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Abstract:

The substantial key to initiate an explicit statistical formula for a physically
specified continua is to consider a derivative expression, in order to identify the
definitive configuration of the continua itself. Moreover, this statistical formula is to
reflect the whole distribution of the formula of which the considered continua is the
most likely to be dependent. However, a somewhat mathematically and physically
tedious path to arrive at the required statistical formula is needed.

The procedure in the present research is to establish, modify, and implement
an optimized amalgamation between Airy stress function for elastically-deformed
media and the multi-canonical joint probability density functions for multivariate
distribution completion, so that the developed distribution is to exhibit a sophisticated
illustration of yield probability distribution along a cantilever beam whose structure is
subjected to a linearly-distributed load. This combinatorial approach is to clarify the
intensity of the stresses exerted onto the beam, to standardize the terms of stresses and
their affection and to convert them into a more significant depiction of a probability
distribution.

Key words: Multivariate Joint Probability Density Functions, Multi-Canonical
Probability Functions, Airy Stress Function, Stress Analyses, Yield Probability
Functions.

Introduction:

What is an intriguing to illustrate further  clarify  the  conclusive
the sophisticated correlations between expressions of these engineering
statistical distributions and engineering applications.  Therefore, the vast
applications, which are widely spread in majority of the scientific, engineering
the present scientific  worldwide and technological applications have the
prosperity? Particularly, engineering appreciable trend to arrive at their final
theories and applications may be clearly expressions significantly tied to a

elucidated as soon as they are correlated probability distribution and/or
with  the corresponding  statistical hypothesis, which can further establish a
hypotheses, expectations, and/or comprehensible definition to these

probability distributions, which tend to applications. To particularly study the
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continua considered in the present
research, two-dimensional problems of
elasticity may be effectively solved by
the Airy stress function, or other stress
functions, in order to arrive at the
stresses’ formulae. These stresses may
be thereafter presented as a distribution
along one or more specified axes.
Afterwards, the stress distribution may
be converted into a one-variable or a
multivariate probability distribution, so
that it can further be developed into a
pellucid perspective to describe its
magnitudes. Generally, each physical
phenomenon is directly related to a
mathematical and/or statistical
interpretation with the fact of being
dependently solved by each other.

D. Yevick (2003) [1] exhibits
that it is convenient to evaluate the joint
probability density functions identically.
Afterwards, the joint probability density
functions can then be calculated
between the  polarization  mode
dissemination’s first and second orders
in optical fibers.

C. H. Kim (2010) [2]
demonstrates that the non-linear large-
deflection-state stress distribution’s Airy
stress function in a simply-supported
plate, with movable edges, can be
determined by the use of the
superposition technique of the Airy
stress functions for an isotropic
condition, with which the movable
edges’ boundary conditions and the state
of the large deformation are satisfied.

In the present research, a
combined method of Airy stress
function methodology, to evaluate the
stress field, and a developed multi-
canonical evaluation by the joint
probability  density  functions s
presented for a cantilever solid beam,
which is linearly loaded along its total
span. Charts for the stress field and the
yield probability distribution, for
multiple values of beam length and
breadth, is to be thereafter obtained in
order to recognize the points within
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which the yielding phenomenon is the
most likely to happen.

The Combinatorial Approach:

Before presenting the medium
considered  mathematically, it is
significant to count on assuming that the
loaded beam is isotropic, i.e. every point
within which has the same physical,
thermal and mechanical properties.
Furthermore, it is convenient to assume
that the developed stresses only emanate
in the xy-plane, so that there are no
rules to abide regarding to evaluate the
z-axis stresses and hence vyielding
probabilities, as well as the assumption
which is based on the fact that all the
developed stress field is emanated
elastically, in such a way the two-
dimensional Hooke’s law, compatibility,
and Airy stress function relation are
adequately applicable.

Referring to Fig. (1), the
isotropic cantilever beam, having a
length Land a breadth a, is linearly
loaded so that the point (0,a/2) is free
from the distributed load and the point
(L,a/2)is subjected to a distributed
load whose value is gL.

B4

Fig. (1) The Mathematical Model [3]

From the geometry of Fig. (1),
the boundary conditions can only be
represented in the following equation(s)
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Uxx(or iY) =0

ayy (0, J_r%) =0

Tyy (x, + %) = qx

Txy (x, + %)

a
f Txy(O'Y)dy =0
-a

The stress field relations can
only be written in terms of the Airy
stress function, being differentiated with
respect tox and/ory axes, as the
following formula shows [2]

GZCD/
= |
I | la20
|0yy| = /axz ...... (2)
) |
Ty 9] CD/axy

Also, the following bi-harmonic
equation must be satisfied in order to
establish the appropriate mathematical
and geometrical interpretation of the
cantilever beam
Vi =0..(3)

Assuming that the Airy stress
function is of the sixth order which
has 25 constants, this may be illustrated
in the following relation in terms of the
x and y variables
D = Ax? + Ayxy + Azy? + Aux3

+ Asx?y + Agxy?

+ A;y3 + Agx* + Agx3y
+ Ayox?y? + Ay xy?
o+ Aysy® L (4)

After mathematically combining
the equations (1), (2), (3)and (4) in
order to solve the constants which are
needed to arrive at the stress field, this
will lead into the following expression
for the stresses induced within the
cantilever beam [3]
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Now, it is appropriate to combine the
definition of the three yield probabilities
f(x,y) [1] [4], with which one can
determine whether the beam yields, with
the stresses in terms of the distributed
load intensityq (which equals to
0.001 MPa), the breadth a, the length
L, and the variables x and y, so that this

will lead to the following final
expression [5] [4].
frex(X,y) =

1

1/ w)?
3 1 exp [— E (—) ] *
(2m)20xx0yyTxy(1-12) /2 Oxx

() () -

1
exp l2(1—r2)

fyy(x' y) =

1

[ 1
exp |—

H(2)]

3
3 1
(21m)205x0yy Txy(1-12) /2

1 w 2 w 2
P [m—m (=) +() -
W2

2r ((ny)l ...... %)

fxy (x, y) = ,
1
(Zn)%oxxayyixy(l—rz)l/z exp [_ 2 (é) ] *
2 2
o[t () + () -
2
2r (Uy”yvrxy)l ...... (8)
Provided that,

(5)
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1—x X
(9
r:1/2<a+L@>(l_%>

in such a process that these vyield
probabilities satisfy the following
multivariate joint probability density
function basic condition

J.oofxx(x, y)dxdy = 1...(10)

Analyses of the Results:
It has been previously demonstrated that
the plane stress components, o,,, 0y,
and t,,, are explicitly related to their
corresponding yield probabilities f;, f5,
and f3, which represent f., fyy, and fy,
in the equations 6, 7, and 8 respectively,
so that the present combinatorial
analysis will importantly pose a new
illustrative approach to indicate how the
beam yielding process will be and which
point(s) will be the most likely to
undergo yielding.

The x-axis stresses a,, have
been demonstrated, referring to the
Figures (2), (5) and (8), that the points

(L, i%) have their maximum decreased

gradually as values of vy decrease
from i%to 0, and o, values are also

prone to a recognizable decay when
x values fall from L until they become
0 for all values of the length L and the
breadth a.  Furthermore, o,, values
noticeably augment when aand/or
L increase. Whereas the y-axis stresses
oyyare found at their maximal

magnitudes at (L%) for all values of

a and L. Also, a,,, values increase when
the values of x, y,a and/or L increase
as shown in Figures (3), (6), and (9).
On the other hand, the xy-plane shear
stresses T, have their maximums in the
point (x, 0), and their minimums in the
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point(s) (x,i—%) for all values of x,a

and L, the values of 7,, also increase
when x, a, and/or L increase as shown in
Figures (4), (7), and (10).

Now, the idea of combining the

stresses’  effects with the joint
probability  density  functions has
become, in many engineering and
statistical aspects, significantly

substantial so that it further furnishes
prestigiously illustrative methods to
investigate the percentages of the stress
effects statistically upon the solid beam
structure. To illustrate, the three yield
probabilities f;, f; and f; effects are to
be discussed in terms of the
variables x, y, a, and L, although the
fact that the percentages of the three
yield probabilities appear independent
of the values of both a and L. Firstly, it
is clear that about 53.5 percent the x-
axis yield probability f; according to
which the beam, for all the values of y,
will likely to yield at the linex =L,
while other lines x = 0,x = 0.2L, x =
0.4L,x = 0.6L and, x = 0.8L

exhibit 0, 0.5, 3.5, 12 and 30.5 percent
of f; respectively. Therefore, it appears
that the beam yield point starts from the
line x = L, and it will, depending on the

intensity and the nature of the
distributed load, continuously move
until arriving at the linex =0.

Secondly, about 33 percent is the y-axis
yield probability f, atx = L, at which
the beam will start yielding until it
reaches x = 0, with the possible plastic
deformation and collapse if the
distributed load increases. In addition,
the other lines of constant values of the
y-axisx =0,x = 0.2L, x = 0.4L, x =

0.6L and, as done, x =
0.8L exhibit 0, 7, 13, 20 and 27 percent
of f, respectively. Thirdly, the xy-plane
shear yield probability f5 is obviously
equal to 45 percent at the linex =L,
which tends towards yielding the beam
so that it helps the yielded zone keep
moving to the other points until the
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linex =0 is reached. Moreover, the

previously mentioned, the sum of each

other assumed linesx = 0.2L, x = probability for all values of x satisfy the
0.4L,x =0.6Land, so do other equation (10) [6]. Figures (11) to (19)
specified lines, x =0.8L exhibit illustrate the values, as percentages of
0,1,8,16and 30 percent of the xy-  stacked bars, of the yield
plane yield probability respectively. As probabilities f;, f, and f;.
£ x-axis stresses for a=5bmm and L=100mm
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Fig. (4) XY- Plane Shear Stress for a=bmm and L=100mm
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x-axis stresses for a=15mm and L=300mm
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Fig. (5) X-Axis Stresses for a=15mm and L=300mm

y-axis stresses for a=15mm and L=300mm
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Fig. (7) XY-Plane Shear Stresses for a=15mm and L=300mm
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x-axis stresses for a=25 mm and L=500mm
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Fig. (8) X-Axis Stresses for a=25 mm and L=500mm

y-axis stresses for a=25mm and L=500mm
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Fig. (10) XY-Plane Shear Stresses for a=25mm and L=500mm
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E: x-axis yield probability for a=5mm and L=100mm
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Fig. (11) X-Axis Yield Probability for a=5mm and L=100mm
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Fig. (13) XY-Plane Yield Probability for a=5mm and L=100mm
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x-axis yield probability for a=15mm and L=300mm
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Fig. (16) XY-Plane Yield Probability for a=15mm and L=300mm

622



Baghdad Science Journal Vol.13(3)2016

x-axis yield probability for a=25mm and L=500mm
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