DOI: http://dx.doi.org/10.21123/bsj.2016.13.4.0793

Synthesis, Characterization, Antimicrobial and Theoretical Studies of V(IV),Fe(III),Co(II),Ni(II), Cu(II), and Zn(II)Complexes with Bidentate (NN) Donar Azo Dye Ligand

Rehab A. M. Al-Hassani

Department of Chemistry, College of Science, Al-Mustansiriya University, Baghdad, Iraq.

E-mail:rehabalhassani@yahoo.com

Received 20/12 /2015 Accepted 13/ 3/2016

@080

EXAMPLE T This work is licensed under a <u>Creative Commons Attribution-NonCommercial-</u> <u>NoDerivatives 4.0 International Licens</u>

Abstract:

The new 4-[(7-chloro-2,1,3-benzoxadiazole)azo]-4,5-diphenyl imidazole (L) have been synthesized and characterized by micro elemental and thermal analyses as well as ¹H.NMR, FT-IR, and UV-Vis spectroscopic techniques. (L) acts as a ligand coordinating with some metal ionsV(IV), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II). Structures of the new compounds were characterized by elemental and thermal analyses as well as FT-IR and UV-Vis Spectra. The magnetic properties and electrical conductivities of metal complexes were also determined. Study of the nature of the complexes formed in ethanol following the mole ratio method.. The work also include a theoretical treatment of the formed complexes in the gas phase, this was done using the (hyperchem-8) program for the molecular mechanics and semi-empirical calculations. The heat of formation ($\Delta H f^{\circ}$), binding energy ($\Delta E_{\rm b}$) and total energy (ΔE_T) for ligand and their metal complexes were calculated by (PM3) method at 298 K.The electrostatic potential of the ligand (L) was calculated to investigate the reactive sites of the molecules. PM3 were used to evaluate the vibrational and electronic spectra for the ligand (L) and their metal complexes then comparing with the experimental values. The antibacterial activity for the (L)and its metal complexes were studied against two types of pathogenic bacteria Pseudonomous aerugionosa as gram negative and Bacillus subtilis as gram positive. Furthermore, the antifungal activity against two fungi Candida albicans, and Aspergillus flavus was studied for (L) and its metal complexes.

Key words: Azo compounds, coordination compound of Azo, spectral data, antimicrobial activity, synthesis and crystal structure of Azo compounds.

Introduction:

Azo compounds are highly colored and very important class of

chemical which have been used as dyes and pigments for a long time, as well as they have been studied widely because of their excellent thermal and optical properties in applications [1,2]. A large number of (N,N⁾-donar ligands in azo imine family have been prepared in the last few years [3-6]. This azo imine family contains aryl azo pyridines [7], azoimidazoles [8], and aryl aryl azopyrimidines [9]. The coupling reaction of imidazole with aryl diazonium ion gives 2-(aryl azo) imidazole [9, 10]. Aryl azoimidazoles have attracted special attention because of the synthetic simplicity of the system biochemical and the ubiquity of imidazole [11]. This type of molecules has several advantages, one of the most important uses is as an analytical reagents [12, 13], and asstaining agents [14]. This class of azo compounds possess active (π -acidic) azo imine (-N=N-C=N-), function and efficient agents to stabilize low valent metal oxidation states [15, 16] due to the presence of azo-centered π^* -molecular orbital. For this reason a number of these azo compounds were synthesized and their abilities as chelating ligands [16-18] were investigated. The metal complexes of these azo compounds are also found to be acting as dyes which are light fast due to their stable nature [18]. In this work, we synthesized new azo dye ligand (L) in an attempt to introduce the azo (-N=N-) moiety in the structure of 2,1,3-benzoxadiazole ring to investigate the coordination behavior of the new (L) ligand towards some metal ions {V(IV), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II)}, which have been chosen to react with (L) and to compare the biological activity of (L) ligand and its metal complexes with the main ring structure.

Materials and Methods: Materials and Measurements:

All the used reagents and solvents had at least analytical grade, except of 4,5diphenyl imidazole was prepared as reported procedure [19]. The buffer solutions were prepared as described earlier [20]. Melting points were determined by open capillary tube method and were uncorrected by using a Stuart melting point (digital SMP 30) apparatus. The micro analytical data for (C.H.N) were obtained using EA-034 mth. ¹H.NMR measurement was taken (¹H.NMR 300 MH_z, using DMSO, PPM). The metal contents of the complexes were measured using Flame absorption technique using atomic Shimadzu AA-6300. FT-IR spectra were recorded on a Shimadzu 8000 FT-IR spectrophotometer in the (4000-400) cm⁻¹ range using KBr discs. Electronic spectra were obtained using Shimadzu 1700 UV spectrometer using chloroform as a solvent in the (800-200) nm range. Magnetic susceptibility measurements were obtained on the solid state applying Magnetic susceptibility Balance of Sherwood Scientific (England).Thermal analysis studies of the ligand and their metal complexes were performed on Perkin-Elmer pyris Diamond DTA/TG Thermal system under nitrogen atmosphere. Molar conductance of the prepared metal complexes was determined in (DMF) as a solvent using concentration of 10^{-3} M at 25°C using corning conductivity meter 220.

Preparation of Azo ligand (L): A. Preparation of 4-amino-7chloro-2,1,3-benzoxadiazole (AB):

4-nitro-7-chloro-2,1,3benzoxadiazole (400mg) was dissolved in a mixture of (8ml) of methanol and (2ml) of concentrated hydrochloric acid. After the addition of (400mg) of iron powder the reaction mixture was stirred for (30) mints, poured into (100ml) of (1M) NaOH solution and extracted with (100ml) of methylene chloride. The organic layer was dried with anhydrous (Na₂SO₄) and concentrated in vacuo. The residue was chromatographed on Silica gel (methylene chloride-hexane)to afford (180 mg) of amine as a yellow powder [21], Scheme (1).

B. Preparation of Azo ligand (E)-4[(7-chloro-2,1,3-benzoxadiazole)azo]-4,5-diphenyl imidazole (L):

Azo ligand (L) was prepared according to the following general procedure [22]: (1.695 gm, 0.01 mol) from (AB) was dissolved in a mixture of (10ml) hydrochloric acid and (20ml) distilled cold water and diazotized below 5°C with (0.80 gm, 0.011 mol) of sodium nitrite dissolved in (10ml) of distilled water. The resulting diazonium chloride solution was mixed with coupling agent 4.5-diphenyl imidazole (2.2)gm, 10mmol) dissolved in alcoholic NaOH solution (10%). After leaving it in the refrigerator for overnight, the solid was filtered off, washed with cold water, and crystallized from ethanol and dried over CaCl₂, Scheme 1. The analytical and physical data of the ligand and its metal complexes are listed in Table (1).

Preparation of AzoCmplexes:

The metal complexes (1-6) were prepared by mixing the ethanolic solution of the ligand (L) (0.01 mol) with the appropriate metal ion salt (0.01 mol) [VOSO₄.5H₂O, CoCl₂.6H₂O, NiCl₂.6H₂O, and ZnCl₂.2H₂O], while (0.02 mol) with (0.01 mol) of FeCl₃.9H₂O and CuCl₂.2H₂O. The pH of the reaction mixture was adjusted to ~ 8 and it was refluxed for (2-3hrs.) on a water bath. The obtained solution was temperature. The left at room precipitated complex was filtered. washed with ethanol and then recrystallized from ethanol-chloroform (1:3 V/V) and dried in vacuum. The yields of all complexes were almost quantitative and the proposed structure of these complexes is as predicted in Figure (1).

Antimicrobial Studies:

The synthesized ligand (L) and metal complexes were screened for their antimicrobial activity by well plate method in nutrient agar (antibacterial activity) and sabouraud dextrose agar (antifungal activity). The in Vitro antibacterial activity was carried out against 24hrs old cultures of pathogenic bacteria like **Pseudonomous** aerugionosa as gram negative and Bacillus Subtilis as gram positive at 37°C. Antifungal activity was carried out against 72hrs old cultures of fungal strains like Candida albicans and Aspergillus flavus. In order to ensure that solvent had no effect on bacteria or yeast growth, a control test was performed with only DMSO and found inactive in culture medium.

Scheme 1: Preparation of Azo Ligand (L)

Results and Discussion:

The analytical and physical properties of the (AB), (L), and metal complexes of (L), which are summarized in table (1), indicate [1:1] [Metal:Ligand] stoichiometry in case (1, 3, 4, and 6) complexes, whereas the molar ration are [1:2] for (2, and 5) complexes. The new (L) ligand was soluble in common organic solvents such as ethanol, aceton and methanol, whereas (1-6) of the new Azo colored crystalline solid complexes were soluble in CH_2Cl_2 , $CHCl_3$, DMF, and DMSO, they are thermally stable and unaffected by atmospheric oxygen and moisture. The elemental analysis data are in agreement with the proposed stoichiometry.

 Table 1: The Physical Properties of the Prepared Ligand (L) and its Metal

 Complexes¹H.NMR

Comp.	Color	Melting	Yield	Elemental	Anlysis F	ound (calc.)	Suggested Formula for		
No.	COIOI	Point °C	%	С	H	Ν	Μ	Compounds	
	Vallow	164 165	95	42.60	3.04	25.11		C H N OCI	
(AB)	Tellow	104-105	05	(42.48)	(2.36)	(24.78)	-	C6H4N3OCI	
(L)	Reddish	128 130	00	63.03	3.94	21.06		C H N OCI	
(L)	Brown	128-130	90	(62.69)	(3.73)	(20.89)	-	0211115146001	
(1)	Dark	215	77	44.68	3.04	15.13	9.11	IVO(C H N OCI)SO I	
(1)	Green	215	11	(44.61)	(2.66)	(14.87)	(9.02)		
(2)	Dark	238	70	52.51	2.98	18.01	9.98	IFe(C, H, N, OCI), CL ICI	
(2)	Brown	238	70	(52.18)	(3.11)	(17.39)	(10.35)	$[\Gamma_{21} H_{15} N_{6} OCI)_{2} CI_{2}]CI$	
(3)	Greenish	210	86	47.50	3.11	15.94	10.89	ICo(C, H, N, OCI)CL1	
(3)	Blue	219	80	(47.37)	(2.82)	(15.79)	(11.08)	$[CO(C_2]\Pi_1 3 N_6 OC1)C_2]$	
(4)	Green	218	80	47.31	2.69	15.83	11.16	[Ni(C.,H.,N.OCl)Cl.]	
(4)	Green	210	80	(47.39)	(2.82)	(15.79)	(11.04)		
(5)	Dark	242	83	54.13	3.25	16.99	6.82	ICu(C, H, N, OCI) CL1	
(3)	Brown	242	05	(53.69)	(3.19)	(17.89)	(6.77)		
(6)	White	200	0/	45.95	3.05	15.71	12.22	$[7n(C_1,H_1,N_1,OC_1)C_{1,1}]$	
(0)	white	209	24	(46.80)	(2.79)	(15.60)	(12.15)		

The synthesized ligand (L) has been by ¹H.NMR, FT-IR characterized spectroscopic techniques as well as elemental analysis. The ¹H.NMR spectral data of azo ligand in d⁶DMSO showed sharp single peak at (δ =13.2), $(\delta=3.8)$, and $(\delta=1.9)$, which are assigned to (NH), (-N-CH-N), and (-CH-Ph) respectively, due to protons of imidazole ring. The aromatic protons due to diphenyl at 4,5-position of imidazole ring have resonated in region (δ =6.9-6.4) (m, 5H*2,Ar-H) as a multiplet. On the other hand, the doublet at $(\delta = 7.3)$ -7.5) due to proton of benzo-2,1,3oxadiazole ring [23,24].

Infrared Spectra:

The IR spectra of the free ligand (L) and its metal complexes were carried out in 4000-400 cm⁻¹ range,(Table (2)). The strong and broad band 3360 cm⁻¹ in the spectrum of the ligand (L) may be attributed to the (ν NH) of imidazole

group. This band remains in the same position in free ligand and in complexation. Thus, the remaining of amine hydrogen group in act in solid complexes. indicating its noninvolvement in coordination of the ligand to the metal ions. The spectra of ligand (L) shows absorption band at 1615 cm⁻¹ due to $(\nu C=N)$ of (N3)imidazole nitrogen. It is observed with a little change in shape and shifted to lower frequencies (1600-1588) cm⁻¹ in the prepared complexes spectra. These differences suggest the linkage of metal ion with nitrogen heterocyclic ring as shown in table (2). The $(\upsilon N=N)$ stretching vibration appears at 1498 cm⁻¹ in the free ligand spectra, this band appear at 1485-1480 cm⁻¹ with decreased in intensity in the spectra of complexes[24]. On the basis of this evidence, it is concluded that (L) acts as bidentate ligand in all complexes. The complexes spectra exhibited new weak

bands at frequency range (489-510) and (400-408) cm⁻¹ assigned to stretching frequency of (ν M-N) and (M-Cl) respectively [24]. A strong band was observed at (980) cm⁻¹ due to (ν V=O)

stretching mode [25], furthermore, a band related to (SO_4) sulfate anion in complex (1) was observed at (1508) cm⁻¹, which indicated a bidentate behavior [25,26].

Table	e 2: The Ma	in Fre	quencies	of the (A	AB),liga	nd (L)an	d itsComplexes (1-6))
Comm								

No.	$v_{\rm NH2}$ (as, s)	$v_{\rm NH}$	$v_{\text{C=N}}$	$v_{ m N=N}$	$v_{ ext{M-N}}$	$v_{ ext{M-Cl}}$	Other
(AB)	3270 3238	-	1620	-	-	-	
(L)		3360	1615	1498	-	-	
(1)		3360	1600	1485	489	400	980 ($\boldsymbol{v}_{V=0}$), 1508 (SO ₄) anion coordination
(2)		3359	1592	1480	508	408	
(3)		3360	1589	1483	495	400	
(4)		3360	1600	1481	500	401	
(5)		3360	1588	1480	510	405	
(6)		3359	1596	1483	499	400	

Thermal analysis:

The results for thermo gravimetric analysis of (L) and it's metal complexes are given in Table (3). The thermo grams have been carried out in the range 25-900 C° at a heating rate of 20 C°/min in nitrogen atmosphere, they showed the following features:

1) There was an agreement in weight loss between results obtained from the thermal decomposition and calculated values, which supports the results of elemental analysis and confirms the suggested formulae.

2) The ligand (L) and all the studied complexes showed a common general behavior, in which the first pyrolysis step was the loss of diphenyl of 4,5-diphenyl imidazole substituted followed by the other part of the ligand except donor atom which were left with the metal atom depending on the type of metal ion.

3) The final step of the thermolysis reactions of the all complexes were found to give metal nitrogen as a final residue, which indicates the stability of such residues [27].

Table	3:	Thermal	analysis	by	(TG-
DTG)	for	(L) and its	s metal co	omp	lexes

Stable phase	Temp. range of decomposition C ^o	% weight loss Found (Calc.)
(L)	•	
-2CeHs	68-280	39.09 (38.26)
-CeH2N2OCI	280-388	38.55 (38.13)
-C ₂ H ₂ N ₂	388-438	17.02 (16.64)
- N2	438-500	6 99 (6 95)
Nothing	150 500	0177 (0175)
$1)[VO(L) SO_4]$		27.79 (27.23)
-2CcHs	66-288	27 58 (27 14)
- C ₄ H ₂ N ₂ OCl	288-395	17.02 (16.97)
-SQ4	395-479	16.99 (16.80)
- C ₃ H ₃ N ₄ VO	479-900	12.11 (11.83)
2)[Fe(L) ₂ Cl ₂]Cl		35.79 (35.50)
$-4C_{6}H_{5}+Cl$	68-368	32.58 (31.73)
-2C6H2N2OCl	368-415	7.62 (7.33)
-2Cl	395-483	16.99 (16.74)
-2C3H3N3FeN2	483-900	9.01 (8.66)
3)[Co(L) Cl ₂]		29.04 (28.92)
-2C ₆ H ₅	66-300	28.95 (28.83)
-C ₆ H ₂ N ₂ OCl	300-412	13.56 (13.33)
-2C1	412-593	15.86 (15.21)
- C ₃ H ₃ N ₃ CoN	593-900	13.93 (13.69)
4)[Ni(L) Cl ₂]		28.99 (28.93)
-2C ₆ H ₅	65-310	28.90 (28.84)
-C ₆ H ₂ N ₂ OC1	310-422	13.51 (13.34)
-2C1	422-598	15.43 (15.22)
- C ₃ H ₃ N ₃ NiN	598-900	13.82 (13.65)
$5)[Cu(L)_2Cl_2]$		32.92 (32.78)
-4C ₆ H ₅	65-388	33.08 (32.67)
-2C ₆ H ₂ N ₂ OCl	388-452	7.69 (7.55)
-2C1	452-510	17.79 (17.24)
$-2C_3H_3N_3CuN_2$	510-900	9.91 (9.74)
6)[Zn(L) Cl ₂]		28.76 (28.57)
-2C ₆ H ₅	67-300	28.63 (28.48)
-C ₆ H ₂ N ₂ OC1	300-452	13.91 (13.17)
-2C1	452-578	15.43 (15.03)
- C ₃ H ₃ N ₃ ZnN	578-900	13.89 (14.73)

Electronic absorption Spectra, Magnetic susceptibility and Conductivity measurements:

Table (4) gives the electronic spectra of the metal complexes were recorded for their solution in chloroform, in the range (200-1100) nm, and magnetic moments at room temperature as well as the molar conductance values of the complexes in (DMF).

The (**L**) ligand exhibit two bands around 34000 and 30000 cm⁻¹, these intense bands are due to $\pi \rightarrow \pi^*$ and $n \rightarrow \pi^*$ transitions respectively [24].

[1]:- The spectrum of VO(II) complex show two main absorption bands, which are assigned to the two transition ${}^{2}B_{2}$ $\rightarrow^2 E$ and $^2B_2 \rightarrow^2 B_1$ respectively in a square pyramidal geometry[28,29]. The magnetic moment (2.01B.M) is higher than spin value of the vanadium metal only, this result indicate a higher orbital contribution[30].Measurement in (DMF) showed that the complex was non-ionic. [2]:- This complex showed three bands related to octahedral iron complex[31]. They were observed at (11593,18666 and 26327) cm⁻¹ that refer to ${}^{6}A_{1}g \rightarrow {}^{4}$ $^{6}A_{1}g \rightarrow ^{4}T_{2}g$ T_1g (G), (G) and ${}^{6}A_{1}g \rightarrow {}^{4}A_{1}g + {}^{4}Eg$ (G) respectively [28,31]. The ligand field (10Dq,B⁻,Dq/ came and $B^{-}, 15B^{-}$ β) out to (10015,766,1.22,10325 and 0.40)respectively. The magnetic moment is (5.23B.M.) indicated a high spin octahedral complex [28,30]. Conductivity in (DMF) showed that the complex was ionic.

[**3**]:-The greenish-blue cobalt(II) complex gave a magnetic moment value of (4.53B.M), which indicates a highspin type complex[30]. Electronic chloroform spectrum in solvent exhibited a spitted band in the range of (17452-14184) cm⁻¹ [28,31,32]. These bands can be assigned to the transition ${}^{4}A_{2} \rightarrow {}^{4}T_{1}$ (P) (v₃). A broad band was observed at 3244cm⁻¹ in infrared spectrum can be assigned to the ${}^{4}A_{2} \rightarrow$ ${}^{4}T_{2}$ (F) (v₁), while the transition of (v₂) expected in the range (5000 - 6000) cm⁻ ¹can not be measured⁽³⁵⁾. The various ligand field parameters (10Dq, B^{-} and v_{2}) have been calculated by refer to Tanaba-Sugano diagram for (d') configuration [28,33], to be (3244, 720.8 and 5453)

respectively, as well as the calculation of the spin-orbit coupling constant (λ^{-}) was calculated .The resulting value (λ^{-} = -198.4) show the present complex to be distorted tetrahedral[32,33] . The nephelauxetic factor (β) was calculated and found to be (0.64) indicating high degree of covalence in bonding of ligand donor atoms with cobalt (II) ion [28,29] .The molar conductance showed that the complex was non ionic.

[4]:- The diamagnetic Ni(II) complex exhibit a medium intensity band at 16673cm⁻¹ and a high intensity band at 28810 cm⁻¹ corresponding to transitions from ${}^{1}A_{1g} \rightarrow {}^{1}A_{2g}$, ${}^{1}E_{g}$ and the high intensity of the latter band may be due to over lap of L \rightarrow Ni(II) charge transfer band respectively in square planar disposition[28,31,34,35]. Conductivity measurement in Table (4) showed that the complex was non electrolyte.

[5]:- The UV-Vis spectrum of Cu (II) complex in (CHCl₃) solution displays a broad band at 16130 cm⁻¹ , can be assigned to $^2E_{\rm g}\,\rightarrow\,^2T_{2g}$, transition and the other to a charge transfer band in distorted octahedral geometry [28, 29, 33, 36]. This is further supported by the magnetic susceptibility value (1.74B.M), which agree well with octahedral distorted structure[30,32,36].Conductivity in (DMF) solution, Table (4) showed that the complex was non ionic.

[6]:- The prepared complex is colorless in (CHCl₃) solution and diamagnetic which is expected for d^{10} ion, since the spectra of this complex show some shifting and change in the shape of the bands were compared with those of the free ligand (L). The UV-Vis. spectrum of Zn(II) complex in (CHCl₃) solution show some transition found in the region (200- 443 nm), can be assigned as intra ligand transition [28,31-34]. Conductivity showed that the complex was non electrolyte.

Comp. No.	Bands cm ⁻¹	Assignment	10Dq	cond. μs. Cm ⁻¹	µeff. B.M	Suggested structure
[1]	11229	$^{2}B_{2} \rightarrow ^{2}E$				Square
[1]	23988	$^{2}B_{2} \rightarrow ^{2}A_{1}$	-	17.68	2.01	Pyramidal
	11593	${}^{6}A_{1}g \rightarrow {}^{4}T_{1}g(G)$				
[2]	18666	${}^{6}A_{1}g \rightarrow {}^{4}T_{2}g (G)$	10015	82	5.23	Octahedral
	26327	${}^{6}A_{1}g \rightarrow {}^{4}A_{1}g + {}^{4}Eg(G)$				
	3244	${}^{4}A_{2} \rightarrow {}^{4}T_{2} (F)$				
[3]	5453 (cal)	4 A ₂ \rightarrow 4 T ₁ (F)	3244	18.21	4.53	Tetrahedral
	15733(av.)	${}^{4}A_{2} \rightarrow {}^{4}T_{1} (P)$				
[4]	16673	$^{1}A_{1}g \rightarrow ^{1}A_{2}g$, ^{1}Eg		17.06	0.0	Square
[4]	28810	$L \rightarrow Ni(II) (C.T)$	-	17.90	0.0	planar
[5]	16130	$^{2}\text{Eg} \rightarrow ^{2}\text{T}_{2}\text{g}$				
[5]	30894	$L \rightarrow Cu(II) (C.T)$	-	14.03	1.74	Octahedral
[6]	20989,27854	$Zn(II) \rightarrow L(C,T)$	-	18.72	0.0	Tetrahedral
[0]	29200			10172	0.0	ronanourai

Table 4: Electronic spectra (CHCl₃), Magnetic moment (B.M) and Conductance in (DMF) for metal complexes

Biological Studies:

The new synthetic compounds were screened in vitro for their ability to inhibit the growth of representative Pseudonomous aerugionosa as gram negative and Bacillus Subtilis as gram positive]. Also the study was done Candida albicans against and Aspergillus flavus fungus, in DMSO as a solvent at two different concentrations. The results showed that the (AB) compound is moderate activity against the studied bacteria and fungus as compared with their Azo Dye ligand (L) against the same microorganisms and identical experimental under the conditions. difference Table(5),this

attributed to effect of introducing the pharmacologically important Azo moiety in the structure of the prepared free ligand. The complexes were found to be more toxic than the corresponding parent ligand (L) against all the types of the microorganisms table(5), this was attributed to the synergetic effect between the metal ion and the ligand [37]. Furthermore the results in Table(5), indicate that some of the new compounds exhibited antibacterial activity against the studied bacteria at lower concentration, while they don't activity higher show such at concentration [37-39].

Table 5: Antibacterial and antifungal activities for (AB), free ligand [L] and theirMetal Complexes $(\mu gm.ml^{-1})$

Commo	Pseudo aerug	nomous cionosa	Bacillus	Subtilis	is Candida albicans		Aspergillus flavus	
Compo.	100	200	100	200	100	200	100	200
	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт
Control (DMSO)	-	-	-	-	-	-	-	-
[AB]	6	4	8	6	12	8	10	10
[L]	10	6	12	10	12	8	10	10
[1]	11	23	15	20	10	12	8	10
[2]	13	16	18	14	12	16	18	14
[3]	12	10	20	12	14	23	18	18
[4]	14	14	10	17	10	16	10	12
[5]	11	23	15	20	10	12	8	10
[6]	25	12	10	13	12	18	8	16
Where :[6-8: (+),8-10: (++), >10: (+++)]				30-4	0: (+++) , 20-30	:(++++), 10-2	0: (+++++)	

General Proposed Stereo Chemistry Structure of Complexes:

According to the results obtained from the elemental analysis, spectral studies,

magnetic and conductivity measurements, the general structure of the above mentioned complexes can be illustrated as follows, Fig.(1):

Fig. 1: Suggested structures of complexes of Azoligand

Theoretical Studies of (L) ligand and their metal complexes:

a) Electrostatic potential (E.P)

Electron distribution governs the electrostatic potential of the molecules and describes the interaction of energy of the molecular system with a positive point charge, so it is useful for finding sites of reaction in a molecule positive charged species tend to attack a molecule where the electrostatic is strongly negative electrophilic attack [28,40,41]. (E.P) of free ligand (L) was calculated and plotted as 2D contour to investigate the reactive sites of the molecules, fig. (2), and one can interpret the stereochemistry as well as rates of many reactions involving "soft" electrophiles and nucleophiles in terms of the properties of frontier orbital (HOMO and LUMO). The results of calculation showed that the LUMO of transition metal ion prefer to react with the HOMO of azo nitrogenr (N=N) and (C=N) of imidazole nitrogen ring.

Fig .2: Electrostatic Potential (HOMO and LUMO) as (2D) contours for (L) ligand

b) Optimized geometries and energies:

The program hyperchem-8 was used for the semi-empirical and molecular mechanic calculations in gas phase to estimate the binding energy (ΔEb), heat of formation (ΔHf°) and total energy (ΔE_T) for the ligand (L) and their metal complexes (1–6), were calculated by (PM3) method at 298 K, and at a value of geometry optimization constant (0.01 Kcal/mol) as tabulated inTable (6).

Table 6: Conformation energetic valuesfor ligand and its metal complexes

Symb.	ΔH_{f}°	ΔE_b	ΔE_T
L	168.38	- 8003.39	- 5161.31
[1]	- 92.42	- 5537.21	- 4589.28
[2]	- 188.69	- 4428.07	- 5001.56
[3]	- 52.99	- 7273.11	- 5538.43
[4]	- 79.72	- 6954.82	- 3897.37
[5]	- 200.78	- 6522.14	- 6073.60
[6]	- 49.29	- 9103.09	- 5804.90

c)Optimized vibrational spectra for (L) and its metal complexes :

The theoretical calculations of the frequencies of vN=N, vC=N, and vN-Hfor free ligand (L), and (1-6)complexes as well as vM-N,andvM-Cl have been calculated, (Table (8)). The theoretically calculated wave numbers for all compounds showed some deviations from the experimental values. These deviations are generally acceptable in calculations[41-44]. theoretical The results obtained for the theoretical calculations of the frequencies for (L) and metal complexes, agreed well with those obtained for the experimental values.

Symb.	υNH	vC=N	υN=N	υM-N	υM-Cl
	3360*	1615*	1498*		
(L)	3344**	1620**	1490**	-	-
	[0.48]***	[0.31]***	[0.34]***		
	3360*	1600*	1485*	489*	
[1]	3356**	1610**	1480**	488**	-
	[0.12]***	[0.62]***	[0.34]***	[0.20]***	
	3359*	1592*	1480*	508*	408*
[2]	3355**	1585**	1488**	504**	388**
	[0.12]***	[0.44]***	[0.27]***	[0.79]***	[1.729]***
	3360*	1589*	1483*	495*	400*
[3]	3357**	1580**	1475**	493**	392**
	[0.09]***	[0.57]***	[0.54]***	[0.41]***	[0.93]***
	3360*	1600*	1481*	500*	401*
[4]	3357**	1611**	1478**	502**	390**
	[0.09]***	[0.68]***	[0.20]***	[0.39]***	[0.86]***
	3360*	1588*	1480*	510*	405*
[5]	3357**	1590**	1478**	504**	403**
	[0.09]***	[0.13]***	[0.14]***	[1.12]***	[0.49]***
	3359*	1596*	1483*	499*	510*
[6]	3355**	1600**	1480**	497**	512**
	[0.12]***	[0.25]***	[0.20]***	[0.40]***	[0.39]***

Table 8: Comparison between the experimental and theoreticalvibrational frequencies for (L) ligand and complexes (cm⁻¹)

Where:

* Theoretical frequency, ** Experimental frequency, *** Error % due to main difference in the experimental measurements and theoretical treatment of vibration spectrum.

d) Theoretical electronic spectra for the (L) and its metal complexes:

The electronic spectra of the free ligand (L) and its metal complexes have been calculated and the wave number for these compounds showed some deviations from the experimental values as shown in Table (9). These deviations in theoretical calculation are generally acceptable due to couplings between the electronic spectra modes and the approximation that each normal mode of electronic spectra inter the acts independently electronic spectra beam most [41,43,44]. The diagnostic electronic calculated spectra were chosen for the assignment of the free ligand (L) and its metal complexes. Experimental electronic modes are shown in Table (4).All the theoretical electronic spectra of all compounds were calculated by using the semiempirical (PM3) method at geometry optimization (0.01 K.Cal. Mol⁻¹) was used, as is shown in Table (9).

Table9:Comparisonbetweenexperimentalandtheoreticaloftheelectronicspectrametalcomplexesof (L)

Symb.	Bands (nm)	Assignment
[1]	890*,888**,[0.23]***	$^{2}B_{2} \rightarrow ^{2}E$
[1]	416*,420**,[0.95]***	$^{2}B_{2} \rightarrow ^{2}A_{1}$
	862*,859**,[0.35]***	${}^{6}A_{1}g \rightarrow {}^{4}T_{1}g(G)$
[2]	535*,529**,[1.13]***	${}^{6}A_{1}g \rightarrow {}^{4}T_{2}g (G)$
	379*,380**,[0.26]***	${}^{6}A_{1}g \rightarrow {}^{4}A_{1}g + {}^{4}Eg(G)$
	3082*,3088**,[0.19]***	${}^{4}A_{2} \rightarrow {}^{4}T_{2} (F)$
[3]	1833*,1840**,[0.38]***	$^{4}A_{2} \rightarrow ^{4}T_{1}(F)$
	635*,639**,[0.63]***	${}^{4}A_{2} \rightarrow {}^{4}T_{1} (P)$
[4]	599*,594**,[0.84]***	${}^{1}A_{1}g \rightarrow {}^{1}A_{2}g$, ${}^{1}Eg$
[+]	347*,350**,[0.86]***	$L \rightarrow Ni(II) (C.T)$
[5]	620*,615**,[0.81]***	$^{2}Eg \rightarrow ^{2}T_{2}g$
[5]	323*,327**,[1.53]***	$L \rightarrow Cu(II) (C.T)$
	476*,470**,[1.28]***	
[6]	359*,362**,[0.83]***	$Zn(II) \rightarrow L(C.T)$
	342*,344**,[0.58]***	

Where:

* Theoretical transition band of electronic spectra. ** Experimental transition band of electronic spectra *** Error % due to main difference in the experimental measurements and theoretical treatment of electronic spectra.

Conclusions:

The new Azo Day ligand and its metal complexes were successfully synthesized and characterized. The mode of bonding and overall structure of the complexes was determined through physio-chemical and spectroscopic methods. Hyperchem-8 program has been used to predict structural geometries of all compounds in gas phase. The free ligand (L_I) and its metal complexes (1-6) show significant antimicrobial activity. The all complexes are found more effective than the free ligand.

References:

- [1]Koh, J. and Greaves, A. J. 2001. Synthesis and application of an alkali-clearable azodisp -erse dye containing a fluorosulfonylgroup and analysis of its alkali-hydrolysis kinetics. Dyes and Pigments, 50(2):117-126.
- [2]Seth,S.2008.Metal Complexes of Azo-deri -vatives of Pyrazolones and beta-Diketo compounds. Ph.D. Thesis. Department of Chemistry, India. pp:1-8.
- [3]Dinda, J.; Senapoti, S. and Sinha, C.
 2006. Synthesis, spectral characterisation, and electrochemistry of bis-(2,2'-bipyridine) (1-alkyl-2-(naphthylazo)imidazole) ruthenium(II) complexes: X-ray Crystal Structure of[bis-(2,2'-bipyridine)-{1-ethyl-2-(naph-thyl-α-azo) imidazole} ruthenium(II)perchlorate.
 Polyhedron, 25(5) :1125-1132.
- [4]Zhaoa, R. 2011. One Step synthesis of Azo compounds from nitroaromatics and anilines. Tetra. Lett., 52(29):3805-3809.
- [5]Harbi, L. M; Mossalamy, E. H.; Ahmed, I. S. and Obaid, A. Y. 2013. Non-Isothermal degr -adation and kinetics studies of some quinaldine Azo dye complexes. Amer. J. Analy. Chem., 4(10):427-431.
- [6]Aljamali, N. M. 2015. Review in Azo comp -ounds and its biological activity. Bio chem. Anal. Biochem., 4(2):1-4.
- [7]Shihab, N. L. and Intedhar, K. M. 2013. Synthesis of some novel heterocyclic Azo dyes for acridine derivatives and evaluation of their antibacterial activities. J. Chem. Pharm. Res., 5(5):345-354.

- [8]Seferoglu, Z. 2009. A study on tautomeric equilibria of new hetarylazo-6- aminouracials. ARKIVOC, 1(viii) :42-57.
- [9]Velasco, M. I.; Kinen, C. O.; Rossi, R. H. and Laura, I. R. 2011. A green alternative to synthetize azo compounds. Dyes and Pigments, 90(1):259-264.
- [10] Asniza, M.; Issam, A. M. and Khalil, H. P. S. 2011.Synthesis and Characterization of a new hetrocyclic Azo Pigment. Sains Malays, 40(7):765-770.
- [11] Maria, S. G; Anca, D.; Elena, G. M.; Germaine, B.; Mihaiela, A. and Gianina, B. 2010. Azo Compounds with Antimicrobial activity. J. Antimicrob. Chem., 14(3):1-9.
- [12] Christie, R. M. 2001. Color Chemistry. United Kingdom: Royal Society of Chemistry:1-10.
- [13] Willy,H.;Klaus,H.; Wilker, G., Obleier, H. and Winter, R. 2004. Industrial Organic Pigment, Production, Properties and Application. Weinheim 3rdEd., Wiley -VCH. pp:18-30.
- [14] Aziz, M. S.; Sonbati, A. Z. and Hilali, A. S. 2002. D.C. Conduction Phenomenon of some rhodanineazo complexes. Chem. Pap., 56(5):305-308.
- [15] Raziyeh, A. A. and Saeid, Amani. 2012. Synthesis, Spectroscopy, Thermal analysis, Magnetic properties and Biological activity studies of Cu(II) and Co(II) complexes with Schiff base dye ligands. Molecules,17(1):6434-6448.
- [16] Crina, V. T. and Sebe, I. 2012. Azo dyes complexes, synthesis and tinctrial properties. U.P.B. Sci. Bull., 74(B):110-118.
- [17] Shah, K. 2014. Biodegradation of azo dye compounds. Int. Res. J. Biochem. Biotechnol.,1(12):5-13.
- [18] Taura, Y. B.; Gumel, S. M; Habibu, S. and Adam, J. L. Synthesis of Cobalt-complex azo dye

from2,2[benzene-1,3-diyl-di-(E)diazene-2, 1-diyl]bis(4-nitroaniline). J. Appl. Chem.,7(11):34-37.

- [19] Hofmann, K. 1953. Imidazole and its Derivatives, Interscience, 1stEd., New York.
- [20] Beltcher, R. and Nutten, A.
 1970. Quantitative Inorganic Analysis Butter Worth, 1^{stEd}., London.
- Matsunaga, H.; Santa, T. [21] and Homma, H. 1997. Effect of the substituent group at the isothiocyanate moiety of Edman reagents on the racemization and fluorescence intensity of amino acids derivatized with 2,1,3benzoxadiazolyl isothiocyanates. Analyst, 122(3):931-936.
- [22] Schwander, H. R. 1982.Heterocyclic Azo Coupling Components. Dyes and Pigments. 3(12):133-160.
- [23] Blumich, B. 2005. Essential NMR. Springer Berlin Heidelberg., 1^{st.}Ed, New York, Printed in Germany.
- [24] Silverstein, R.; Bassler, G. and Morrill, T. 2005. Spectrometric Identification of Organic Compound. John-Wiely Sons, Inc.,7^{thEd}., New York, London.
- [25] Nakamoto, K. 2009. Infrared of Inorganic and Coordination Compounds, John-Weily Inc.,^{6thEd}., New York, London.
- [26] Al-Hassani, R. A. M. 2010. Synthesis, Strutural and Biological studies of 4-[(1-phenyl-2,3-dimethyl-3-pyrozoline-5-one) azo]-N, Ndimethylanline with some transition metal ions Baghdad Sci. J. 7(3): 1202-1212.
- [27] Miller, B. 1982. Thermal analysis. John-WeilyHeyden Ltd., ^{1st}.Ed., New York, London.
- [28] Figgis, B. and Hitchman, M. 2000. Ligand Field Theory and Its Applications. John-WeilyHeyden Ltd., New York, London.

- [29] Ranajit, K. R. 2012. Electronic Spectra of Transition Metal Complexes, NCBA Publishing,1st Ed., India-New Delhi.
- [30] Carlin, R. L. and Van Duyneveldt, A. J. 1977. Magnetic properties of transition metal compounds. ^{1st}.Ed., New York, London.
- [31] Reddy, L. S.; Tamio, E. and Siva, G. R. 2012. Electronic Absorption Spectra of 3d transition Metal Complexes, John-Weily Inc., ^{1st} Ed., New York.
- [32] Al- Hassani, R. A. M. and Shaheen, E. S. 2013. Synthesis, Characterization, Theoretical Studies and Bioactivity of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) Complexes with Mannich Base and Tryptophane as Mixed Ligand. Asian J. Biochem. Pharma. Res.,3 (1) :1-28.
- [33] Sutton, D. 1968. Electronic Spectra of Transition Metal Complexes. McGraw-Hill, publishing, London.
- [34] Ballhausen, I. C. 1962. Introduction to Ligand Field Theory. New York, Toronto-London.
- Awad, A. A; Al-Hassani, R. A. [35] M. and Yousif, E. A. 2015. Characterization Synthesis, and Studies of photodegradation of PVC films of (4-amino-5-(2-(2,3dimethylphenyl) aminophnyl)-1,2,4triazole-3-thion) (L) with Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) ions. J. Chem. Materials metal Res.,7(10):34-42.
- [36] Greenwood, N. N. and Earnshaw, A.1998. Chemistry of Elements, 2nd Ed., Prigaman Press.
- [37] Donald, J. V.; Judith, G. V. andCharlotte,W.P.2008.Principles of Biochemistry, 3rd Ed., New York.
- [38] Scott B.T. and Bailey, P. E.
 1999. Diagnostic Microbiology.
 John-Weily Inc., 3rdEd., MosbyBaily,
 London.

- [39] Awetz, J. and Delbrgs, A. 2007.Medical Microbiology. John-Weily Inc., 4thEd., MC GrawHil-USA.
- [40] Stewart, J. J. 1996. Reviews in Computational Chemistry, VCH Publishers, New York.
- Ostmark, H.; Longlet, [41] A.; Wingborg, Bergman, H.; N.; Wellmar, V. and Bemm, V. 1998. Book of Computational Hand 1^{th} Quantum Chemistry, Proc. Symposium, Detonation (Int.) Sonwomass.
- [42] Cramer, C. J. 2004. What are Theory, Computation and Modeling. John Wiley and Sons, Ltd.,2nd Ed.,

Essential of Computational Chemistry.

- [43] Lewars, E. 2004. Computational Chemistry:Introduction to the Theory and Applications of Molecular and Quantum Mechanics. Canada, Kluwer Academic Pub -lishers: 339-377.
- [44] Awad, A. A.; Al-Hassani, R. A.
 M. and Yousif, E. A. 2015. Synthesis, Characterization, Theoretical Studies and Photo stabilization of Mefenamic acid derivative with some divalent metal ions. Inter. J. Innov. Sci. Res., 18(2):325-341.

تحضير و تشخيص ودراسة بايولوجية ونظرية لمعقدات ثنائية السن (V(IV) و Co(II) و Co(II) و Ni (II) و Cn(II) مع ليكاند واهب(NN) صبغة الأزو

رحاب عبدالمهدي الحسنى

قسم الكيمياء، كلية العلوم، الجامعة المستنصرية

الخلاصة:

حضر الليكاند الجديد 4- [(7-كلورو-2,1,2-بنزوأوكسادايازول)أزو] -4.5-ثنائي فنيل أيميدازول(L) وشخص بصورة كاملة بالطرائق الفيزيائية المناسبة [التحليل الدقيق للعناصر (C.H.N.S) والتحليل الحراري وطيف الأشعة تحت الحمراء والأطياف الألكترونيةً وأطياف الرنين النووي المغناطيسي()H NMR. تم استخدام (L)كليكاند لتحضير عدد من المعقدات الجديدة مع بعض أيونات العناصر الانتقالية (V(IV و(Fe(III) و Co(II) و Ni (II) و Cu (II) وCu (II). شخصت التراكيب الكيميائية للمركبات الجديدة باعتماد التحليل الدقيق للعناصر والتحاليل الحرارية فضلاً عن اطياف الأشعة تحت الحمراء و الأشعة فوق البنفسجية – المرئية. كما حددت الخصائص المغناطيسية وقيم الموصيلية الكهربائية للمعقدات الفلزية. كذلك تم دراسة طبيعة المعقد المتكون في محلول الايثانول باتباع طريقة النسبة المولية. تضمن العمل ايضاً معالجة تكوين المعقدات نظرياً في الطور الغازي، باستعمال برنامج (Hyperchem-8) وبتطبيق الميكانيك الجزيئي والشبه التجريبي في الحساب $(\Delta E_{\rm T})$ وذلك باستخدام الدالة (PM3) لحساب حرارة تكوين ($\Delta H f^{\circ}$) وطاقة التأصر ($\Delta E_{\rm b}$) والطاقة الكلية ($\Delta E_{\rm T}$) وبدرجة حرارة 298 كلفن لليكاند [L] ومعقداته. كذلك تم حساب الجهد الالكتر وستاتيكيلليكاند(L) لتحديد المواقع الفعالة ضمن الجزيئة. جرى كذلك حساب قيم الاطياف الاهتزازية و الاطياف الالكترونية للبكاند(L) ومعقداته نظرياً باستخدام الدالة PM3 ومقارنتها مع القيم المقاسة عملياً، ووجد بأن هنالك توافقاً كبيراً بين القيم العملية و المحسوبة نظرياً تم تقويم الفعالية آلمضادة للبكتريا لليكاند(L) ومعقداته واختير نوعان منالبكتريا Pseudonomousaerugionosa سالبة الصبغة و Bacillus subtilis موجبة الصبغة لهذا الغرض. كما تم اجراء التقويم الحيوى لقاعدة شف ومعقداته ضد نوعين من الفطريات Candida albicans د Aspergillusflavus.

الكلمات المفتاحية:مركبات الأزو، مركبات الأزو التناسقية، البيانات الطيفية، الفعالية البايولوجية، التركيب البلوري والتصنيعي لمركبات الازو.