Open Access
Baghdad Science Journal Vol.14(1)2017

DOI: http://dx.doi.org/10.21123/bsj.2017.14.1.0219

Cache Coherence Protocol Design and Simulation Using IES
(Invalid Exclusive read/write Shared) State

Luma Fayeq Jalil* Maha Abdulkareem H. Al-Rawi**
Abeer Diaa Al-Nakshabandi***

*Department of Computer Sciences, University of Technology, Baghdad, Baghdad, Irag.
**Department of Computer Sciences, University of Technology, Baghdad, Baghdad, Iraq.
***Head of programmers oldest, Distribution office At Ministry of Electricity, Baghdad,
Baghdad, Iraq.

E-mail: abeerdiaaphd@gmail.com

Received 25/ 5/2016
Accepted 26/7 /2016

el 1 his work is licensed under a Creative Commons Attribution-Non Commercial-No
Derivatives 4.0 International License

Abstract

To improve the efficiency of a processor in recent multiprocessor systems to
deal with data, cache memories are used to access data instead of main memory which
reduces the latency of delay time. In such systems, when installing different caches in
different processors in shared memory architecture, the difficulties appear when there
is a need to maintain consistency between the cache memories of different processors.
So, cache coherency protocol is very important in such kinds of system. MSI, MESI,
MOSI, MOESI, etc. are the famous protocols to solve cache coherency problem.

We have proposed in this research integrating two states of MESI's cache
coherence protocol which are Exclusive and Modified, which responds to a request
from reading and writing at the same time and that are exclusive to these requests.
Also back to the main memory from one of the other processor that has a modified
state is removed in using a proposed protocol when it is invalidated as a result of
writing to that location that has the same address because in all cases it depends on the
latest value written and if back to memory is used to protect data from loss;
preprocessing steps to IES protocol is used to maintain and saving data in main
memory when it evict from the cache. All of this leads to increased processor
efficiency by reducing access to main memory.

Key words: Cache Coherence Problem, Snooping Protocol, Directory-Based Cache
Protocols, MESI, Cache Simulator, Dev. C++, Multiprocessor, Shared Memory.

Introduction:

The difference between main processor architecture [1]. So to deal
memory and the processor speed may with this problem, installing faster
take a lot of processor cycles to get to memory in such systems can store data
the main memory, which may cause an from main memory to be used more
obstacle in performance in modern often by the processor. These fast

219


http://dx.doi.org/10.21123/bsj.2017.14.1.0219
mailto:abeerdiaaphd@gmail.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Baghdad Science Journal

\Vol.14(1)2017

memories, which are either on chip or
off-chip, used to improve latency and
performance, are called cache memories
[2].

High inconsistency which causes
cache coherency problem might appear
if there is any change in the shared data
in a multiprocessor system having
different processors with a different
cache memories that share data in the
main memory. Coherence between these

caches is achieved through the
application of two_hardware_based
protocols which are snoopy and

directory_based protocols [3, 4].

This paper gives the basic idea
of how to simulate multi-level caches to
implement IES protocol using DEV
C++ language. To simulate caches, the
number of cache levels and the
parameters of a cache memory such as
the "cache memory capacity” for each
cache level, "the cache line size",
"associativity", "the replacement
policy”, "the number of words per
memory access"”, "the writing policy",
etc. are determined. Finally, the

Capacity, access time, cost

processor efficiency is calculated from
either finding the input address in the
caches to become "hit" or not finding
that address which gets from t'he main
memory to become "Miss".

The Basic Concepts in Caching:

The caching data exploiting the
locality in memory hierarchies get the
illusion of a large and fast memory.
There are two types of locality that
benefit memory [5]. In most programs,
the same address of memory is used
repeatedly for reading or writing by
processor. So, temporal locality appears
as a result of a high degree of locality in
these programs. Another feature called
spatial locality is that if a processor
reads or writes a memory location then
there is a probability to read or write
nearby locations also. To exploit the
second behavior, caches may operate by
holding a group of neighboring data
known as cache lines (also called cache
blocks) [6,7]. Memory hierarchy
illustrated in Figure 1:

How memory managed

Smaller, Registers
Faster, ry
ﬂﬂd_ Instr. Operands Programmer / compiler
Costlier v
Cache
4 Hardwaremanaged
v Blocks By Cache controller
| Main Memory ‘
Paces Software managed
g By operating sy stem
| Disk |
Larger. » i -
Slower, ! File User / operator
and
Cheaper ‘ Tape |

Fig. 1: The Memory Hierarchy [1,2,3,5]

Cache Coherency:

Cache  coherency is the
consistency and validation of the data
value in the caches of a multi core
processor such that any reading of a
memory location via any caches will

220

return the most recent data written to
that location via any caches [8]. The
exact replacement time and update
method to these data is captured by the
write policy. The main write policies
include two: write through is the first



Baghdad Science Journal

\Vol.14(1)2017

policy that writes in both main memory
and cache to become valid [3]. The
other is a Write back which is not
written into  main memory unless
another cache needs that cache line [6].

Inconsistency that leads to
incorrect execution causes a cache
coherence problem. This problem
appears if the data is updated by one
processor without informing the others.
Two basic protocols are used to
eliminate this problem in memory
system [9]:
a- Bus_Snooping Protocols

This protocol is used in a not
scalable bus-based SMP system as
broadcast medium where all the
processor can observe all memory
access by cache controller and then
either invalidate or update the local
cache content [10].
b- Directory_Based Protocols:

Either the directory is located
centrally in the main memory of a
multiprocessor system or may be
distributed among caches. This directory
is used as a tracker to a shared cache

block  between processors  for
maintaining coherence and consistent
data which is recently updated.

Therefore this protocol is preferred to
use in a large scale shared memory
multiprocessors [11].

221

MESI

Protocol:

MESI protocol relies on four states to
maintain consistency and coherence
between the caches in a shared memory
system. These states represent a
shortcut to Modified, Exclusive, Shared
and Invalid where each block in the
cache has one of them according to the
request of the processor. The states are

illustrated as follows [5,8]:
a- ""Modified":
The cache contains a copy which differs
from that in the main memory and there
are no other copies. Modified cache
lines need to be written back to memory
when they get evicted or invalidated.
Modified may also be called Dirty
Exclusive.
b- ""Exclusive":
The cached copy is only in cache, which
is the same in the main memory.
Exclusive may also be called Clean
Exclusive.
c- ""Shared":
The cached copy is valid in each of the
cache and main memory, and at least
one of the shared memory caches to this
copy.
d- "Invalid™:
This state indicates that the cache line
does not have valid data.

Cache Coherence

Figure 2 demonstrates the transition
between states of MESI:



Baghdad Science Journal Vol.14(1)2017

Local read
RH

——Remote read—»

Exclusive

I
Read ! Local write
I

|
P ek b SHI [¢---Remote write l

WH

|
|
|
|
|
T SHI [¢=======- \-- -~ -Remote write--- - ----=-
| |
A 4

Local read

°
o
Invalid Local read\—» Read RH =
:
' g el ) =
: Local write l/ . SHR
; v Remote read
T i Invalidate
: Invalidate
SHI SHR
bl Commit |4 --Remote write --- Modified Remote read—»{ Commit
WVH RH
Local write Local read
(@) _7
________________________________________________ \\.
e
.-"/
,-—-”/;I
'\"\,;' ,
/ I
(b)
Fig. 2: The State Transitions of MESI Cache Coherence Protocol
(a) Detailed (b) abbreviation [1,5,7,8].
Methodology: 1. The Preprocessing steps of IES
The steps of a proposed protocol using ~ cache  coherence  protocol are

DEV C++ language are as follows:- represented in Fig. 3:

222



Baghdad Science Journal Vol.14(1)2017

Ve

) ~
L Start/;

o

Use function for checking processor request (read or write)
& Processor type (pl or p2 or p3or p4) &
Processor address of a sample program example

!

Use function for convert decimal address to binary address

|

Use function to calculate tag & index& offset
From binary number

l

Use direct mapped method in function to simulate caches in
a three level depending on index and tag and offset of all
addresses probability as a subset of a main memory

All levels of caches lie in a temporary position before
beginning execution of a sample program

v

Simulate 4 caches in levell that contain
8 tag (3-bit), 4 index (2-bit), 8 offset (3-bit)
From 8-bit of main memory address (256 byte)

A
Simulate 4 caches in level2 that contain
4 tag (2-bit), 8 index (3-bit), 8 offset (3-bit)
That receives the eviction of cache line from levell caches
that have the same index with different tag

!

Simulate shared cache in level 3 that contain
2 tag (1-bit) and 16 index (4-bit), 8 offset (3-bit)
That received the eviction of cache line from level2 cache
That have the same index with different tag

l

Construct a directory in main memory that will be
shared among all caches in levell and level2
This directory used as a tracker of shared caches and
contains all the data and states of the last write that write in
cache levell

-

Fig.3: Flow Chart of Preprocessing Steps to Proposed Protocol

223



Baghdad Science Journal Vol.14(1)2017

5

check the addresses of a sample program starting from The first
serial no of programs continue until The last of the serial number

v

construct a directory in main memory that will be used as a tracker of
shared cache, suppose that at first time all data value=0 and all states="1"

»
P

A
Construct a cache line in levell cache According to incoming address
If the line not found in all 3 level of four caches

If there exists Addresses
that Have Same
index of different tag

yes No

v
Evict the addresses to the caches in level2 if addresses in levell have
same index and does not exists in level2 otherwise evict to the level3
Otherwise evict to main memory if cannot locate in level 2 & level3

Check state of incoming address according to propsed Protocol to the caches
in levell or level2 or level3 depending on existence of address

A

Update data and state of directory

:

calculate Hit and Miss ratio according to the addresses and protocol in I1 & 12 & 13 and note that
Hit in address if incoming address is found in cache line although it is an Invalid state and
Miss in protocol if incoming address is not found in cache line and create new line within Invalid state

.

Continue addresses

NO

v

Calculate final hit ratio & miss ratio
Hit all = Hit in Levell + Hit in Level2 + Hit in Level3
Miss all =1 - Hit all
Hit ratio=(total hit/total address) * 100
Miss ratio = 1 - hit ratio

End

Fig. 3: Continue of Flow Chart of Preprocessing Steps

224



Baghdad Science Journal

\Vol.14(1)2017

2 IES (Invalid, Exclusive read/write,
Shared) Cache Coherence Protocol:

2.1 Cache Organization Using a
Direct Mapped Method

At the beginning work in this research,
the four caches in level 1, the four
caches in level 2 and the shared cache
in level 3 are simulated by using a direct
mapped method taking advantage of
spatial locality as follow:-

Suppose memory address = 256 [8-bit to
represent the main memory address].
Levell cache has 3-bit represent tag, 2-
bit represent index, 3-bit represent offset
Level2 cache has 2-bit represent tag, 3-
bit represent index, 3-bit represent offset
Level3 shared cache has 1-bit represent
tag, 4-bit represent index, 3-bit represent
offset

Main memory blocks are assigned to the
lines of a cache mapped into one and
only cache line as a result of a direct
mapping method as in Table 1 where m
represents number of lines in the cache
and s bits specify one of 25 blocks of
main memory.

Table 2, Table 3 and Table 4 illustrate
the assignment of a main memory
blocks to the lines of caches in levell,
level2 and level3 respectively as it is
generally shown in Tablel:

Table 2: Main Memory Blocks
Assigned to Cache Line in Levell

Cache lines at | Main memory blocks
levell assigned
0 0,4,8,12,16,20,24,28
1 1,5,9,13,17,21, 25,29
2 2,6,10,14,18,22,26,30
3 3,7,11,15,19,23,27,31
Table 3: Main Memory Blocks

Assigned to Cache Line in Level2

Cache lines at Main memory
level2 blocks assigned
0 0,8,16,24
1 1,9,17,25
7 7,15,23,31
Table 4: Main Memory Blocks
Assigned to Cache Line in Level3
Cache lines at Main memory
level3 blocks assigned
0 0,16
1 1,17
15 15,31

Table 1: Main Memory Blocks
Assigned to Cache Line in General
Cache Main memory blocks
line assigned
0 0,m,2m,....,25—m
1 oom+1,2m+1,...,25—m+1
m-1 m—12m—-1,3m—1,...,25— 1

225

2.2 IES Cache Coherence Protocol
State Diagram

IES stands for the state of each cache
line at any time. A cache line in each
cache can be in one of the following
states:-

Invalid: The block has been invalidated
(possibly on the request of someone
else)

Exclusive Read/Write: one processor
has data and it is dirty which must
respond to any write request in case of
write. But in case of read it is clean that
one processor has data and no need to
inform others about further changes.
Shared: up-to-date the cached in more
than one processors and memory




Baghdad Science Journal Vol.14(1)2017

Record the stare &

Update shared cache If other

Name In directory name of other cache |«—— Cache states are
as shared in directory valid
Local read
T ‘—E‘ikemme write—4|L ("

/, - -
L Invalid )

Local read

Local write

e
N Shared

A*’i'
read data from
m Shared cache Locallwrite
Update state and H
data in directory =

Record name of

NO

If all other
states are “I” In caches of
levell

WME Yes

shared caches
m I in directory
Remote write
Get data from <
Main memory
Inva::date [ﬁ]
w/rEchusive RNVV\ F read
RH WH
Local read Local write

Fig. 4: IES Cache Coherence Protocol State Diagram
The abbreviate symbols of the buses are CPU time = IC
as follow:

* (CPIExecution

Bus transaction: Mem Access

+
Events: Inst.

RH = Read Hit, RMS = Read Miss * Miss rate
Shared, RME = Read Miss Exclusive
WH = Write Hit, WM = Write Miss,
WME = Write Miss Exclusive * cycletime — —(2)
SHR = Snoop Hit on Read, SHI =
Snoop Hit on Invalidate.

* Miss penality)

CPU time = IC

ALUOPS
H *< Inst. * CPIALUOPS
Measuring Cache Performance: Mem Access
Time CPU lapses in the implementation Tnstruction *AMAT>
of the program as well as in waiting « cycle time — —(3)
inside the memory, so CPU time iS  AMAT = L1 Hit time = L1 Hit rate
calculated as in the following equations + L1 Miss penality
[2]: * L1 miss rate
, -—@®

CPU time
= (CPU execution clock cycles L1 Miss penality =
+ Memory stall clock cycles) Access time of L2 = L2 Hit time *

« clock cycle time — —(1) L2 Hit rate + L2 Miss penality *

L2 Miss rate — —(5)

L2 Miss penality =

Access time of L3 = L3 Hit time *
L3 Hit rate + L3 Miss penality *
L3 Miss rate — —(6)

226



Baghdad Science Journal

\Vol.14(1)2017

L3 Miss penality =
Access time of Main Memory —
—(7)
AMAT
= L1 hit time = L1 Hit rate
+ (L2 Hit time * L2 Hit rate
+ (L3 Hit time * L3 Hit rate
+ Access time of Main Memory
x L3 Miss rate) = L2 Miss rate)
* L1 Miss rate — —(8)

Where
IC = Instruction Counter

CPI

= Clock Cycle Per Instruction
AMAT
= Average Memory Access Time

The Experimental Result Using

DEV C++ Language

1. Binary Representation

Binary representation is one of a
necessary preprocessing steps used to
gain tag and index and offset of each
decimal input address so as to facilitate
the work of a mapping algorithm as in
Table 5

Table 5: Binary Representation of Input Addresses Using a Proposed Protocol

address representation cache levell cache level2 cache level3

Seq binary no no tag index offset Tag index offset tag index offset
1 01000110 70 2 0 6 1 0 6 0 8 6
2 01000110 70 2 0 6 1 0 6 0 8 6
3 01000110 70 2 0 6 1 0 6 0 8 6
4 00100011 35 1 0 3 0 4 3 0 4 3
5 11100110 230 7 0 6 3 4 6 1 12 6
6 10100100 164 5 0 4 2 4 4 1 4 4
7 00101001 41 1 1 1 0 5 1 0 5 1
8 01000110 70 2 0 6 1 0 6 0 8 6
9 01000110 70 2 0 6 1 0 6 0 8 6
10 00110100 52 1 2 4 0 6 4 0 6 4
11 11100110 230 7 0 6 3 4 6 1 12 6
12 01100100 100 3 0 4 1 4 4 0 12 4
13 11000001 193 6 0 1 3 0 1 1 8 1
14 11000001 193 6 0 1 3 0 1 1 8 1
15 00101001 41 1 1 1 0 5 1 0 5 1
16 11000001 193 6 0 1 3 0 1 1 8 1
17 01100100 100 3 0 4 1 4 4 0 12 4
18 11000001 193 6 0 1 3 0 1 1 8 1

2. Cache Simulation Index Simulation of Cache 1 in Level2
. . 0 64 65 66 67 68 69 70 71
The caches are simuled by using a 4 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39
dIrECt mappEd methOd In a” IeveI of Index Simulation of Cache 2 in Level2

caches according to an input address of
a sample program (Table 6).

Table 6: Cache Simulation Using
Direct Mapping in All Level Using
IES Protocol

0 64 65 66 67 68 69 70 71

4 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167

Index Simulation of Cache 3 in Level2
0 64 | 65 [ 66 | 67 | 68 [ 69 [ 70 [ 71
Index Simulation of Cache 4 in Level2

0 64 65 66 67 68 69 70 71

Index Simulation of Cache 1 in Levell

4 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231

0] 9 | 97| 98 | 99 | 100 | 101 | 102 | 103

Index Simulation of a shared cache in Level3

1| 40 | 41 | 42 | 43 | 44 | 45| 46| 47

8 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199

2| 48] 49| 50 | 51 52 53 54 55

12 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231

Index Simulation of Cache 2 in Levell

0 192 [ 193 [ 194 [ 195 [ 196 | 197 [ 198 [ 199

Index Simulation of Cache 3 in Levell

0| 96| 97| 98| 99 | 100 | 101 | 102 | 103

T | 40 | 41 | 42 | 43 | 44 | 45| 46| 47

Index Simulation of Cache 4 in Levell

0 192 [ 193 [ 194 [ 195 [ 196 | 197 [ 198 | 199

227

3. IES Cache Coherence Protocol
Result

Table (7) demonstrates a result in
applying IES protocol in Fig. (4) on a
sample program. Initially all states of
an input addresses are Invalid, so when
the processor P1 in stepl read address




Baghdad Science Journal

\Vol.14(1)2017

70, the state is translated from "I" to "E"
because the address is not found in the
all levels of caches and as a result, the
cache line that contain address gets by a

read miss from main memory. All the
next steps of the program are applied
using the protocol in the same way.

Table 7: The Results of a Proposed Protocol on a Sample Program

cache line

Core name data

w
@®
Qo

Core job address

state

job sharer of cores
value

P1 reads 70

E

0 R. M.

P2 writes 12 70

12 W.M.

P3 writes 29 70

29 W.M.

P1 writes 58 35

58 W.M.

P4 writes 80 230

80 W.M.

P2 reads 164

0 R.M.

P3 reads 41

0 R.M.

P4 writes 30 70

30 W.M.

O|O(N[o|T|[W|IN |-

P1 reads 70

30 R.H. P1in L2+P4in L1

10 P1 writes 11 52

11 W.M.

11 P1 reads 230

80 R.M. P1in L1+P4in L2

12 P3 writes 92 100

92 W.M.

13 P2 writes 73 193

73 W.M.

14 P4 reads 193

73 R.M. P2&P4 in L1

15 P1 writes 69 41

69 W.M.

16 P1 Reads 193

73 R.M. P1&P2&P4in L1

17 P1 Reads 100

12 R.M. P1&P3in L1

18 P3 Reads 193

Oinnmwmmw|m|umm|{mm|m|{mim

73 R.H. P1&P3in L3 + P2&P4in L1

Note: The words of the abbreviation
symbols in table 7 are as follows:

R. M. = Read Miss,

W. M. = Write Miss,

R. H. = Read Hit

L1 = Level 1 of caches, L2 =Level2 of
caches, L3=Level3 of caches

4. Cache Performance Result

Cache performance can be measured by
counting a program execution cycles
that include cache Hit time and a
memory stall cycles which result from
cache misses. Depending on the clock
speed of the central processor, it takes:

2 to 5 ns to access data in L1 cache, 10
to 20 ns to access data in L2 cache,

30 ns to access data in L3 cache, 50 to
100 ns to access data in Main Memory.
Hit and miss ratio result from table6 and
table7 are as follow:

Hit ratio in L1 = (no. of hit in levell/
total no. of address)*100 = (1/18)*100=
5.56

Miss ratio in L1 =100-Hit

ratio =100-5.56= 94.44

228

Hit and Miss ratio in level2 is the same
as in level. But miss ratio in
level3=100%

The Comparison between MESI
and Proposed Protocol:

The difference between MESI and
IES protocol is that IES protocol
merges modified and exclusive
states to get one state named
exclusive. In MESI protocol the
state of incoming address in current
processor becomes exclusive when
the request of that processor is read
and states of that address of all
processors are invalid. While the
request of a processor that enter the
Exclusive state using IES protocol
is either read or write.

In the absence of a place to put the
entrance address in the cache
memories, in the proposed protocol
it is taken to the reserve from the
beginning put the line of that
address to main memory and
therefore data retention without
loss. As a result, it is not needed to




Baghdad Science Journal

\Vol.14(1)2017

use write back in the case of writing
done by the rest cores.

In MESI cache coherence protocol
there are several times that a write
back is used. The number of a write
back (WB) to the main memory that
results from a remote write of other
processor of MESI protocol are:
WB from the processor P2 in step 2
as a result of remote write of P3 in
step3.

WB from the processor P3 in step 3
as a result of remote write of P4 in
step8.

By applying equation 2
CPU time = IC

* (CPIExecution
Mem Access

Inst.
* Miss rate

* Miss penality)

* cycle time

The memory accesses are decreased as a
result of reducing a write back to the
main memory in using IES protocol. So,
CPU performance is increased by
reducing in CPU time.

A few differences between the two
protocols show there because of the
implementation of the program just a
few steps. But the benefit of using this
protocol appears when the program is
implemented numerous steps.

Conclusion and Future Works:
Cache memory is a main
component of memory hierarchy which
plays an important role in the overall
performance of the system and in the
design of multicores. Multicores with
shared memory architecture are used to
satisfy increasing performance demands,
which in turns are limited by cache
coherence problem. Thus this survey
focuses on the subject of the use of a
protocol to solve the problem of data
match and improve this protocol. In

229

future work we try to increase size and
the number of caches in levell and
level2 and to change in states and using
another mapping algorithm that have
more associativity.

References:

[1] Thomas, R. & Gudula, R. 2013.
Parallel Programming For Multicore
and Cluster Systems, Published by
Springer-Verlag Berlin and
Heidelberg GmbH & Co. KG, Berlin.

[2] David, A. P. & John, L. H. 2005.
Computer Organization and Design
the Hardware / software interface,
Elsevier Inc.

[3] David, A. P. & John, L. H. 2012.
Computer Architecture A
quantitative  approach,  Morgan
Kaufmann is an imprint of Elsevier.

[4] Azilah, S. and Najihah, B. R. F.

2014. Cache Coherence Protocols in

Multi-Processor, International

conference on Computer Science and

Information Systems (ICSIS’2014)

Oct 17-18, Dubai (UAE)

William, S. 2010. Computer
organization and architecture
designing for performance, Printed in
the United States of America by

[5]

Pearson Education, Inc., Upper
Saddle River, New Jersey, 07458.

[6] Bryon, M. 2013. Real World
Multicore Embedded  Systems,
Elsevier Inc., United States of
America.

[7] David C.; Jaswinder, S. P. and
Anoop, G. 1997. Parallel Computer
Architecture A Hardware/Software
Approach, scalability,
programmability, Morgan Kaufmann
Publishers.

[8] Anoop, T. 2014. Performance
Comparison of Cache Coherence
Protocol on Multi-Core Architecture,
Department of Computer Science and
Engineering National Institute of
Technology Rourkela  Rourkela,
Odisha, 769008, India.



Baghdad Science Journal Vol.14(1)2017

[9] Al-Hothali S. and Soomro S. et.al. Coherence Protocol, IEEE 29th
2010. Snoopy and Directory Based International Parallel and Distributed
Cache Coherence Protocols: A Processing Symposium IPDPS, pp:
Critical ~ Analysis, Journal  of 1119-1128, USA.

Information &  Communication [11] Zaghloul, S. S., et.al. 2014. Index-
Technology (Spring 2010) 4(1): 01- Based Cache Coherence Protocol,
10. David Publishing Company (DPC)

[10] Alberto, R. and Alexandra, J. Journal of communication and

2015. A Dual-Consistency Cache Computer 11:479-483.

(e pe) cla aladiady dpidiall jSIA 8 Jayl i) 3 oS g g s BLSLaca g anaial
(«ﬂJm ‘aquﬁ\\gsf-\ﬂ\gé‘gﬁ

ik oA LRI plada e )l Jgan ay Sl 2e Lga s b ol

LG all calaza calasy daa o o3 Amalad) (o guidal) e}k‘_ e.us cac biva Al *

JRIREEIPRIRTE 63.\;53}\53\ Aaalall cg}u&\ (:)Sc (.wé ¢ lise Al **

celo eS8 ) 55 A8l a5 538 5313 a8l ama yae (i ) <ol s Baled Jail Cand) Al ye Aok
LGl calar

-

sADAl
Al 8 Ayl 5 SIAN (e Yy L) SIA0 alasiud &5 saxeiall colalleall Ziaall i) b
& L smaall o) Y1 bl 1 J s sl sl QU85 O3S (e gellaal) 30 S il @lld g clild) ) J s )
S Baa 5 B SIAy & i ) lalles Bae 8 Aaall S)5AN Calide Capali L a5 AadaiV) o2a
Gosral e cadl 13gds saneial) Ciladleall culd dgadl Q1A cl S g Gildall e Llaall
e ) A a5 ) seudiall Y 5S 535 5l ) 5l ey Anaiall SIS puibe Jal Sl 6 55y alaiia
.MOESI, MOSI, MESI, MSI o &l Sl (e Loy jll xie
L panl) & Gl e Aaal) K130 dal 55 J S g5 5 OV e Ol med diad) 13 6 Lis ) )
A1) a5 Lyl 5 il 03] | jean 3 ga8 il 5 B gl s & LS 5 3¢ 3l cldlal Caaiast ) asall
" Alla 08l clalladl o) (e el OS5l alasiuly dua 5 SIAN g gl
Aaie VI sV S 3 asY () sindl i 4l ) el (e LS die "alla e Al et
ald gluall (e bl e Lliall aading 5 SIAI ) g sa )l OIS 1305 LS iy ) 5 ) dagl) e
e A die A ) 3 SIAN 8 ULl ) 53 5 Blaia ¥l o = yitall J6S 65 pll ddsall &l gadll aladinly
3OS ) dgea gl e 2al) (B3 sk e aellaal) 3ol 0L ) ) g2 1 IS il 5 SIAN (e

Sle il J gyl ‘&ma:_u\)\ IS5 n Al 5 SN d L) il A s jdsalidal) edalsl)
AS yiaall 3,SIAN esaaxiall cilalledll (DEV CH++ cdridall 3 SI1A 3Sse «MES] ¢ Al

230



