π-Armendariz Rings and Related Concepts

Areej M. Abduldaim
Roaa M. Abidali
Branch of Mathematics and Computer Applications, Applied Sciences Department, University of Technology, Baghdad - Iraq.
E-mail: areej_mussab@yahoo.com

Received 16/ 11/2015
Accepted 5/ 4/2016
This work is licensed under a Creative Commons Attribution-NonCommercialNoDerivatives 4.0 International Licens

Abstract

: In this paper we investigated some new properties of π-Armendariz rings and studied the relationships between π-Armendariz rings and central Armendariz rings, nil-Armendariz rings, semicommutative rings, skew Armendariz rings, α-compatible rings and others. We proved that if R is a central Armendariz, then R is π-Armendariz ring. Also we explained how skew Armendariz rings can be π-Armendariz, for that we proved that if R is a skew Armendariz α-compatible ring, then R is π-Armendariz. Examples are given to illustrate the relations between concepts.

Key words: Armendariz ring, π-Armendariz ring, central Armendariz ring, α compatible ring, semicommutative ring.

Introduction:

Throughout this paper R is an associative ring with identity, unless otherwise stated.The polynomial ring with an indeterminate x over R is denoted by $R[x]$ in which elements are polynomials in x with coefficients in R. For a ring $R, P(R)$ is the prime radical (i.e., the intersection of all prime ideals of R), and $N(R)$ is the set of all nilpotent elements of R. Following Rege et. al. [1] a ring R is said to be Armendariz if whenever two polynomials $\quad f(x)=s_{0}+s_{1} x+\cdots+$ $s_{n} x^{n} \quad$ and $\quad g(x)=t_{0}+t_{1} x+\cdots+$ $t_{m} x^{m} \in R[x]$ satisfy $f(x) g(x)=0$, then $s_{i} t_{j}=0$ for all i, j. There are many relationships between the concept of Armendariz rings and many kinds of other rings or some generalizations of

Armendariz rings. Due to Agayev et. al. [2] a ring R is central Armendariz if whenever $f(x)=s_{0}+s_{1} x+\cdots+s_{n} x^{n}$ and $\quad g(x)=t_{0}+t_{1} x+\cdots+t_{m} x^{m} \in$ $R[x], \quad f(x) g(x)=0$ implies $s_{i} t_{j} \in$ $C(R)$ for each i and j. All commutative rings, reduced rings (a ring R is called a reduced ring if it has no nonzero nilpotent elements), Armendariz rings and subrings of central Armendariz rings are central Armendariz. In [2] proved that central Armendariz rings are abelian rings (The ring R is called abelian if every idempotent is central, that is, $a e=e a$ for any $e^{2}=e, a \in R$) and there exists an abelian ring but not central Armendariz. Therefore the class of central Armendariz rings lies strictly
between classes of Armendariz rings and abelian rings. Mohammadi et. al. in [3] introduced the concept of nilsemicommutative rings such that nilsemicommutative rings are 2-primal (nil-Armendariz, weak Armendariz respectively). Recall that a ring R is nilsemicommutative if $a, b \in N(R)$ satisfy $a b=0$ then $a r b=0$ for any $r \in R$, a ring R is 2-primal if $P(R)=N(R)$, also R is nil-Armendariz if whenever two polynomials $\quad f(x)=s_{0}+s_{1} x+\cdots+$ $s_{n} x^{n} \quad$ and $\quad g(x)=t_{0}+t_{1} x+\cdots+$ $t_{m} x^{m} \in R[x]$ such that $f(x) g(x) \in$ $N(R)[x]$ implies $s_{i} t_{j} \in N(R)$ for each i, j, and finally a ring R is weak Armendariz $f(x) g(x)=0 \quad$ implies $s_{i} t_{j} \in N(R)$ for every two polynomials $f(x)=s_{0}+s_{1} x+\cdots+s_{n} x^{n} \quad$ and $g(x)=t_{0}+t_{1} x+\cdots+t_{m} x^{m} \in R[x]$.
Abduldaim and Chen in [4] studied and investigated some properties and relationships between different generalizations of Armendariz rings and the concept of π-McCoy rings. The concept of π-McCoy rings introduced as a generalization of McCoy rings [5]. A ring $\quad R$ is called π-McCoy if $f(x) g(x) \in N(R[x])$ implies $r f(x) \in$ $N(R[x])$ for some nonzero $r \in R$, where $f(x)$ and $g(x)$ are nonzero polynomials in $R[x]$. Huh et. al. [6] introduced the notion of π-Armendariz rings. A ring R is called π-Armendariz if whenever $f(x)=s_{0}+s_{1} x+\cdots+$ $s_{n} x^{n} \quad$ and $\quad g(x)=t_{0}+t_{1} x+\cdots+$ $t_{m} x^{m} \in R[x], \quad f(x) g(x) \in N(R[x])$ implies that $s_{i} t_{j} \in N(R)$ for each i and j. It is clear that every Armendariz ring is π-Armendariz, but the converse may not be true in general. It was proved that 2-primal rings are π-Armendariz. But the converse need not be true. Also many properties of π-Armendariz rings were studied.
Motivated by all the above in this paper we have been studied and investigated many relationships between π Armendariz rings and other kinds of
rings like central Armendariz rings, nilArmendariz rings, semicommutative rings, skew Armendariz rings, α compatible rings (Moussavi [1], a ring R is α-compatible if for each $a, b \in R$ we have that $a b=0$ if and only if $a \alpha(b)=0$. Moreover, R is said to be δ-compatible if for each $a, b \in R$ we have that $a b=0$ implies that $a \delta(b)=$ 0 . If R is both α-compatible and δ compatible, we say that R is (α, δ) compatible), 2-primal, p.p.-rings (a ring R is called a left p. p.-ring if each principal left ideal of R is projective, or equivalently, if the left annihilator of each element of R is generated by an idempotent) and others. We proved that (1) For an endomorphism α of a ring R. If R is a skew Armendariz α-compatible ring, then R is π-Armendariz, (2) If R is a central Armendariz p. p-ring, then R is π-Armendariz ring, (3) If R is a 2 primal ring, then R is nil-Armendariz, (4) Every semicommutative ring is π Armendariz.
Finally, we mentioned that skew polynomial rings play an important role and have applications in several domains like coding theory, Galois representations theory in positive characteristic, cryptography, control theory, and solving ordinary differential equations.

1. Main Results

In this section we study some new properties of π-Armendariz rings and investigate the relationships between these rings and several known concepts like central Armendariz rings, nilArmendariz rings, skew Armendariz rings, 2-primal rings and others.
Proposition 1.1: If R is a central Armendariz p.p-ring, then R is π Armendariz ring.
Proof: Assume that R is a central Armendariz p.p-ring. To prove that R is π-Armendariz, suppose that $f(x) g(x) \in N(R[x])$ where $f(x)=$
$s_{0}+s_{1} x+\cdots+s_{m} x^{m}$ and $g(x)=t_{0}+$ $t_{1} x+\cdots+t_{n} x^{n} \in R[x]$. We claim that $s_{i} t_{j} \in N(R)$ for each i and j. Since R is a central Armendariz ring then

$$
\begin{gathered}
0=f(x) g(x) \\
=\left(\sum_{i=0}^{m} s_{i} x^{i}\right)\left(\sum_{j=0}^{n} t_{j} x^{j}\right) \\
=\left(s_{0}+s_{1} x+\cdots+s_{m} x^{m}\right)\left(t_{0}+t_{1} x\right. \\
\left.+\cdots+t_{n} x^{n}\right) \\
=s_{0}\left(t_{0}+t_{1} x+\cdots+t_{n} x^{n}\right) \\
+s_{1} x\left(t_{0}+t_{1} x+\cdots\right. \\
\left.+t_{n} x^{n}\right)+\cdots \cdots \\
=s_{0} t_{0}+s_{0} t_{1} x+\cdots+s_{0} t_{n} x^{n}+s_{1} x t_{0} \\
+s_{1} x t_{1} x+\cdots \\
+s_{1} x t_{n} x^{n}+\cdots \cdots \\
+s_{m} x^{m} t_{0} \\
=s_{0} t_{0}+\left(s_{0} t_{1}+s_{1} t_{0}\right) x \\
+\left(s_{0} t_{2}+s_{1} t_{1}+s_{2} t_{0}\right) x^{2} \\
+\cdots \cdots+s_{m} t_{n} x^{m+n}
\end{gathered}
$$

which implies that
$s_{0} t_{0}=0$
$s_{0} t_{1}+s_{1} t_{0}=0$
$s_{0} t_{2}+s_{1} t_{1}+s_{2} t_{0}=0$
!
Since R is central Armendariz, then R is an abelian ring [2, Proposition 2.1] and R is p.p.ring, hence there exist idempotent elements $e_{i} \in R$ such that $\operatorname{ann}\left(s_{i}\right)=e_{i} R$ for each i. Therefore $t_{0}=e_{0} t_{0}$ and $s_{0} e_{0}=0$. By multiplying equation (2) by e_{0} we get
$0=s_{0} t_{1} e_{0}+s_{1} t_{0} e_{0}=s_{0} e_{0} t_{1}+s_{1} t_{0} e_{0}$

$$
=s_{1} t_{0}
$$

Consequently, equation (2) gives $s_{0} t_{1}=0$ which implies that $t_{1}=e_{0} t_{1}$. In the same way we multiply equation (3) by e_{0} we have
$0=s_{0} t_{2} e_{0}+s_{1} t_{1} e_{0}+s_{2} t_{0} e_{0}$

$$
=s_{1} t_{1}+s_{2} t_{0}
$$

multiply the last equation by e_{1}, we have $0=s_{1} t_{1} e_{1}+s_{2} t_{0} e_{1}=s_{2} t_{0}$. Keep on doing the same multiplication process for all equations, we get $s_{i} t_{j}=0 \in N(R)$ for all i and j which means that R is π-Armrndariz.

Next we show that the converse of Proposition 1.1 is not true in general. The following example illustrates that π-Armendariz rings may not be central Armendariz rings.
Example 1.2: Let S be a reduced ring and let
$R_{4}=$
$\left\{\left.\left(\begin{array}{cccc}a & a_{12} & a_{13} & a_{14} \\ 0 & a & a_{23} & a_{24} \\ 0 & 0 & a & a_{34} \\ 0 & 0 & 0 & a\end{array}\right) \right\rvert\, a, a_{i j} \in S\right\}$.
R_{4} is π-Armendariz ring by [6, Theorem 2.4], but R_{4} is not central Armendariz ring for if $f(x), g(x) \in R_{4}[x]$ such that

$$
\begin{aligned}
& f(x)=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
&+\left(\begin{array}{cccc}
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) x
\end{aligned}
$$

And

$$
\begin{aligned}
g(x)= & \left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& +\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) x
\end{aligned}
$$

then

$$
\begin{aligned}
& f(x) g(x) \\
& =\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& +\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) x \\
& + \\
& +\left(\begin{array}{lllll}
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) x\left(\begin{array}{lllll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& +\left(\begin{array}{llll}
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) x\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) x
\end{aligned}
$$

$$
\begin{aligned}
&=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) x \\
&+\left(\begin{array}{lllc}
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) x \\
&+\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) x^{2} \\
&=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) x \\
&+\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) x^{2} \\
&= 0
\end{aligned}
$$

but

$$
\begin{aligned}
& a_{0} b_{1} \\
& =\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& b_{1} a_{0} \\
& =\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$a_{0} b_{1} \neq b_{1} a_{0}$ which means that neither $a_{0} b_{1} \notin C(R) \quad$ nor $\quad b_{1} a_{0} \notin C(R)$.
Therefore R_{4} is not central Armendariz.
Since reduced rings need not be p.p.rings [7], so that we have examples of Armendariz rings but not p. p.-rings.
Remark 1.3: Let R be a ring and M be an (R, R)-bimodule. Recall that the trivial extension of R by M is defined to be the set $T=T(R, M)$ of all pairs (r, m) where $r \in \operatorname{Rand} m \in M$, that is:

$$
\begin{aligned}
T=T(R, M)= & R \oplus M=\{(r, m) \mid r \\
& \in R, m \in M\}
\end{aligned}
$$

with addition defined componentwise as

$$
\begin{aligned}
& \left(r_{1}, m_{1}\right)+\left(r_{2}, m_{2}\right) \\
& \quad=\left(r_{1}+r_{2}, m_{1}+m_{2}\right)
\end{aligned}
$$

and multiplication defined according to the rule
$\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)=\left(r_{1} r_{2}, r_{1} m_{2}+m_{1} r_{2}\right)$
for all $r_{1}, r_{2} \in R$ and $m_{1}, m_{2} \in M$.
Clearly $T=T(R, M)$ forms a ring and it is commutative if and only if R is commutative.
Now we show that the condition "p.p.rings" in Proposition 1.1 is not unnecessary.
Example 1.4: The ring $R=T\left(\mathbb{Z}_{8}, \mathbb{Z}_{8}\right)$ is commutative, so that R is central Armendariz. But R is not p. p.-rings [2].
Next we give another condition such that central Armendariz rings implies π Armendariz rings.
Proposition 2.5: If R is a central Armendariz ring without zero divisor, then R is π-Armendariz ring.
Proof: Suppose that R is a central Armendariz ring without zero divisor. To prove that R is π-Armendariz, let $f(x) g(x) \in N(R[x]) \quad$ where $f(x)=s_{0}+s_{1} x+\cdots+s_{m} x^{m} \quad$ and $g(x)=t_{0}+t_{1} x+\cdots+t_{n} x^{n} \in R[x]$.
We claim that $s_{i} t_{j} \in N(R)$ for each i and j. Since R is a central Armendariz ring then

$$
\begin{gathered}
0=f(x) g(x) \\
=\left(\sum_{i=0}^{m} s_{i} x^{i}\right)\left(\sum_{j=0}^{n} t_{j} x^{j}\right) \\
=\left(s_{0}+s_{1} x+\cdots+s_{m} x^{m}\right)\left(t_{0}+t_{1} x\right. \\
\left.\quad+\cdots+t_{n} x^{n}\right) \\
=s_{0} t_{0}+\left(s_{0} t_{1}+s_{1} t_{0}\right) x \\
\quad+\left(s_{0} t_{2}+s_{1} t_{1}+s_{2} t_{0}\right) x^{2} \\
\quad+\cdots \\
\quad+\left(s_{0} t_{n}+s_{1} t_{n-1}+\cdots\right. \\
\left.+s_{m} t_{0}\right) x^{m}
\end{gathered}
$$

thus

$$
\begin{gather*}
s_{0} t_{0}=0 \\
s_{0} t_{1}+s_{1} t_{0}=0 \tag{2}\\
s_{0} t_{2}+s_{1} t_{1}+s_{2} t_{0}=0 \tag{3}\\
s_{0} t_{3}+s_{1} t_{2}+s_{2} t_{1}+s_{3} t_{0} \\
=0 \tag{4}
\end{gather*} \quad \cdots(2)
$$

$$
\begin{align*}
& s_{0} t_{4}+s_{1} t_{3}+s_{2} t_{2}+s_{3} t_{1}+s_{4} t_{0} \\
& =0 \tag{5}\\
& s_{0} t_{5}+s_{1} t_{4}+s_{2} t_{3}+s_{3} t_{2}+s_{4} t_{1}+s_{5} t_{0} \\
& =0 \tag{6}\\
& s_{0} t_{6}+s_{1} t_{5}+s_{2} t_{4}+s_{3} t_{3}+s_{4} t_{2}+s_{5} t_{1} \\
& +s_{6} t_{0} \\
& =0 \tag{7}\\
& s_{0} t_{7}+s_{1} t_{6}+s_{2} t_{5}+s_{3} t_{4}+s_{4} t_{4}+s_{5} t_{3} \\
& +s_{6} t_{2}+s_{7} t_{0} \\
& =0 \tag{8}\\
& s_{0} t_{8}+s_{1} t_{7}+s_{2} t_{6}+s_{3} t_{5}+s_{4} t_{4}+s_{5} t_{3} \\
& +s_{6} t_{2}+s_{7} t_{1}+s_{8} t_{0} \\
& =0 \quad \cdots(9) \\
& s_{0} t_{9}+s_{1} t_{8}+s_{2} t_{7}+s_{3} t_{6}+s_{4} t_{5}+s_{5} t_{4} \\
& +s_{6} t_{3}+s_{7} t_{2}+s_{8} t_{1} \\
& +s_{9} b_{0}=0 \tag{10}
\end{align*}
$$

Since the ring R without zero devisor, then equation (1) gives $s_{0}=0$ or $t_{0}=$ 0 . Take $s_{0}=0$, hence equation (2) gives $s_{0} t_{1}+s_{1} t_{0}=s_{1} t_{0}=0$. Again if $s_{1}=0$ or $t_{0}=0$, choose $s_{1}=0$ and equation (3) gives $s_{0} t_{2}+s_{1} t_{1}+s_{2} t_{0}=s_{2} t_{0}=$ 0 . By continuing apply the same steps we get $s_{i} t_{j}=0 \in N(R)$ for all i and j and therefore R is π-Armrndariz.
Corollary 1.6: Every central Armendariz domain is π-Armendariz ring. It is known that every 2-primal ring is nil-Armendariz [3], next we prove the same result using the relationship between π-Armrndariz rings and nil-Armendariz rings. First, we recall that every 2 -primal ring is π Armendariz [6], depending on this result we have the following:
Proposition 1.7: If R is a 2-primal ring, then R is nil-Armendariz.
Proof: Assume that R is a 2 -primal ring. To prove that R is nil-Armendariz, suppose that $f(x) g(x) \in N(R)[x]$ where $\quad f(x)=s_{0}+s_{1} x+\cdots+s_{m} x^{m}$ and $\quad g(x)=t_{0}+t_{1} x+\cdots+t_{n} x^{n} \in$ $R[x]$. We claim that $s_{i} t_{j} \in N(R)$ for each i and j. Since R is 2-primal, then $N(R[x])=N(R)[x] \quad[8$, Lemma 3.8] and R is π-Armendariz [6, Proposition 1.3]. \quad Hence $f(x) g(x) \in N(R[x])=$
$N(R)[x]$ implies $s_{i} t_{j} \in N(R)$. Therefore R is a nil-Armendariz ring.
Corollary 1.8: Let R be a is π Armendariz ring such that $N(R[x])=$ $N(R)[x]$, then R is nil-Armendariz.
Now we investigate the relationship of π-Armendariz rings with the concept semicommutative rings and some of its kinds. Recall that (1) a ring R is semicommutative if for any $a, b \in R$, $a b=0$ implies that $a R b=0$. (2) a ring R is central semicommutative if $s t=0$ implies that srt $\in C(R)$ for any $s, t, r \in R \quad$ [6].,(3) a ring R is nilsemicommutative if for every $a, b \in$ $N(R), a b=0$ implies $a R b=0$. Now since (1) every central semicommutative ring is 2 -primal, (2) Nilsemicommutative rings are 2-primal, (3) every semicommutative ring is central semicommutative [12], then we have the following:
Corollary 1.9: Every central semicommutative ring is π-Armendariz. Proof: Is immediate by [12, Proposition 1.3].

Corollary 1.10: Every Nilsemicommutative ring is π-Armendariz.
Proof: Is immediate by [12, Proposition 1.3].

Corollary 1.9: Every semicommutative ring is π-Armendariz.
Theorem 1.10: Let R be a ring with an endomorphism α. If R is a skew Armendariz α-compatible ring, then Ris π-Armendariz.
Proof: Suppose that R is a skew Armendariz α-compatible ring. To prove that R is a π-Armendariz ring. Let $f(x)=\sum_{i=0}^{m} s_{i} x^{i}$ and $g(x)=\sum_{j=0}^{n} t_{j} x^{j}$ in $R[x]$ such that $f(x) g(x) \in N(R[x])$. Then there exists a positive integer k such that $(f(x) g(x))^{k}=0$. Now we need to prove that if $f_{1}(x), f_{2}(x), \cdots, f_{n}(x) \in R[x ; \alpha, 0]$ such that $f_{1}(x) f_{2}(x) \cdots f_{n}(x)=0$, then $s_{1} s_{2} \cdots s_{n}=0$ where $s_{1}, s_{2}, \cdots, s_{n} \in R$. By using the induction on n, we get the following:

Case 1: Suppose the result is true when $n=1$.
Case 2: We show the result is true when $n=2$. Assume that $f_{1}(x)=\sum_{i=0}^{m} s_{i} x^{i}$ and $\quad f_{2}(x)=\sum_{j=0}^{n} t_{j} x^{j} \in R[x ; \alpha, 0]$ satisfy $f_{1}(x) f_{2}(x)=0$, we have to prove that $s_{i} t_{j}=0$ for each i, j.

$$
\begin{aligned}
& \quad 0=f_{1}(x) f_{2}(x) \\
& =\left(\sum_{i=0}^{m} s_{i} x^{i}\right)\left(\sum_{j=0}^{n} t_{j} x^{j}\right) \\
& =\left(s_{0}+s_{1} x+\cdots+s_{m} x^{m}\right)\left(t_{0}+t_{1} x\right. \\
& +\cdots+t_{n-1} x^{n-1} \\
& \\
& \left.\quad+t_{n} x^{n}\right)
\end{aligned}
$$

Since R is skew Armendariz, then $s_{0} t_{j}=0 \quad$ for $0 \leq j \leq n$, and so $s_{0} f_{g}^{h}\left(t_{j}\right)=0$ for every $0 \leq j \leq n$ and $0 \leq s \leq t$. Therefore

$$
\begin{gathered}
=\left(s_{1} x+s_{2} x^{2}+\cdots+s_{m} x^{m}\right)\left(t_{0}+t_{1} x\right. \\
\left.+\cdots+t_{n} x^{n}\right) \\
=\left(s_{1}+s_{2} x+\cdots+s_{m} x^{m-1}\right) x\left(t_{0}\right. \\
\left.+t_{1} x+\cdots+t_{n} x^{n}\right) \\
=\left(s_{1}+s_{2} x+\cdots+s_{m} x^{m}\right)\left(x\left(t_{0}\right)\right. \\
+x\left(t_{1}\right) x+\cdots \\
\left.+x\left(t_{n}\right) x^{n}\right) \\
=\left(s_{1}+s_{2} x+\cdots+s_{m} x^{m}\right) \\
\left(\begin{array}{c}
\left(\alpha\left(t_{0}\right) x+\delta\left(t_{0}\right)\right)+\binom{\alpha\left(t_{1}\right) x^{2}}{+\delta\left(t_{1}\right) x}+ \\
\left(\alpha\left(t_{2}\right) x^{3}+\delta\left(t_{2}\right) x^{2}\right)+\cdots+ \\
\left(\alpha\left(t_{n}\right) x^{n+1}+\delta\left(t_{n}\right) x^{n}\right) \\
\left(s_{1}+s_{2} x+\cdots+s_{m} x^{m-1}\right)
\end{array}\right) \\
\left(\begin{array}{c}
\delta\left(t_{0}\right)+\left(\alpha\left(t_{0}\right)+\delta\left(t_{1}\right)\right) x+ \\
\left(\alpha\left(t_{1}\right)+\delta\left(t_{2}\right)\right) x^{2}+\cdots+ \\
\left(\alpha\left(t_{n-1}\right)+\delta\left(t_{n}\right)\right) x^{n} \\
+\alpha\left(t_{n}\right) x^{n+1}
\end{array}\right)
\end{gathered}
$$

Since R is skew Armendariz we can apply the same steps as above to get $s_{1} \alpha\left(t_{n}\right)=0, s_{1}\left(\alpha\left(t_{k-1}\right)+\delta\left(t_{k}\right)\right)=0$ for $1 \leq k \leq n$, and $s_{1} \delta\left(t_{0}\right)=0$. Since R is (α, δ)-compatible, then $s_{1} \alpha\left(t_{n}\right)=$ 0 [9, Lemma 2.3(3)], hence $s_{1} t_{n}=0$. By using $s_{1}\left(\alpha\left(t_{n-1}\right)+\delta\left(t_{n}\right)\right)=0$ and $s_{1} \delta\left(t_{n}\right)=0$, we attain $s_{1} t_{n-1}=0$. By repeating this procedurewe achieve that $s_{1} t_{j}=0$ for every $0 \leq j \leq n$. Now suppose $i>2$ and

$$
\begin{gathered}
\left.\begin{array}{c}
0=\left(s_{i} x^{i}+s_{i+1} x^{i+1}+\cdots+s_{m} x^{m}\right)\left(t_{0}\right. \\
\left.+t_{1} x+\cdots+t_{n} x^{n}\right) \\
=\left(s_{i}+s_{i+1} x+\cdots+s_{m} x^{m-i}\right) x^{i}\left(t_{0}\right. \\
+ \\
=\left(t_{1} x+\cdots+t_{n} x^{n}\right) \\
\left(s_{i}+s_{i+1} x+\cdots+s_{m} x^{m-i}\right)\left(x^{i}\left(t_{0}\right)\right. \\
+x^{i}\left(t_{1}\right) x+\cdots \\
\left.+x^{i}\left(t_{n}\right) x^{n}\right) \\
=\left(s_{i}+s_{i+1} x+\cdots+s_{m} x^{m}\right)\left(f_{0}^{i}\left(t_{0}\right) x^{0}\right. \\
+\sum_{g+h=1} f_{g}^{i}\left(t_{h}\right) x+\cdots \\
+
\end{array} \sum_{g+h=n+i} f_{g}^{i}\left(t_{h}\right) x^{n+i}\right)
\end{gathered}
$$

Where $\quad 0 \leq s \leq i$ and $\quad 0 \leq t \leq n$. Because that Ris skew Armendariz, hence:

$$
s_{i}\left(\sum_{g+h=k} f_{g}^{i}\left(t_{h}\right)\right)=0, k=
$$

$$
0,1,2, \cdots, n+i
$$

In case that $g+h=n+i$, then $g=i$ and $h=n$ which implies that

$$
\begin{gathered}
s_{i}\left(\sum_{g+h=n+i} f_{g}^{i}\left(t_{h}\right)\right)=s_{i} f_{i}^{i}\left(t_{n}\right)= \\
s_{i} \alpha^{i}\left(t_{n}\right)=0 .
\end{gathered}
$$

But R is (α, δ)-compatible, thus $s_{i} t_{n}=0$ and so $s_{i} f_{g}^{h}\left(t_{n}\right)=0$ for each $0 \leq g \leq h$.
Now in case that $g+h=n+i-1$, then $g=i-1$ and $h=n$ so that

$$
\begin{aligned}
s_{i}\left(\sum_{g+h=n+i-1}\right. & \left.f_{g}^{i}\left(t_{h}\right)\right) \\
& =s_{i} f_{i-1}^{i}\left(t_{n}\right) \\
+ & s_{i} \alpha^{i}\left(t_{n-1}\right) \\
& =s_{i} \alpha^{i}\left(t_{n-1}\right)=0
\end{aligned}
$$

therefore we get $s_{i} t_{n-1}=0$.
Next let p be a positive integer such that for all $j<p, s_{i} t_{n-j}=0$, we have to prove that $s_{i} t_{n-p}=0$.
Let $g+h=n=i+p$ it is also true if we take $p \geq i$, so.

$$
\begin{gathered}
0=s_{i}\left(\sum_{g+h=n+i-p} f_{g}^{h}\left(t_{h}\right)\right) \\
=s_{i}\left(f_{i}^{i}\left(t_{n-p}\right)+f_{i-1}^{i}\left(t_{n-(p-1)}\right)+\cdots\right. \\
\left.\quad+f_{0}^{i}\left(t_{n-(p-i)}\right)\right) \\
=s_{i} \alpha^{i}\left(t_{n-p}\right)+s_{i} f_{i-1}^{i}\left(t_{n-(p-1)}\right) \\
\quad+\cdots \cdots+s_{i} f_{0}^{i}\left(t_{n-(p-1)}\right)
\end{gathered}
$$

By assumption we have $s_{i} t_{n-j}=0$ for each $0 \leq j \leq p$. Then $s_{i} f_{g}^{h}\left(t_{n-j}\right)=0$ for each $0 \leq j \leq p$ and $0 \leq g \leq h$. Therefore $s_{i} t_{j}=0$ for each $0 \leq j \leq n$.
By applying induction on i, we get $s_{i} t_{j}=0 \quad$ for each $0 \leq i \leq m$ and $0 \leq j \leq n$.
Case 3: Assume that $n>2$ and by considering $z(x)=f_{2}(x) f_{3}(x) \cdots f_{n}(x)$. Thus $f_{1}(x) z(x)=0$. Since R is a skew Armendariz ring then $s_{1} s_{z}=0$ where $s_{1} \in \operatorname{coef}\left(f\left(x_{1}\right)\right) \quad$ and $\quad s_{z} \in$ $\operatorname{coef}(z(x))$. This implies that for all $s_{1} \in \operatorname{coef}\left(f\left(x_{1}\right)\right), s_{1} f_{2}(x) \cdots f_{n}(x)=$ 0 , and by induction, since the coefficients of $s_{1} f_{2}(x)$ are of the form $s_{1} s_{2}$ where $s_{2} \in \operatorname{coef}\left(f_{2}(x)\right)$. Finally we get $s_{1} s_{2} \cdots s_{n}=0 \quad$ where $s_{1}, s_{2}, \cdots, s_{n} \in R$.
At last we have to prove that R is a π Armendariz ring. We have that $f(x) g(x) \in N(R[x]) \quad$ where $f(x)=$ $\sum_{i=0}^{m} s_{i} x^{i}$ and $g(x)=\sum_{j=0}^{n} t_{j} x^{j}$ in $R[x]$. Therefore there exists a positive integer k such that $(f(x) g(x))^{k}=0$. But since $s_{1} s_{2} \cdots s_{n}=0$, hence $s_{i} t_{j} \in N(R)$ for every $0 \leq i \leq m \quad$ and $\quad 0 \leq j \leq n$. Therefore R is a π-Armendariz ring.
In the following we give an example about a π-Armendariz ring but not skew Armendariz.
Example 1.11: Let R be a reduced ring and let
$R_{4}=$
$\left\{\left.\left(\begin{array}{cccc}a & a_{12} & a_{13} & a_{14} \\ 0 & a & a_{23} & a_{24} \\ 0 & 0 & a & a_{34} \\ 0 & 0 & 0 & a\end{array}\right) \right\rvert\, a, a_{i j} \in R\right\}$.
By [6, Theorem 2.4] and [6, Lemma1.1 (3)] R_{4} is a π-Armendariz ring, but R_{4} is not skew Armendariz by [10, Corollary 2.3] because R_{4} is not Armendariz by [11, Example 3].
Theorem 2.12: Let R be a ring with an endomorphism α. If R is an α Armendariz α-compatible ring, then R is π-Armendariz.

Proof: Let R be an α-Armendariz ring, then for any two polynomials $f(x)=$ $\sum_{i=0}^{m} s_{i} x^{i} \quad$ and $\quad g(x)=\sum_{j=0}^{n} t_{j} x^{j} \in$ $R[x ; \alpha]$ satisfies $f(x) g(x)=0$ implies that $s_{i} t_{j}=0$ for each i, j. Suppose that $f(x) g(x) \in N(R[x])$, we should prove that $s_{i} t_{j} \in N(R)$. Since R is $\alpha-$ Armendariz, then:-

$$
\begin{aligned}
& 0=f(x) g(x) \\
&=\left(\sum_{i=0}^{m}\right.\left.s_{i} x^{i}\right)\left(\sum_{j=0}^{n} t_{j} x^{j}\right) \\
&=\left(s_{0}+s_{1} x\right.\left.+s_{2} x^{2}+\cdots+s_{m} x^{m}\right)\left(t_{0}\right. \\
&+t_{1} x+t_{2} x^{2}+\cdots \\
&\left.+t_{n} x^{n}\right) \\
&=s_{0}\left(t_{0}+t_{1} x\right.\left.+t_{2} x^{2}+\cdots+t_{n} x^{n}\right) \\
&+s_{1} x\left(t_{0}+t_{1} x+t_{2} x^{2}\right. \\
&\left.+\cdots+t_{n} x^{n}\right) \\
&+s_{2} x^{2}\left(t_{0}+t_{1} x+t_{2} x^{2}\right. \\
&\left.+\cdots+t_{n} x^{n}\right)+\cdots \\
&+s_{m} x^{m}\left(t_{0}+t_{1} x+t_{2} x^{2}\right. \\
&\left.+\cdots+t_{n} x^{n}\right) \\
&=\left(s_{0} t_{0}+s_{0} t_{1} x\right.+s_{0} t_{2} x^{2}+\cdots \\
&\left.+s_{0} t_{n} x^{n}\right) \\
&+\left(s_{1} x t_{0}+s_{1} x t_{1} x\right. \\
&+s_{1} x t_{2} x^{2}+\cdots \\
&\left.+s_{1} x t_{n} x^{n}\right) \\
&+\left(s_{2} x^{2} t_{0}+s_{2} x^{2} t_{1} x\right. \\
&+s_{2} x^{2} t_{2} x^{2} \\
&\left.+\cdots s_{2} x^{2} t_{n} x^{n}\right)+\cdots \\
&+\left(s_{m} x^{m} t_{0}+s_{m} x^{m} t_{1} x\right. \\
&+s_{m} x^{m} t_{2} x^{2}+\cdots \\
&\left.+s_{m} x^{m} t_{n} x^{n}\right) \\
&=\left(s_{0} t_{0}+s_{0} t_{1} x\right.\left.+\cdots+s_{0} t_{n} x^{n}\right) \\
&+\left(s_{1} \alpha\left(t_{0}\right) x\right. \\
&+s_{1} \alpha\left(t_{1}\right) x^{2}+\cdots \\
&\left.+s_{1} \alpha\left(t_{n}\right) x^{n}\right) \\
&+\left(s_{2} \alpha^{2}\left(t_{0}\right) x^{2}\right. \\
&+s_{2} \alpha^{2}\left(t_{1}\right) x^{3}+\cdots \\
&\left.+s_{2} \alpha^{2}\left(t_{n}\right) x^{n}\right)+\cdots \\
&+\left(s_{m} \alpha^{m}\left(t_{0}\right) x^{m}\right. \\
&+s_{m} \alpha^{m}\left(t_{1}\right) x^{m+1}+\cdots \\
&\left.s_{m} \alpha_{n}\left(t_{n}\right) x^{m+n}\right) \\
& \\
&
\end{aligned}
$$

$$
\begin{align*}
&=s_{0} t_{0}+\left(s_{0} t_{1}\right.\left.+s_{1} \alpha\left(t_{0}\right)\right) x \\
&+\left(s_{0} t_{2}+s_{1} \alpha\left(b_{1}\right)\right. \\
&\left.+s_{2} \alpha^{2}\left(t_{0}\right)\right) x^{2} \\
&+\left(s_{0} t_{3}+s_{1} \alpha\left(t_{2}\right)\right. \\
&+s_{2} \alpha^{2}\left(t_{1}\right) \\
&\left.+s_{3} \alpha^{3}\left(t_{0}\right)\right) x^{3}+\cdots \\
&+s_{m} \alpha^{m}\left(b_{n}\right) x^{m+n} \\
& s_{0} t_{0}=0
\end{align*}
$$

From equation (0) we get $s_{0} t_{0}=0$, in the equation(1); $\quad s_{0} t_{1}+s_{1} \alpha\left(t_{0}\right)=0$ and so from definition of α-Armendariz we get $s_{1} \alpha\left(t_{0}\right)=0$ and by the condition of α-compatible, $s_{1} \alpha\left(t_{0}\right)=0$ if and only if $s_{1} t_{0}=0$ [9, Lemma 2.3 (1)]. Hence $s_{i} \alpha^{i}\left(t_{j}\right)=0$ if and only if $s_{i} t_{j}=0 \in N(R)$, therefore R is π Armendariz.
In the next example we show that R is a π-Armendariz ring, but it is not α compatible.
Example 1.13: Let S be areduced ring and let $S_{2}=U T M_{2}(S)$ be the ring of all 2 by 2 upper triangular matrices over S.

$$
S_{2}=\left\{\left.\left(\begin{array}{ll}
s & t \\
0 & S
\end{array}\right) \right\rvert\, s, t \in S\right\}
$$

S_{2} is a π-Armendariz ring by [6, Theorem 2.4], but S_{2} is not α compatable ring, for if, suppose $\alpha: S_{2} \rightarrow S_{2}$ be an endomorphism defined by

$$
\alpha\left(\left(\begin{array}{ll}
s & t \\
0 & s
\end{array}\right)\right)=\left(\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right) .
$$

Since

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \alpha\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)= \\
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=0
\end{gathered}
$$

but

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \neq 0 .
$$

Hence R is not (α, δ)-compatible.

References

[1] Rege, M. B. and Chhawchharia, S. 1997. Armendariz Rings. Proce. Japan Aca., Series A, Math. Scie. 73(1):14-17.
[2] Agayev, N.; Güngöroğlu, G.; A. H. and Halicioglu, S. 2011.central Armendariz rings. Bull. Malays. Math. Sci. Soc., 34 (1): 137-145.
[3] Mohammadi, R.; Moussavi, A. And Zahiri, M. 2012. On Nilsemicommutative Rings, J. of Algebra, 11: 20-37.
[4] Abduldaim, A. M. and Chen, S. 2013. α-Skew π-McCoy Rings, J. App. Math., Volume 2013, (Article ID 309392), 7 pages.
[5] Jeon, Y. C.; Kim, H. K.; Kim, N. K. et al. 2010. On a Generalization of the McCoy Condition. J. Korean Math. Soci. 47(6):1269-1282.
[6] Huh, C.; Lee, C. I.; Park, K. S. and Ryn, S. T. 2007.On π-Armendariz rings. Bull. Korean Math. Soc. 44(4): 641-649.
[7] Fraser, J. A. and Nicholson, W. K. 1989. Reduced p.p.-rings. Math. Japonica, 34(5): 715-725.
[8] Lunqun, O.; Jinwang L. and Yueming, X. 2013. Ore Extenstions of Skew π-Armendariz Rings, Bull. Iranian Math. Soci., 39(2): 355-368.
[9] Lunqun, O. and Jingwang, L. 2011. On Weak (α, δ) - compatible Rings, I. J. of Algebra, 5 (26): 12831296.
[10] Nasr-Isfahani, A. R. and Moussavi, A. 2008. Ore extension of skew Armendariz rings, Comm. Algebra, 36 (2): 508-522.
[11]Kim, N. K. and Lee Y. 2000. Armendariz Rings and Reduced Rings, J. Algebra, 223 (2): 477-488.
[12] Özen, T.; Agayev, N. and Harmanci, A. 2011. On a Class of Semicommutative Rings, Kyungpook Math. J. 51: 283-291.

حلقات ارمندرايز من النمط π والمفاهيم ذات العلاقة
 رؤى محسن عبد علي
 اريج مصعب عبد الدائم
 فرع الرياضيات وتطبيقات الحاسوب، قسم العلوم التطبيقية، الجامعة التكنووجية، بغداد، العراق.

الكلمات المفتاحية: حلقة ارمندرايز، حلقة ارمندرايز من النمط ٪، حلقة ارمندر ايز مركزية، حقة تو افقية على
التشاكل $\alpha ،$ حلقة شبه ابدالية.

