property between R-module M and R,
for satisfying ACC on weak essential
submodules, and similarity for the case
DCC. LetE;c Es < ... ¢ E, < ...be an
ascending chain of weak essential ideals
of R. ThenEIM c E M c ... c E\M ¢
..Is an ascending chain of weak
essential submodules of M [5]. Since M
satisfies ACC on semi- essential
submodules, then there exists a positive
integer n such that E;M = EpaqM = ...
But M is a finitely generated faithful
multiplication R-module, then
En=En+1=... [10]. Hence R satisfies
ACC on weak essential ideals.
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Conversely; let Ny c N, < ... € N, <
..be an ascending chain of weak
essential submodules of M. Since M is
multiplication, then Ni = E; M for some
weak essential

ideals E; of R,for each i=1,2,3,...,n,...
[5].ThusEMcEMc ... cEM c ...,
and since M is a finitely generated
faithful multiplication R-module, then
E; c E; < ... cE, < ... Is an ascending
chain of weak essential ideals of R [10].
But R satisfies ACC on weak essential
ideals, thus there exists a positive
integer n such that En=En+1=... .Hence
E.M= E,.M=... .Therefore M satisfies
ACC on weak essential submodules.
Theorem (3.5): Let M be a finitely
generated faithful multiplication R-
module, then the following statements
are equivalent.

1. M satisfies ACC (DCC) on weak
essential R-submodules.

2. R satisfies ACC (DCC) on weak
essential ideals.

3. S=End(M) satisfies ACC (DCC) on
weak essential ideals, where S is the
endomorphism ring of homomorphism.
4. M satisfies ACC (DCC) on weak
essential R-submodules as an S-module.

Proof:

(1)< (2) By Th (2.4).

(2) & (3) Since M is a finitely
generated faithful multiplication R-
module, then R S [14]. Thus R
satisfies ACC (DCC) on weak essential
ideals if and only if S satisfies ACC
(DCC) on weak essential ideals.

3)< (4)ByTh(2.4)andR =S.

(1) & (4) By [15], R = S. Therefore M
satisfies ACC (DCC) on weak essential
submodules as an S-module.

~
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