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Abstract: 
The substantial key to initiate an explicit statistical formula for a physically 

specified continua is to consider a derivative expression, in order to identify the 

definitive configuration of the continua itself. Moreover, this statistical formula is to 

reflect the whole distribution of the formula of which the considered continua is the 

most likely to be dependent. However, a somewhat mathematically and physically 

tedious path to arrive at the required statistical formula is needed.  

The procedure in the present research is to establish, modify, and implement 

an optimized amalgamation between Airy stress function for elastically-deformed 

media and the multi-canonical joint probability density functions for multivariate 

distribution completion, so that the developed distribution is to exhibit a sophisticated 

illustration of yield probability distribution along a cantilever beam whose structure is 

subjected to a linearly-distributed load. This combinatorial approach is to clarify the 

intensity of the stresses exerted onto the beam, to standardize the terms of stresses and 

their affection and to convert them into a more significant depiction of a probability 

distribution. 

 

Key words: Multivariate Joint Probability Density Functions, Multi-Canonical 
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Introduction: 
What is an intriguing to illustrate 

the sophisticated correlations between 

statistical distributions and engineering 

applications, which are widely spread in 

the present scientific worldwide 

prosperity? Particularly, engineering 

theories and applications may be clearly 

elucidated as soon as they are correlated 

with the corresponding statistical 

hypotheses, expectations, and/or 

probability distributions, which tend to 

further clarify the conclusive 

expressions of these engineering 

applications. Therefore, the vast 

majority of the scientific, engineering 

and technological applications have the 

appreciable trend to arrive at their final 

expressions significantly tied to a 

probability distribution and/or 

hypothesis, which can further establish a 

comprehensible definition to these 

applications. To particularly study the 
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continua considered in the present 

research, two-dimensional problems of 

elasticity may be effectively solved by 

the Airy stress function, or other stress 

functions, in order to arrive at the 

stresses’ formulae. These stresses may 

be thereafter presented as a distribution 

along one or more specified axes. 

Afterwards, the stress distribution may 

be converted into a one-variable or a 

multivariate probability distribution, so 

that it can further be developed into a 

pellucid perspective to describe its 

magnitudes. Generally, each physical 

phenomenon is directly related to a 

mathematical and/or statistical 

interpretation with the fact of being 

dependently solved by each other. 

D. Yevick (2003) [1] exhibits 

that it is convenient to evaluate the joint 

probability density functions identically. 

Afterwards, the joint probability density 

functions can then be calculated 

between the polarization mode 

dissemination’s first and second orders 

in optical fibers. 

C. H. Kim (2010) [2] 

demonstrates that the non-linear large-

deflection-state stress distribution’s Airy 

stress function in a simply-supported 

plate, with movable edges, can be 

determined by the use of the 

superposition technique of the Airy 

stress functions for an isotropic 

condition, with which the movable 

edges’ boundary conditions and the state 

of the large deformation are satisfied. 

In the present research, a 

combined method of Airy stress 

function methodology, to evaluate the 

stress field, and a developed multi-

canonical evaluation by the joint 

probability density functions is 

presented for a cantilever solid beam, 

which is linearly loaded along its total 

span. Charts for the stress field and the 

yield probability distribution, for 

multiple values of beam length and 

breadth, is to be thereafter obtained in 

order to recognize the points within 

which the yielding phenomenon is the 

most likely to happen. 

 

The Combinatorial Approach: 
Before presenting the medium 

considered mathematically, it is 

significant to count on assuming that the 

loaded beam is isotropic, i.e. every point 

within which has the same physical, 

thermal and mechanical properties. 

Furthermore, it is convenient to assume 

that the developed stresses only emanate 

in the   -plane, so that there are no 

rules to abide regarding to evaluate the 

 -axis stresses and hence yielding 

probabilities, as well as the assumption 

which is based on the fact that all the 

developed stress field is emanated 

elastically, in such a way the two-

dimensional Hooke’s law, compatibility, 

and Airy stress function relation are 

adequately applicable. 

Referring to Fig.    , the 

isotropic cantilever beam, having a 

length   and a breadth  , is linearly 

loaded so that the point      ⁄   is free 

from the distributed load and the point 

     ⁄   is subjected to a distributed 

load whose value is   .  

 
Fig. (1) The Mathematical Model [3] 

 

From the geometry of Fig.    , 
the boundary conditions can only be 

represented in the following equation(s) 
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The stress field relations can 

only be written in terms of the Airy 

stress function, being differentiated with 

respect to   and/or   axes, as the 

following formula shows [2]  
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Also, the following bi-harmonic 

equation must be satisfied in order to 

establish the appropriate mathematical 

and geometrical interpretation of the 

cantilever beam 

          
Assuming that the Airy stress 

function is of the sixth order which 

has    constants, this may be illustrated 

in the following relation in terms of the 

   and   variables  

     
          

     
 

    
       

 

    
     

     
  

     
         

 

        
        

After mathematically combining 

the equations    ,    ,     and     in 

order to solve the constants which are 

needed to arrive at the stress field, this 

will lead into the following expression 

for the stresses induced within the 

cantilever beam [3] 
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Now, it is appropriate to combine the 

definition of the three yield probabilities 

       [1] [4], with which one can 

determine whether the beam yields, with 

the stresses in terms of the distributed 

load intensity   (which equals to 

       MPa), the breadth  , the length 

 , and the variables   and  , so that this 

will lead to the following final 

expression [5] [4]. 
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in such a process that these yield 

probabilities satisfy the following 

multivariate joint probability density 

function basic condition 

∫               
 

  

      

Analyses of the Results: 
It has been previously demonstrated that 

the plane stress components,    ,    , 

and    , are explicitly related to their 

corresponding yield probabilities   ,   , 

and   , which represent    ,    , and     

in the equations  ,  , and   respectively, 

so that the present combinatorial 

analysis will importantly pose a new 

illustrative approach to indicate how the 

beam yielding process will be and which 

point(s) will be the most likely to 

undergo yielding. 

The  -axis stresses     have 

been demonstrated, referring to the 

Figures    ,     and    , that the points 

(   
 

 
) have their maximum decreased 

gradually as values of   decrease 

from  
 

 
 to  , and     values are also 

prone to a recognizable decay when 

  values fall from   until they become 

  for all values of the length   and the 

breadth  . Furthermore,     values 

noticeably augment when   and/or 

  increase. Whereas the  -axis stresses 

    are found at their maximal 

magnitudes at (  
 

 
) for all values of 

  and  . Also,     values increase when 

the values of  ,  ,    and/or   increase 

as shown in Figures    ,    , and    . 
On the other hand, the   -plane shear 

stresses     have their maximums in the 

point      , and their minimums in the 

point(s)     
 

 
  for all values of  ,   

and  , the values of     also increase 

when  ,  , and/or L increase as shown in 

Figures    ,    , and     . 

Now, the idea of combining the 

stresses’ effects with the joint 

probability density functions has 

become, in many engineering and 

statistical aspects, significantly 

substantial so that it further furnishes 

prestigiously illustrative methods to 

investigate the percentages of the stress 

effects statistically upon the solid beam 

structure. To illustrate, the three yield 

probabilities   ,    and    effects are to 

be discussed in terms of the 

variables  ,  ,  ,  and  , although the 

fact that the percentages of the three 

yield probabilities appear independent 

of the values of both   and  . Firstly, it 

is clear that about      percent the x-

axis yield probability    according to 

which the beam, for all the values of  , 

will likely to yield at the line    , 

while other lines    ,       ,   
    ,        and,         

exhibit  ,    ,    ,    and      percent 

of    respectively. Therefore, it appears 

that the beam yield point starts from the 

line    , and it will, depending on the 

intensity and the nature of the 

distributed load, continuously move 

until arriving at the line    . 

Secondly, about    percent is the  -axis 

yield probability     at    , at which 

the beam will start yielding until it 

reaches    , with the possible plastic 

deformation and collapse if the 

distributed load increases. In addition, 

the other lines of constant values of the 

 -axis    ,       ,       ,   
     and, as done,    
     exhibit  ,  ,   ,    and    percent 

of    respectively. Thirdly, the   -plane 

shear yield probability    is obviously 

equal to    percent at the line    , 

which tends towards yielding the beam 

so that it helps the yielded zone keep 

moving to the other points until the 
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line     is reached. Moreover, the 

other assumed lines       ,   
    ,        and, so do other 

specified lines,         exhibit 

  ,  ,  ,    and    percent of the   -

plane yield probability respectively. As 

previously mentioned, the sum of each 

probability for all values of   satisfy the 

equation       [6]. Figures      to      

illustrate the values, as percentages of 

stacked bars, of the yield 

probabilities   ,    and   . 

 
Fig. (2) X-Axis Stresses for a=5mm and L=100mm 

  

 
Fig. (3) Y-Axis Stresses for a=5mm and L=100mm 

 

 
Fig. (4) XY- Plane Shear Stress for a=5mm and L=100mm   
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Fig. (5) X-Axis Stresses for a=15mm and L=300mm 

 

 
Fig. (6) Y-Axis Stresses for a=15mm and L=300mm 

 

 
Fig. (7) XY-Plane Shear Stresses for a=15mm and L=300mm 
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Fig. (8) X-Axis Stresses for a=25 mm and L=500mm 

 

 
Fig. (9) Y-Axis Stresses for a=25mm and L=500mm 

 

 
Fig. (10) XY-Plane Shear Stresses for a=25mm and L=500mm 
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Fig. (11) X-Axis Yield Probability for a=5mm and L=100mm 

 

 
Fig. (12) Y-axis Yield Probability for a=5mm and L=100mm  

 

 
Fig. (13) XY-Plane Yield Probability for a=5mm and L=100mm 
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Fig. (14) X-Axis Yield Probability for a=15mm and L=300mm 

 

 
Fig. (15) Y-Axis Yield Probability for a=15mm and L=300mm 

 

 
Fig. (16) XY-Plane Yield Probability for a=15mm and L=300mm 
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Fig. (17) X-Axis Yield Probability for a=25mm and L=500mm 

 

 
Fig. (18) Y-Axis Yield Probability for a=25mm and L=500mm 

 

 
Fig. (19) XY-Plane Yield Probability for a=25mm and L=500mm 
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يقح توفيقيح لحساب توزيع احتمالاخ الخضوع على طول عتثح مثثتح من جانة طر

 واحد محملح تصورج خطيح
 

 مثنى عثد الحسين علي**   رشا عثد الحسين علي*

 
 *كهٍت انتشبٍت انبذٍَت ٔعهٕو انشٌاضت، خايعت بغذاد

 بغذاد**لغى انُٓذعت انًٍكاٍَكٍت، خايعت 

 

 الخلاصح:
اٌ انًفتاذ اندْٕشي نتكٌٍٕ علالت ازصائٍت ٔاضست لأعاط يعهٕيت فٍضٌائٍا ْٕ اعتًاد صٍغ يشتمت نغشض 

يعشفت انتأعٍظ انُٓائً نٓزِ الأعاط. علأة عهى رنك عتعكظ ْزِ انعلالت الازصائٍت انتٕصٌع انكايم نهتعبٍش 

يًكُت. بانشغى يٍ ازتٍاج طشٌك شاق سٌاضٍا ٔفٍضٌائٍا نغشض انزي تعتًذ عهٍّ الأعاط انًزكٕسة بأكبش َغبت 

 انٕصٕل انى انتعبٍش الازصائً انًطهٕب.

طشٌمت انعًم نهبسث انسانً ْٕ نتأعٍظ، تعذٌم ٔ اعتكًال ديح بٍٍ دٔال الاخٓاد لأٌشي نلأعاط انًشْٕت 

نتٕصٌع انًتعذد فً انًتغٍشاث، بصٕسة يشَت ٔ دٔال الازتًالاث انًشتشكت الازصائٍت يتعذدة الاعظ لاكًال ا

ٔبطشٌمت يًكٍ فٍٓا اٌ ٌبٍٍ انتٕصٌع انًتكٌٕ تٕضٍر يتطٕس نتٕصٌع ازتًالاث انخضٕع عهى طٕل عتبت يثبتت 

يٍ طشف ٔازذ ٔانتً ٌتعشض ٍْكهٓا انى اخٓاد يٕصع بصٕسة خطٍت. اٌ ْزِ انطشٌمت انذيدٍت عتٕضر لٕة 

ط زذٔد الاخٓاداث ٔتأثٍشْا ٔ تسٌٕهٓا انى تٕضٍر اكثش اًٍْت عهى الاخٓاداث انًغهطت عهى انعتبت، نتٕزٍذ لٍا

  شكم تٕصٌع ازتًانٍت

 
دٔال انكثالت الازتًانٍت انًشتشكت يتعذدة انًتغٍشاث، دٔال الازتًالاث يتعذدة الاعظ، دانت  الكلماخ المفتاحيح:

 اخٓاد أٌشي، تسهٍلاث الاخٓاد، دٔال ازتًالاث انخضٕع

 
 


