
 Baghdad Science Journal Vol.14(1)2017

219

DOI: http://dx.doi.org/10.21123/bsj.2017.14.1.0219

Cache Coherence Protocol Design and Simulation Using IES

(Invalid Exclusive read/write Shared) State

Luma Fayeq Jalil* Maha Abdulkareem H. Al-Rawi**

Abeer Diaa Al-Nakshabandi***

*Department of Computer Sciences, University of Technology, Baghdad, Baghdad, Iraq.

**Department of Computer Sciences, University of Technology, Baghdad, Baghdad, Iraq.

***Head of programmers oldest, Distribution office At Ministry of Electricity, Baghdad,

Baghdad, Iraq.

E-mail: abeerdiaaphd@gmail.com

Received 25/ 5/2016

Accepted 26/7 /2016

This work is licensed under a Creative Commons Attribution-Non Commercial-No

Derivatives 4.0 International License

 Abstract

To improve the efficiency of a processor in recent multiprocessor systems to

deal with data, cache memories are used to access data instead of main memory which

reduces the latency of delay time. In such systems, when installing different caches in

different processors in shared memory architecture, the difficulties appear when there

is a need to maintain consistency between the cache memories of different processors.

So, cache coherency protocol is very important in such kinds of system. MSI, MESI,

MOSI, MOESI, etc. are the famous protocols to solve cache coherency problem.

 We have proposed in this research integrating two states of MESI's cache

coherence protocol which are Exclusive and Modified, which responds to a request

from reading and writing at the same time and that are exclusive to these requests.

Also back to the main memory from one of the other processor that has a modified

state is removed in using a proposed protocol when it is invalidated as a result of

writing to that location that has the same address because in all cases it depends on the

latest value written and if back to memory is used to protect data from loss;

preprocessing steps to IES protocol is used to maintain and saving data in main

memory when it evict from the cache. All of this leads to increased processor

efficiency by reducing access to main memory.

Key words: Cache Coherence Problem, Snooping Protocol, Directory-Based Cache

Protocols, MESI, Cache Simulator, Dev. C++, Multiprocessor, Shared Memory.

Introduction:
 The difference between main

memory and the processor speed may

take a lot of processor cycles to get to

the main memory, which may cause an

obstacle in performance in modern

processor architecture [1]. So to deal

with this problem, installing faster

memory in such systems can store data

from main memory to be used more

often by the processor. These fast

Open Access

http://dx.doi.org/10.21123/bsj.2017.14.1.0219
mailto:abeerdiaaphd@gmail.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

 Baghdad Science Journal Vol.14(1)2017

220

memories, which are either on chip or

off-chip, used to improve latency and

performance, are called cache memories

[2].

 High inconsistency which causes

cache coherency problem might appear

if there is any change in the shared data

in a multiprocessor system having

different processors with a different

cache memories that share data in the

main memory. Coherence between these

caches is achieved through the

application of two_hardware_based

protocols which are snoopy and

directory_based protocols [3, 4].

 This paper gives the basic idea

of how to simulate multi-level caches to

implement IES protocol using DEV

C++ language. To simulate caches, the

number of cache levels and the

parameters of a cache memory such as

the "cache memory capacity" for each

cache level, "the cache line size",

"associativity", "the replacement

policy", "the number of words per

memory access", "the writing policy",

etc. are determined. Finally, the

processor efficiency is calculated from

either finding the input address in the

caches to become "hit" or not finding

that address which gets from t`he main

memory to become "Miss".

The Basic Concepts in Caching:

 The caching data exploiting the

locality in memory hierarchies get the

illusion of a large and fast memory.

There are two types of locality that

benefit memory [5]. In most programs,

the same address of memory is used

repeatedly for reading or writing by

processor. So, temporal locality appears

as a result of a high degree of locality in

these programs. Another feature called

spatial locality is that if a processor

reads or writes a memory location then

there is a probability to read or write

nearby locations also. To exploit the

second behavior, caches may operate by

holding a group of neighboring data

known as cache lines (also called cache

blocks) [6,7]. Memory hierarchy

illustrated in Figure 1:

Fig. 1: The Memory Hierarchy [1,2,3,5]

Cache Coherency:
 Cache coherency is the

consistency and validation of the data

value in the caches of a multi core

processor such that any reading of a

memory location via any caches will

return the most recent data written to

that location via any caches [8]. The

exact replacement time and update

method to these data is captured by the

write policy. The main write policies

include two: write through is the first

 Baghdad Science Journal Vol.14(1)2017

221

policy that writes in both main memory

and cache to become valid [3]. The

other is a Write back which is not

written into main memory unless

another cache needs that cache line [6].

Inconsistency that leads to

incorrect execution causes a cache

coherence problem. This problem

appears if the data is updated by one

processor without informing the others.

Two basic protocols are used to

eliminate this problem in memory

system [9]:

a- Bus_Snooping Protocols

 This protocol is used in a not

scalable bus-based SMP system as

broadcast medium where all the

processor can observe all memory

access by cache controller and then

either invalidate or update the local

cache content [10].

b- Directory_Based Protocols:

 Either the directory is located

centrally in the main memory of a

multiprocessor system or may be

distributed among caches. This directory

is used as a tracker to a shared cache

block between processors for

maintaining coherence and consistent

data which is recently updated.

Therefore this protocol is preferred to

use in a large scale shared memory

multiprocessors [11].

MESI Cache Coherence

Protocol:

 MESI protocol relies on four states to

maintain consistency and coherence

between the caches in a shared memory

system. These states represent a

shortcut to Modified, Exclusive, Shared

and Invalid where each block in the

cache has one of them according to the

request of the processor. The states are

illustrated as follows [5,8]:

a- "Modified":

The cache contains a copy which differs

from that in the main memory and there

are no other copies. Modified cache

lines need to be written back to memory

when they get evicted or invalidated.

Modified may also be called Dirty

Exclusive.

b- "Exclusive":

The cached copy is only in cache, which

is the same in the main memory.

Exclusive may also be called Clean

Exclusive.

c- "Shared":

The cached copy is valid in each of the

cache and main memory, and at least

one of the shared memory caches to this

copy.

d- "Invalid":

This state indicates that the cache line

does not have valid data.

Figure 2 demonstrates the transition

between states of MESI:

 Baghdad Science Journal Vol.14(1)2017

222

(a)

(b)

Fig. 2: The State Transitions of MESI Cache Coherence Protocol

(a) Detailed (b) abbreviation [1,5,7,8].

Methodology:
The steps of a proposed protocol using

DEV C++ language are as follows:-

1. The Preprocessing steps of IES

cache coherence protocol are

represented in Fig. 3:

 Baghdad Science Journal Vol.14(1)2017

223

Start

1

Use function for checking processor request (read or write)

& Processor type (p1 or p2 or p3 or p4) &

Processor address of a sample program example

2Use function for convert decimal address to binary address

3
Use function to calculate tag & index& offset

From binary number

4

Use direct mapped method in function to simulate caches in

a three level depending on index and tag and offset of all

addresses probability as a subset of a main memory

All levels of caches lie in a temporary position before

beginning execution of a sample program

5

Simulate 4 caches in level1 that contain

8 tag (3-bit), 4 index (2-bit), 8 offset (3-bit)

From 8-bit of main memory address (256 byte)

6

Simulate 4 caches in level2 that contain

4 tag (2-bit), 8 index (3-bit), 8 offset (3-bit)

That receives the eviction of cache line from level1 caches

that have the same index with different tag

7

Simulate shared cache in level 3 that contain

2 tag (1-bit) and 16 index (4-bit), 8 offset (3-bit)

That received the eviction of cache line from level2 cache

That have the same index with different tag

*

8

Construct a directory in main memory that will be

shared among all caches in level1 and level2

This directory used as a tracker of shared caches and

contains all the data and states of the last write that write in

cache level1

Fig.3: Flow Chart of Preprocessing Steps to Proposed Protocol

 Baghdad Science Journal Vol.14(1)2017

224

9
 check the addresses of a sample program starting from The first

serial no of programs continue until The last of the serial number

*

If there exists Addresses

 that Have Same

 index of different tag

yes

1
2

Evict the addresses to the caches in level2 if addresses in level1 have

same index and does not exists in level2 otherwise evict to the level3

Otherwise evict to main memory if cannot locate in level 2 & level3

No

1
0

 construct a directory in main memory that will be used as a tracker of

shared cache, suppose that at first time all data value=0 and all states=”I”

1
1

Construct a cache line in level1 cache According to incoming address

If the line not found in all 3 level of four caches

1
3

Check state of incoming address according to propsed Protocol to the caches

in level1 or level2 or level3 depending on existence of address

Continue addresses

1
4

Update data and state of directory

Yes

1
6

Calculate final hit ratio & miss ratio

Hit all = Hit in Level1 + Hit in Level2 + Hit in Level3

Miss all = 1 – Hit all

Hit ratio=(total hit/total address) * 100

Miss ratio = 1 – hit ratio

End

1
5

calculate Hit and Miss ratio according to the addresses and protocol in l1 & l2 & l3 and note that

Hit in address if incoming address is found in cache line although it is an Invalid state and

Miss in protocol if incoming address is not found in cache line and create new line within Invalid state

NO

Fig. 3: Continue of Flow Chart of Preprocessing Steps

 Baghdad Science Journal Vol.14(1)2017

225

2 IES (Invalid, Exclusive read/write,

Shared) Cache Coherence Protocol:

2.1 Cache Organization Using a

Direct Mapped Method

At the beginning work in this research,

the four caches in level 1, the four

caches in level 2 and the shared cache

in level 3 are simulated by using a direct

mapped method taking advantage of

spatial locality as follow:-

Suppose memory address = 256 [8-bit to

represent the main memory address].

Level1 cache has 3-bit represent tag, 2-

bit represent index, 3-bit represent offset

Level2 cache has 2-bit represent tag, 3-

bit represent index, 3-bit represent offset

Level3 shared cache has 1-bit represent

tag, 4-bit represent index, 3-bit represent

offset

Main memory blocks are assigned to the

lines of a cache mapped into one and

only cache line as a result of a direct

mapping method as in Table 1 where 𝑚

represents number of lines in the cache

and s bits specify one of 2𝑠 blocks of

main memory.

Table 2, Table 3 and Table 4 illustrate

the assignment of a main memory

blocks to the lines of caches in level1,

level2 and level3 respectively as it is

generally shown in Table1:

Table 1: Main Memory Blocks

Assigned to Cache Line in General

Cache

line

Main memory blocks

assigned
0 0, 𝑚, 2𝑚, … . , 2𝑠 − 𝑚

1 0, 𝑚 + 1, 2𝑚 + 1, … . , 2𝑠 − 𝑚 + 1

.

m-1 𝑚 − 1, 2𝑚 − 1, 3𝑚 − 1, … . , 2𝑠 − 1

Table 2: Main Memory Blocks

Assigned to Cache Line in Level1

Cache lines at

level1

Main memory blocks

assigned

0 0, 4, 8, 12, 16, 20, 24, 28

1 1, 5, 9, 13, 17, 21, 25, 29

2 2, 6, 10, 14, 18, 22, 26, 30

3 3, 7, 11, 15, 19, 23, 27, 31

 Table 3: Main Memory Blocks

Assigned to Cache Line in Level2
Cache lines at

level2

Main memory

blocks assigned

0 0, 8, 16, 24

1 1, 9, 17, 25

.

 .
7 7, 15, 23, 31

 Table 4: Main Memory Blocks

Assigned to Cache Line in Level3

Cache lines at

level3

Main memory

blocks assigned

0 0, 16

1 1, 17

.

.

15 15, 31

2.2 IES Cache Coherence Protocol

State Diagram

IES stands for the state of each cache

line at any time. A cache line in each

cache can be in one of the following

states:-

Invalid: The block has been invalidated

(possibly on the request of someone

else)

Exclusive Read/Write: one processor

has data and it is dirty which must

respond to any write request in case of

write. But in case of read it is clean that

one processor has data and no need to

inform others about further changes.

Shared: up-to-date the cached in more

than one processors and memory

 Baghdad Science Journal Vol.14(1)2017

226

Invalid Shared

Exclusive R/W

If all other

states are “I” In caches of

level1

RME

Get data from
Main memory

RMS

read data from
Shared cache

WME Yes

Local read

In
va

lid
at

e

Local write

SHI

RH WH

SH
R

Remote read

Local read Local write

SHI

Remote write

Remote write

W
H

Update state and
data in directory

Record name of
shared caches

in directory

Local read
(RH)

If other

Cache states are

Valid

Update shared cache
Name In directory

Record the stare &
name of other cache
as shared in directory

Yes

No

Local write

Invalidate

NO

Co
m

m
it

Fig. 4: IES Cache Coherence Protocol State Diagram

The abbreviate symbols of the buses are

as follow:

Bus transaction:

Events:

RH = Read Hit, RMS = Read Miss

Shared, RME = Read Miss Exclusive

WH = Write Hit, WM = Write Miss,

WME = Write Miss Exclusive

SHR = Snoop Hit on Read, SHI =

Snoop Hit on Invalidate.

Measuring Cache Performance:
Time CPU lapses in the implementation

of the program as well as in waiting

inside the memory, so CPU time is

calculated as in the following equations

[2]:

𝑪𝑷𝑼 𝒕𝒊𝒎𝒆
= (𝑪𝑷𝑼 𝒆𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝒄𝒍𝒐𝒄𝒌 𝒄𝒚𝒄𝒍𝒆𝒔
+ 𝑴𝒆𝒎𝒐𝒓𝒚 𝒔𝒕𝒂𝒍𝒍 𝒄𝒍𝒐𝒄𝒌 𝒄𝒚𝒄𝒍𝒆𝒔)

 ∗ 𝒄𝒍𝒐𝒄𝒌 𝒄𝒚𝒄𝒍𝒆 𝒕𝒊𝒎𝒆 − −(𝟏)

𝑪𝑷𝑼 𝒕𝒊𝒎𝒆 = 𝑰𝑪

∗ (𝑪𝑷𝑰𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏

+
𝑴𝒆𝒎 𝑨𝒄𝒄𝒆𝒔𝒔

𝑰𝒏𝒔𝒕.
∗ 𝑴𝒊𝒔𝒔 𝒓𝒂𝒕𝒆

∗ 𝑴𝒊𝒔𝒔 𝒑𝒆𝒏𝒂𝒍𝒊𝒕𝒚)

∗ 𝒄𝒚𝒄𝒍𝒆 𝒕𝒊𝒎𝒆 − −(𝟐)

𝑪𝑷𝑼 𝒕𝒊𝒎𝒆 = 𝑰𝑪

∗ (
𝑨𝑳𝑼𝑶𝑷𝑺

𝑰𝒏𝒔𝒕.
∗ 𝑪𝑷𝑰𝑨𝑳𝑼𝑶𝑷𝑺

+
𝑴𝒆𝒎 𝑨𝒄𝒄𝒆𝒔𝒔

𝑰𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏
∗ 𝑨𝑴𝑨𝑻)

∗ 𝒄𝒚𝒄𝒍𝒆 𝒕𝒊𝒎𝒆 − −(𝟑)

𝐀𝐌𝐀𝐓 = 𝑳𝟏 𝑯𝒊𝒕 𝒕𝒊𝒎𝒆 ∗ 𝑳𝟏 𝑯𝒊𝒕 𝒓𝒂𝒕𝒆
+ 𝑳𝟏 𝑴𝒊𝒔𝒔 𝒑𝒆𝒏𝒂𝒍𝒊𝒕𝒚
∗ 𝑳𝟏 𝒎𝒊𝒔𝒔 𝒓𝒂𝒕𝒆

 − − (𝟒)

𝑳𝟏 𝑴𝒊𝒔𝒔 𝒑𝒆𝒏𝒂𝒍𝒊𝒕𝒚 =
𝑨𝒄𝒄𝒆𝒔𝒔 𝒕𝒊𝒎𝒆 𝒐𝒇 𝑳𝟐 = 𝑳𝟐 𝑯𝒊𝒕 𝒕𝒊𝒎𝒆 ∗
𝑳𝟐 𝑯𝒊𝒕 𝒓𝒂𝒕𝒆 + 𝑳𝟐 𝑴𝒊𝒔𝒔 𝒑𝒆𝒏𝒂𝒍𝒊𝒕𝒚 ∗
𝑳𝟐 𝑴𝒊𝒔𝒔 𝒓𝒂𝒕𝒆 − −(𝟓)

𝑳𝟐 𝑴𝒊𝒔𝒔 𝒑𝒆𝒏𝒂𝒍𝒊𝒕𝒚 =
𝑨𝒄𝒄𝒆𝒔𝒔 𝒕𝒊𝒎𝒆 𝒐𝒇 𝑳𝟑 = 𝑳𝟑 𝑯𝒊𝒕 𝒕𝒊𝒎𝒆 ∗
𝑳𝟑 𝑯𝒊𝒕 𝒓𝒂𝒕𝒆 + 𝑳𝟑 𝑴𝒊𝒔𝒔 𝒑𝒆𝒏𝒂𝒍𝒊𝒕𝒚 ∗
𝑳𝟑 𝑴𝒊𝒔𝒔 𝒓𝒂𝒕𝒆 − −(𝟔)

 Baghdad Science Journal Vol.14(1)2017

227

𝑳𝟑 𝑴𝒊𝒔𝒔 𝒑𝒆𝒏𝒂𝒍𝒊𝒕𝒚 =
𝑨𝒄𝒄𝒆𝒔𝒔 𝒕𝒊𝒎𝒆 𝒐𝒇 𝑴𝒂𝒊𝒏 𝑴𝒆𝒎𝒐𝒓𝒚 −
−(𝟕)

𝐀𝐌𝐀𝐓
= 𝑳𝟏 𝒉𝒊𝒕 𝒕𝒊𝒎𝒆 ∗ 𝑳𝟏 𝑯𝒊𝒕 𝒓𝒂𝒕𝒆
+ (𝑳𝟐 𝑯𝒊𝒕 𝒕𝒊𝒎𝒆 ∗ 𝑳𝟐 𝑯𝒊𝒕 𝒓𝒂𝒕𝒆
+ (𝑳𝟑 𝑯𝒊𝒕 𝒕𝒊𝒎𝒆 ∗ 𝑳𝟑 𝑯𝒊𝒕 𝒓𝒂𝒕𝒆
+ 𝑨𝒄𝒄𝒆𝒔𝒔 𝒕𝒊𝒎𝒆 𝒐𝒇 𝑴𝒂𝒊𝒏 𝑴𝒆𝒎𝒐𝒓𝒚
∗ 𝑳𝟑 𝑴𝒊𝒔𝒔 𝒓𝒂𝒕𝒆) ∗ 𝑳𝟐 𝑴𝒊𝒔𝒔 𝒓𝒂𝒕𝒆)
∗ 𝑳𝟏 𝑴𝒊𝒔𝒔 𝒓𝒂𝒕𝒆 − −(𝟖)

Where

𝑰𝑪 = 𝑰𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏 𝑪𝒐𝒖𝒏𝒕𝒆𝒓

𝑪𝑷𝑰
= 𝑪𝒍𝒐𝒄𝒌 𝑪𝒚𝒄𝒍𝒆 𝑷𝒆𝒓 𝑰𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏

𝑨𝑴𝑨𝑻
= 𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑴𝒆𝒎𝒐𝒓𝒚 𝑨𝒄𝒄𝒆𝒔𝒔 𝑻𝒊𝒎𝒆

The Experimental Result Using

DEV C++ Language
1. Binary Representation

Binary representation is one of a

necessary preprocessing steps used to

gain tag and index and offset of each

decimal input address so as to facilitate

the work of a mapping algorithm as in

Table 5

Table 5: Binary Representation of Input Addresses Using a Proposed Protocol
address representation cache level1 cache level2 cache level3

Seq binary no no tag index offset Tag index offset tag index offset

1 01000110 70 2 0 6 1 0 6 0 8 6

2 01000110 70 2 0 6 1 0 6 0 8 6

3 01000110 70 2 0 6 1 0 6 0 8 6

4 00100011 35 1 0 3 0 4 3 0 4 3

5 11100110 230 7 0 6 3 4 6 1 12 6

6 10100100 164 5 0 4 2 4 4 1 4 4

7 00101001 41 1 1 1 0 5 1 0 5 1

8 01000110 70 2 0 6 1 0 6 0 8 6

9 01000110 70 2 0 6 1 0 6 0 8 6

10 00110100 52 1 2 4 0 6 4 0 6 4

11 11100110 230 7 0 6 3 4 6 1 12 6

12 01100100 100 3 0 4 1 4 4 0 12 4

13 11000001 193 6 0 1 3 0 1 1 8 1

14 11000001 193 6 0 1 3 0 1 1 8 1

15 00101001 41 1 1 1 0 5 1 0 5 1

16 11000001 193 6 0 1 3 0 1 1 8 1

17 01100100 100 3 0 4 1 4 4 0 12 4

18 11000001 193 6 0 1 3 0 1 1 8 1

2. Cache Simulation

 The caches are simuled by using a

direct mapped method in all level of

caches according to an input address of

a sample program (Table 6).

Table 6: Cache Simulation Using

Direct Mapping in All Level Using

IES Protocol
Simulation of Cache 1 in Level1 Index

103 102 101 100 99 98 97 96 0

47 46 45 44 43 42 41 40 1

55 54 53 52 51 50 49 48 2

Simulation of Cache 2 in Level1 Index

199 198 197 196 195 194 193 192 0

Simulation of Cache 3 in Level1 Index

103 102 101 100 99 98 97 96 0

47 46 45 44 43 42 41 40 1

Simulation of Cache 4 in Level1 Index

199 198 197 196 195 194 193 192 0

Simulation of Cache 1 in Level2 Index

71 70 69 68 67 66 65 64 0

39 38 37 36 35 34 33 32 4

Simulation of Cache 2 in Level2 Index

71 70 69 68 67 66 65 64 0

167 166 165 164 163 162 161 160 4

Simulation of Cache 3 in Level2 Index

71 70 69 68 67 66 65 64 0

Simulation of Cache 4 in Level2 Index

71 70 69 68 67 66 65 64 0

231 230 229 228 227 226 225 224 4

Simulation of a shared cache in Level3 Index

199 198 197 196 195 194 193 192 8

231 230 229 228 227 226 225 224 12

3. IES Cache Coherence Protocol

Result

Table (7) demonstrates a result in

applying IES protocol in Fig. (4) on a

sample program. Initially all states of

an input addresses are Invalid, so when

the processor P1 in step1 read address

 Baghdad Science Journal Vol.14(1)2017

228

70, the state is translated from "I" to "E"

because the address is not found in the

all levels of caches and as a result, the

cache line that contain address gets by a

read miss from main memory. All the

next steps of the program are applied

using the protocol in the same way.

Table 7: The Results of a Proposed Protocol on a Sample Program

Seq Core name Core job data
cache line

job sharer of cores
address state value

1 P1 reads 70 E 0 R. M.

2 P2 writes 12 70 E 12 W.M.

3 P3 writes 29 70 E 29 W.M.

4 P1 writes 58 35 E 58 W.M.

5 P4 writes 80 230 E 80 W.M.

6 P2 reads 164 E 0 R.M.

7 P3 reads 41 E 0 R.M.

8 P4 writes 30 70 E 30 W.M.

9 P1 reads 70 S 30 R.H. P1 in L2+P4 in L1

10 P1 writes 11 52 E 11 W.M.

11 P1 reads 230 S 80 R.M. P1 in L1+P4 in L2

12 P3 writes 92 100 E 92 W.M.

13 P2 writes 73 193 E 73 W.M.

14 P4 reads 193 S 73 R.M. P2&P4 in L1

15 P1 writes 69 41 E 69 W.M.

16 P1 Reads 193 S 73 R.M. P1&P2&P4 in L1

17 P1 Reads 100 S 12 R.M. P1&P3 in L1

18 P3 Reads 193 S 73 R.H. P1&P3 in L3 + P2&P4 in L1

Note: The words of the abbreviation

symbols in table 7 are as follows:

R. M. = Read Miss,

W. M. = Write Miss,

R. H. = Read Hit

L1 = Level 1 of caches, L2 =Level2 of

caches, L3=Level3 of caches

4. Cache Performance Result

Cache performance can be measured by

counting a program execution cycles

that include cache Hit time and a

memory stall cycles which result from

cache misses. Depending on the clock

speed of the central processor, it takes:

2 to 5 ns to access data in L1 cache, 10

to 20 ns to access data in L2 cache,

30 ns to access data in L3 cache, 50 to

100 ns to access data in Main Memory.

Hit and miss ratio result from table6 and

table7 are as follow:

Hit ratio in L1 = (no. of hit in level1/

total no. of address)*100 = (1/18)*100=

5.56

Miss ratio in L1 =100-Hit

ratio =100-5.56= 94.44

Hit and Miss ratio in level2 is the same

as in level. But miss ratio in

level3=100%

The Comparison between MESI

and Proposed Protocol:
 The difference between MESI and

IES protocol is that IES protocol

merges modified and exclusive

states to get one state named

exclusive. In MESI protocol the

state of incoming address in current

processor becomes exclusive when

the request of that processor is read

and states of that address of all

processors are invalid. While the

request of a processor that enter the

Exclusive state using IES protocol

is either read or write.

 In the absence of a place to put the

entrance address in the cache

memories, in the proposed protocol

it is taken to the reserve from the

beginning put the line of that

address to main memory and

therefore data retention without

loss. As a result, it is not needed to

 Baghdad Science Journal Vol.14(1)2017

229

use write back in the case of writing

done by the rest cores.

 In MESI cache coherence protocol

there are several times that a write

back is used. The number of a write

back (WB) to the main memory that

results from a remote write of other

processor of MESI protocol are:

- WB from the processor P2 in step 2

as a result of remote write of P3 in

step3.

- WB from the processor P3 in step 3

as a result of remote write of P4 in

step8.

By applying equation 2

𝑪𝑷𝑼 𝒕𝒊𝒎𝒆 = 𝑰𝑪

∗ (𝑪𝑷𝑰𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏

+
𝑴𝒆𝒎 𝑨𝒄𝒄𝒆𝒔𝒔

𝑰𝒏𝒔𝒕.
∗ 𝑴𝒊𝒔𝒔 𝒓𝒂𝒕𝒆

∗ 𝑴𝒊𝒔𝒔 𝒑𝒆𝒏𝒂𝒍𝒊𝒕𝒚)

∗ 𝒄𝒚𝒄𝒍𝒆 𝒕𝒊𝒎𝒆

The memory accesses are decreased as a

result of reducing a write back to the

main memory in using IES protocol. So,

CPU performance is increased by

reducing in CPU time.

A few differences between the two

protocols show there because of the

implementation of the program just a

few steps. But the benefit of using this

protocol appears when the program is

implemented numerous steps.

Conclusion and Future Works:
 Cache memory is a main

component of memory hierarchy which

plays an important role in the overall

performance of the system and in the

design of multicores. Multicores with

shared memory architecture are used to

satisfy increasing performance demands,

which in turns are limited by cache

coherence problem. Thus this survey

focuses on the subject of the use of a

protocol to solve the problem of data

match and improve this protocol. In

future work we try to increase size and

the number of caches in level1 and

level2 and to change in states and using

another mapping algorithm that have

more associativity.

References:
[1] Thomas, R. & Gudula, R. 2013.

Parallel Programming For Multicore

and Cluster Systems, Published by

Springer-Verlag Berlin and

Heidelberg GmbH & Co. KG, Berlin.

[2] David, A. P. & John, L. H. 2005.

Computer Organization and Design

the Hardware / software interface,

Elsevier Inc.

[3] David, A. P. & John, L. H. 2012.

Computer Architecture A

quantitative approach, Morgan

Kaufmann is an imprint of Elsevier.

[4] Azilah, S. and Najihah, B. R. F.

2014. Cache Coherence Protocols in

Multi-Processor, International

conference on Computer Science and

Information Systems (ICSIS’2014)

Oct 17-18, Dubai (UAE)

[5] William, S. 2010. Computer

organization and architecture

designing for performance, Printed in

the United States of America by

Pearson Education, Inc., Upper

Saddle River, New Jersey, 07458.

[6] Bryon, M. 2013. Real World

Multicore Embedded Systems,

Elsevier Inc., United States of

America.

[7] David C.; Jaswinder, S. P. and

Anoop, G. 1997. Parallel Computer

Architecture A Hardware/Software

Approach, scalability,

programmability, Morgan Kaufmann

Publishers.

 [8] Anoop, T. 2014. Performance

Comparison of Cache Coherence

Protocol on Multi-Core Architecture,

Department of Computer Science and

Engineering National Institute of

Technology Rourkela Rourkela,

Odisha, 769008, India.

 Baghdad Science Journal Vol.14(1)2017

230

 [9] Al-Hothali S. and Soomro S. et.al.

2010. Snoopy and Directory Based

Cache Coherence Protocols: A

Critical Analysis, Journal of

Information & Communication

Technology (Spring 2010) 4(1): 01-

10.

 [10] Alberto, R. and Alexandra, J.

2015. A Dual-Consistency Cache

Coherence Protocol, IEEE 29th

International Parallel and Distributed

Processing Symposium IPDPS, pp:

1119-1128, USA.

[11] Zaghloul, S. S., et.al. 2014. Index-

Based Cache Coherence Protocol,

David Publishing Company (DPC)

Journal of communication and

Computer 11:479-483.

 صالح،غير) الذاكرةالمخبئية باستخدام حالاتتصميم ومحاكاة بروتوكول الترابط في

 مشترك(،في القراءة والكتابة حصري

 ***عبير ضياء النقشبندي **مها عبد الكريم حمود الراوي *لمى فايق جليل

 ، العراق.بغداد، بغداد ،الجامعة التكنولوجية ،قسم علوم الحاسوب ،استاذ مساعد*

 .بغداد ،بغداد، الجامعة التكنولوجية ،قسم علوم الحاسوب ،استاذ مساعد **
، وزارة الكهرباء ،دائرة توزيع الطاقة، رئيس مبرمجين أقدم، طالبة مرحلة البحث لنيل شهادة الدكتوراه***

 .العراق ،بغداد

 الخلاصة:
في الانظمة الحديثة للمعالجات المتعددة تم استخدام الذواكر المخبئية بدلا من الذاكرة الرئيسة في حالة

الوصول الى البيانات وذلك لتحسين كفاءة المعالج من خلال تقليل تأخيرالوصول الى البيانات. الا ان الصعوبة في

واكر المخبئية في عدة معالجات التي تشترك بذاكرة واحدة تكمن هذه الانظمة والتي يتم فيها تنصيب مختلف الذ

في الحفاظ على التطابق بين ذاكرات الذواكر المخبئية ذات المعالجات المتعددة. ولهذا السبب من الضروري

هر استخدام بروتوكول الترابط مابين الذواكر المخبيئة. ومن انواع البروتوكولات المشهورة لحل المشكلة التي تظ

 . MOESI, MOSI, MESI, MSIعند الترابط مابين الذواكر المخبئية هي

اقترحنا في هذا البحث دمج حالتين من حالات بروتوكول ترابط الذواكر المخبئية ميسي والتي هي الحصرية لقد

يضا تم ازالة والمعدلة والتي تستجيب لطلبات القراءة والكتابة في نفس الوقت والتي تعود حصرا لهذه الطلبات. وأ

الرجوع الى الذاكرة الرئيسية باستخدام البروتوكول المقترح من احدى المعالجات التي تكون في حالة "معدلة"

والتي تصبح في حالة "غير صالح" عند الكتابة من معالج اخر له نفس العنوان لانه في كل الاحوال يتم الاعتماد

كان الرجوع الى الذاكرة يستخدم للحفاظ على البيانات من الضياع فانه على القيمة الاخيرة التي يتم كتابتها واذا

الخطوات المسبقة للبروتوكول المقترح يتم الاحتفاظ وخزن البيانات في الذاكرة الرئيسية عند خروجها باستخدام

 اكرة.. كل هذا يؤدي إلى زيادة كفاءة المعالج عن طريق الحد من الوصول إلى الذمن الذاكرة المخبئية

تطلاع، البروتوكول القائــم على ــالاس ، بروتوكولمشـكلة الترابط في الذاكرة المخبئيــة :الكلمات المفتاحية

 الذاكرة المشتركة. ،المعالجات المتعددة، ++DEV C، الذاكرة المخبئيةمحاكاة ،MESI، الدليل

