DOI: http://dx.doi.org/10.21123/bsj.2018.15.2.0150

Synthesis, Spectroscopic Characterization of Cobalt ComplexfromC₁₆H₁₉N₃O₃S and photodegradation using prepared Nano TiO₂catalyst

Maab K. Omar Sahar S. Hassan^{*} Ahlam M. Farhan

Received 28/1/2018, Accepted 21/5/2018, Published 3/6/2018

This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u>.

Abstract:

(cc)

Coblatcomplex has been prepared by reaction between $C_{16}H_{19}N_3O_3S$ (L) as ligand and metal salt (II). The prepared complex were characterized by infrared spectra, electromic spectra, magnetic susceptibility, molar conductivity measurement and metal analysis by atomic absorption and (C.H.N) analysis. From these studies tetrahedral geometry structure for the complex was suggested. The photodegredation of complex were study using photoreaction cell and preparednanoTiO₂ catalyst in different conditions (concentration, temperatures, pH).The results show that the recation is of a first order with activation energy equal to (6.6512 kJ /mol).

Keywords: Amoxicillin derivation, Photodegradation, Photo-catalysis, nanoTiO₂.

Introduction:

The knowledge of the interaction between metal ions and antibiotics is of great importance because these reactions can influence the synthesis of metal antibiotics depending on the idea of metal ion interaction with absorbed drugs, for example penicillin in human body can interact with metal ions which are present in a form of free ions or coordinative bounded to proteins, enzymes, amino acid, nucleic bases, nucleotides and other bio ligands(1, 2).

Metals have an esteemed place in medicinal chemistry, most antibiotics do not need metal ions for their biological activities, but there are a number of antibiotics that require metal ions to function properly, such as bleomycin.

streponigrin and bacitracin drugs have gained recognition and are more effective than pure drugs (3),this is due to the fact that metal ions can interact with many different kinds of biomolecules including DNA, RNA, proteins and lipids rendering their unique and specific bioactivities(4, 5). M.A. Hussein, etal(6)(2009) studied Cu(II), Co(II), Ni(II) and Fe(III) chelates of amoxicillin (AMX) antibiotic drug proved that dentate chelate was through – NH₂,-that AMX acts with mentioned metal chlorides as a tri –NH, and oxygen of carbonyl β-lactam groups. K.D. Radosavljevic, etal(7), studied TiO₂ the application of synthesized by sol-gel method in the photocatalytic degradation of

Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad, Iraq. *Corresponding Author: saharsabeeh21@yahoo.com amoxicillin. Effect of the pH value on the photodegradation of AMX was studied at five different pH values. The adjustments of acidic were (pH 3 and 5) and alkaline medium were (pH 9 and 11). The present study was mainly aimed to prepare Co-complex from Amoxicillin derivative and study the photolysis of the prepared complex as a model antibiotic pollutant under UV light illumination and in the presence of TiO₂ suspension. Another objective was prepare nano TiO₂ by Sol-Gel method characterization the TiO₂ surface morphologies and Crystallography and examine the effects of catalyst concentration, pH, tempture and light intensity on the photocatalytic degradation of Co-complex. The third objective was to evaluate kineticsparameters of reaction.

Material and Methods:

The metal salt (CoCl₂.6H₂O) used in this work were obtained from Fluka, FTIR were of 8400 Fourier transform Shimadzu infrared spectroscopy, which wavelength range of (4000-200) cm⁻¹ and UV-Vis 1600A Shimadzu was used to record the electronic spectra at wave length range of (190-1100) nm .The metal analysis was conducted via a Perkin Elmer 500 Atomic Absorption Spectrophotometer. Conductivity Meter 220 with Gall encamp was used to calculate the molar conductivity in ethanol as a solvent at room temperature.M.F.B-6000.01 was used as a melting device. Magnetic susceptibility balance model MSB-MKT was used for magnetic moment measurement.

Preparation of ligandC₁₆H₁₉N₃O₃S (L).

Methyl-6-[2-amino-2-(4-Thelig and hydroxyphenyl) acetamido]-2,2-dimethyl-5-oxo-1thia-4-azabicyclo[3.2.0] heptane-3-carboxylate was prepared according to Obeed and Khalidan (8).

Amixture of amoxicillin (0.02mol) and an excess of absolute methanol (50ml) with 1-2 drops of concentrate sulfuric acid was placed in 100 ml round bottom flask. The mixture was refluxed in a bath water (50°C) for 3 hrs. The solution was cooled and poured into crushed ice. The obtained precipitate was filtered, dried and recrystallized in ethanol.

Preparation of complex.

An amount of (0.236g ofCoCl₂.6H₂O)was dissolved in 10 ml of ethanol and mixed with (0.93 g of ligand dissolved in 15 ml ethanol) in molar ratio 1:2 (M: L) in a round bottom flask under heating and refluxed for 3 hrs. The colored precipitate was filtered then washed with ethanol and dried then keeped in desiccator.

Preparation of (TiO₂) Nano particles using (Sol-Gel) method.

Five milliliters of glacial acetic acid (99.5%) were added drop wise to 50 ml of distilled ethanol (99.9%) and vigorously stirred for about 1 hr., then (6.3) ml of Titaniumtetraisopropoxide (TTIP 99%) were added drop wise to the clear cooled glacial acetic acid- ethanol solution with continuous stirring for about 1 hr, dryingfor 1hr at 50 °C and calciniedat 400 °C for 3 hrs(9).

Photolysis Procedure.

Thermostatic cylinder photo cell (75 ml) and medium pressure mercury lamp were used. A series of standard solutions of Co- complex was prepared with a concentration of $[1-3.5] \times 10^{-4}$ M and the absorption values were recorded at a wavelength of (450) nm.

Results and Discussion:

The physio - chemical properties were summarized in table (1). The complex powder was stable at room temperature with color listed in table (1). A molar ratio of (1:2)(M: L)was use to prepared complex, which can be suggested according to the analytical data.

Table 1. Analytical and some physical data for the ligand and its cobalt complex.

Compounds	Elemental analysis Found (cal.)			M.P °C	Color	%Yield	$\mu_s cm^{-1}$	
	С	Н	Ν	Со				
$C_{16}H_{19}N_3O_3S(L)$	48.04 (49.1)	5.26 (5.30)	18.2 (18.9)	0.00	196	Light yellow	87	0.00
$Co(C_{32}H_{41}N_6O_{7.5}S_2)Cl_2$	38.67 (39.5)	4.59 (5.11)	12.35 (13.9)	5.73 (6.12)	211	Greenish blue	78	80

Infrared spectrum.

L

complex

Co-

3032

3086

The FTIR spectrum of ligand exhibit a strong band at (1778) cm⁻¹ due to the presence of carbonyl group of ester that appears usually around (1700) cm⁻¹, (10) β -lactam carbonyl group occurred at a significant value about (1724)cm⁻¹. The band of the v(NH) group appeared at the (3178.5) cm⁻¹ in the spectrum. If the band of carbonyl group of ester did not shift in complex means that the carbonyl did not participate in coordination. The bands attributed to the β -lactam was shifted to higher wave number in

1689

1778

1648

3151

2974

3155

complex about (15.8) cm⁻¹ indicating that β -lactam carbonyl group was involved in complex formation (11). The bands of v(NH) group were shifted to higher wave number in complex about (54)cm⁻¹so the ligand behaves as a bidentate through the coordinationvia oxygen and nitrogen atoms. This results are further supported by the occurrence of M-O and M-N bands in the spectrum of the complex at the range mentioned in literatures(12, 13). The other important characteristic peaks in the FT-IR spectrumare listed in table (2).

 νH_2O

3444

3475

		I able 4	2. F I IK (bands for Li	gand (L)	and its c	omplex (A	A)		
Comp.	vNH	vC=O Est& Amid	vCH Alph arom	νC=O β-lactam	vC=C	vC-O	vM-N	νМ-О	M-Cl	
т	2022	1778	2970	1704	1616	10.40				

1616

1616

1242

1230

532

415

288

1724

1739.8

Electronic spectrum.

The electronic absorption spectrum s used to predict the geometry according to the shape and number of observed peaks beside those calculated onces depending on the information of Racah parameter (B[°]), 10Dq and nephelauxetic factor (β), free ion (B_o) using Tanabe Sugano diagram.

The electronic spectrum of the ligand shows three main bands, the first and the second absorption bands appeared at (42372 and 36363) cm⁻¹ are due to $(\pi - \pi^*)$ transitions located on (C=C)group. The third absorption appeared at (31250) cm⁻¹ attributed to $(n - \pi^*)$ may be located on the (C =O) group (14).

Co- complex.

The magnetic measurements showed the cobalt ion in its greenish blue complex to be paramagnetic with (d⁷)configuration in distorted tetrahedral environment (15),in infrared region the(v₁) is found as a weak band at (3451)cm⁻¹ due to transition ${}^{4}A_{2} \rightarrow {}^{4}T_{2}$ the (v₃) was calculated as the average to three bands and assigned to the transition ${}^{4}A_{2} \rightarrow {}^{4}T_{1}(p)$ at about (16977) cm⁻¹,while the (v₂) was calculated by reference to T.S.D for d⁷ configuration (16,17) to the transition ${}^{4}A_{2} \rightarrow {}^{4}T_{2}(f)$. The Racahparameter B⁻, nephelauxetic factor β and the value of (10 Dq) were also estimated as describe in table(3).

Table 3. The electronic s	pectrum data and the	ir assignment of the	e ligand and pi	epared cobalt complex

Comp.	Band cm^{-1}	Assignment	$B^0 cm^{-1}$	Dq/B ⁻	β	10Dq cm ⁻¹
L	67613 42372 31250	π-π [*] n- π*				
Co- complex	3451 5217(cal.) 16977	${}^{4}A_{2} \rightarrow {}^{4}T_{2}$ ${}^{4}A_{2} \rightarrow {}^{4}T_{2}(F)$ ${}^{4}A_{2} \rightarrow {}^{4}T_{1}(p)$	970	0.47	0.76	3470

Characterization of Nanostructure TiO₂.

Atomic force microscope was used to detect (TiO_2) nanoparticles structure and to get morphological information. Fig(1, 2) show typical surface AFM image (in three and two dimensions). The nano particle is spherical in shape(18)and has an average diameter of (52.21) nm.

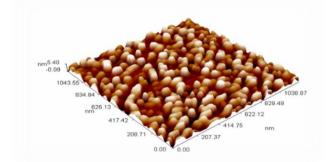


Figure 1. The AFM -3D image

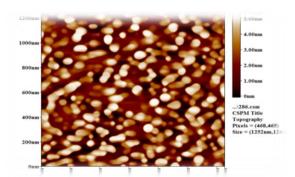
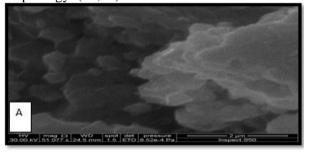



Figure 2. The AFM 2D image

The Scanning Electron Microscope (SEM) show the surface morphology (Fig 3) of synthesized TiO₂nano powder by sol- gel method after calcinations at $(400^{\circ}C)$ which illustrate the small size of the particle show that the synthesized nanoparticles are spherical and have homogenous morphology. (18,19).

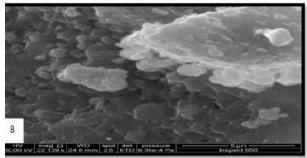


Figure 3. SEM images of synthesized TiO₂nano powder by sol- gel after calcinations at 400°C.(A) 2μm,(B)5 μm

XRD- Diffraction

XRD Technique was used to investigate the phase transformation of the prepared sample, Fig (4) shows the XRD pattern for the calcinated sample calcinations at (400 °C) for (2hr), the anatase phase was only observed. Themain diffraction peaks were at $2\theta = 25.30$, 37.83 and 48.05 corresponding to (101), (004), (200) planes respectively (20, 21).Crystalline size is 10.23 nm calculated by using the Scherrer formula.

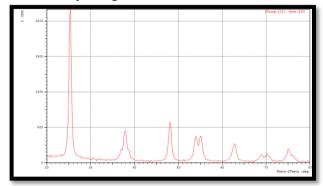


Figure 4. TheXRD-Diffraction of TiO₂ nano particles at calcinations temperatures, 400°C.

Photodegradation of Co-complex

The removal degradation percentage of Cocomplex was defined in Eq(1).

Degradation (%) = $[(C_0 _ C_t)/C_0] \times 100....(1)$. Where C_o is the initial concentration and C_t is the concentration at irradiation time. The calibration curve used to calculate C_t is shown in figure (5).

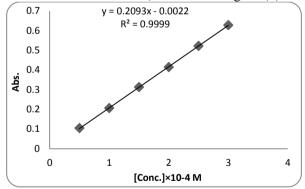


Figure 5. The Calibration curve for Co-complex a wavelength (450) nm, at25°C.

Effect of light.

According to the results, fig (6) show that no photodegradation for complex was happen in dark and get photodegradation in UV, whereas UV plays an important role in photo degradation by using TiO₂. Reactions are initiated when a photon of higher energy level or equal to the band gap energy is absorbed by TiO₂ catalyst promoting an electron (e^-) from the valence band to the conduction band with simultaneous generation of a positive hole (h+) in the valence band. Themechanism of radical's

generation ('OH and $\cdot O_2^-$) is presented as in the following equation

 $TiO_{2}+hv \rightarrow TiO_{2}(e^{-}+h^{+}) \qquad 1$ $H_{2}O+TiO_{2}(h^{+}) \rightarrow TiO_{2}+OH+H^{+} \qquad 2$ $O_{2}+TiO_{2}(e^{-}) \rightarrow TiO_{2}+O_{2} \qquad 3$

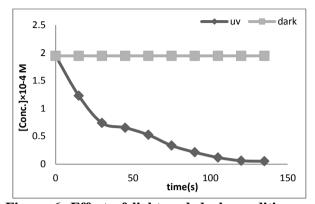


Figure 6. Effect of light and dark condition on photodegradation of Co-complex with TiO_2 nanoparticles (0.003g)at 25°C.

Effect of Catalyst amount.

Fig (7) includes the results obtained for the $[2\times10^{-4}]$ M Co-complex using a lamp (MPML) and different amounts of the nano-photo catalyst $(TiO_2)(1 -5) \times 10^{-3}$ g with keeping all other parameters fixed.

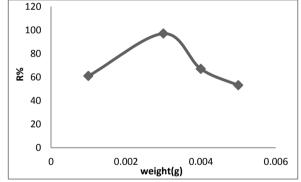


Figure 7. Influence of catalyst loading (TiO₂)on Co-complex(2×10⁻⁴ M)photodegradation at 25°C.

The best amount of the catalyst (0.003 g) is used in a series of experiments to study the photodegradation of different concentrations of the Co-complex and the results obtained shown in figure (8).

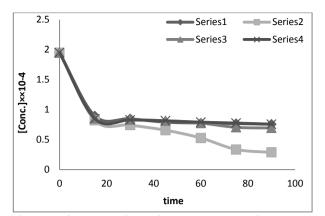


Figure 8. Relationship between time and complex concentration with using different TiO_2nano particles.1. TiO_2 (0.001g), 2. TiO_2 (0.003g).3. TiO_2 . (0.004g), 4. TiO_2 (0.005g).

Fig (7), (8), show that the best concentration for photocatalyst lead to higher photodegradation was (0.003) g. Increasing the concentration of the photocatalyst (TiO₂) higher than (0.003)g lead to decreasing in the degradation process and mineralization rate due to aggregation of TiO₂ nanoparticles at high concentration causing a decrease in the number of surface active sites and an increase in the opacity and light scattering the falling light(22).

Effect of temperature.

A series of experiments were carried out at different temperatures (278 - 318) K, the rate constant (k) was calculated at each temperature, and the values are (0.003, 0.009, 0.027, 0.005, 0.006) s⁻¹ at (278, 288, 298, 308 and 318)K respectively for the degradation of Co-complex $[2 \times 10^{-4}]$ M Conc. with 0.003g TiO₂. The results showed no significant change in the rate of complex degredation.

Effect of pH.

The photodegradation of Co-complex was studied at five different pH values under UV-light. pH value of the solution was adjusted before irradiation. The adjustments of acidic (pH 2and 4) and alkaline medium (pH 6and 10) were made using diluted HCl or NaOH respectively as shown in Fig (9).The results show complex and TiO₂ are both positively charged in more acidic conditions [pH < 4]. These should hinder the adsorption of complex on TiO₂ surface and slow the reaction (7).In alkaline medium the charge of complex and TiO₂ is neutralized no attraction forces between the catalyst and complex.

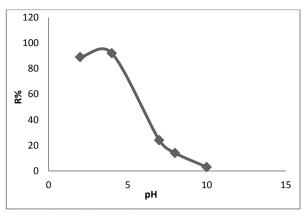


Figure 9. Effect of pH value on the photo catalytic degradation rate of Co- complex on $TiO_2(0.003)$ g at 25°C.

Effect of sunlight.

The impact was identified of sunlight radiation on the amount of photodegradation of Cocomplex with and without TiO2nano powder and irradiated by sunlight (2 hours), where the intensity of the sunlight 1.425×10⁻⁸ Ein.1⁻¹.Sec⁻¹. The result was observed that photodegradation did not happen in absence of TiO2nanopowder, but occurs when TiO_2 was used in solution inside the cell. Fig (10) shows the effect of sunlight on the Co-complex conc. Note through the fig (10) that the amount of photodegradation of the sunlight radiation is at a slow rate compared to the effect of UV, which increases the speed of photodegradation and can be explained by the low intensity of sunlight radiation. This wavelength has a significant effect on TiO_2 by stimulating electrons from Valence Band (V.B) to conduction Band (C.B).

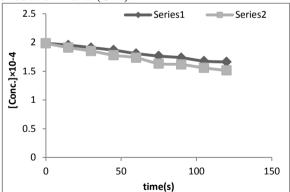


Figure 10.Effect of sunlight on photodegradation Co- complex conc. at 25 $^{\rm O}$ C. 1.without TiO₂, 2. With TiO₂

Effect of light Sources.

Under constant parameters (temperature, catalyst) two different optical sources were used UV lamp and Visible Irradiation. From the results one can conclude that photodegradationoccur when using different sources of light, but the difference between them depends on the intensity or

wavelength of the radiation emitted from the light source. Fig (11) shows the result of different sources (UV) and (Vis)effect. Comparing the source (UV) and (Vis), onecan show that the degradation using (UV) light was higher than Vis light .This may be because when the wavelength decrease the number of electrons moving from the valance band to conductive bandincreased(energy gab of TiO2 is 3.29 eV).

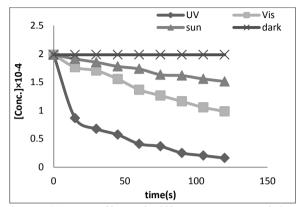


Figure 11. The effect of different sources of light with (0.003g) TiO₂ on Co-complex degradation. 1-UV ,2- Vis ,3- Sun light,4- Dark

Kinetics Study.

The reaction order was determined using the trail method by applying different equation of order reaction 0,1 and 2

$C = C_0$ -kt	\dots (5) for zero order
$lnC = ln C_0$ -kt	(6) for first order
$\frac{1}{c} = \frac{1}{c_0} + kt$	(7) for second order

The results obtained are shown in Fig (12). The values of correlation efficient R² obtained from the plotting of the above equations are 0.898, 0.973 and 0.797 for 0, 1 and 2 reaction order respectively, which indicate that the photodegredation reaction followed the first order reaction.

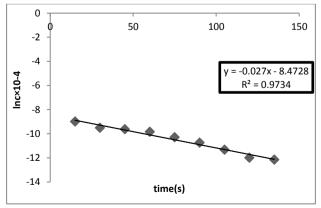


Figure 12. The first-order kinetics reaction of Co - Complex at optimum conditions; 25 °C, [2×10⁻⁴]M Conc. of complex with (0.003 g). TiO₂

The ctivationenergy was calculated by use Arrheniuseqation.

 $ln k = ln \overline{A} - Ea / RT \dots (8).$

The value of (Ea) was calculated equal to (6.6512 kJ / mol) which indicates that the thermal activation steps are negligible in this photo catalytic process (23). The result obtained are shown in Fig (13).

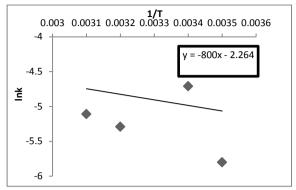


Figure 13. Arrhenius plot for the degradation of Co-Complex, with TiO₂+UV.

Conclusions:

1. FT-IR Spectra of complex showed carbonyl group (C=O) for ester does not shifted in complex, therefore oxygen of carbonyl (C=O) does not participate in coordination. The bands which were attributed to the β -lactam were shifted to higher wave number in complex about (15.8) cm⁻¹ indicating that β -lactam carbonyl group (C=O) were involved in complex for mation. Tetrahedral geometry was suggested for the Co (II).

2. AFM information about TiO_2 nanoparticle powder show the average nanoparticle size was (52) nm, the SEM illustrates the small size and the spherical shape of the synthesized nanoparticles which have homogenous morphology.. The XRD results showed the anatase phase has been only observed and Crystalline size is 10.23 nm has been calculated by using the Scherrer formula.

3.Comparing the source (UV) and (Vis), one can show that the degradation using (UV) light was higher than Vis light .This may be because when the wavelength decrease the number of electrons moving from the valance band to conductive band increased (energy gab of TiO2 is 3.29 eV)..

4.The best concentration for photocatalyst lead to higher photodegradation was (0.003) g. Increasing the concentration of the photocatalyst (TiO_2) higher than (0.003)g lead to decreasing in the degradation process and mineralization rate due to aggregation of TiO_2 nanoparticles at high concentration causing a decrease in the number of surface active sites.

5. The photocatalytic degradation of Co-complex followed a pseudo- first-order kinetic reaction; the low value of activation energy indicates that the thermal activation steps are negligible in this photo

catalytic process. Therefore the photochemical system is generally temperature independent.

Conflicts of Interest: None.

References:

- 1. Ajibola AO. Essential of medicinal chemistry. 2nd, Sharson .Jersey. 1990.
- 2. Dabrowiak JC. Metals in medicine.1 sted, John Wiley and Sons Ltd. 2009.
- 3. Ming LJ. Structure and function of Metallo Antibiotics. Med. Res. Rev .2003; 23(6):697-762.
- GunniranKOO, Alensela M, Yakubu MT. Synthesis, physical properties ,antimicrobial potentials of some antibiotics complexed with trance metals and their effects on alkaline phosphatase activites of selected Rat issue ,African J. Biotech, .2003; 10:1202-1208.
- 5. Saha S, Dhanasekaran D, Chanderleka S, Apanneerselvam. Synthsis, characterization and antimicrobial activity of cobalt metal complex aginst multi drug resistant bacterial and fungal pathogens, Chem. Tech. 2009;7(1):73-80.
- Hussien MA, Samy M, Moamen S R .Spectroscopic and Molecular Structure Characterization of cu(II), Co(II), Ni(II) and Fe (III) amoxicillin antibiotic drug complexes in alcoholic med, J.MOLLIQ, 2016; 221:61-71.
- Radosavljevic KD, Golubovic AV, Radisic MM, Mladenovic DZ M. Amoxicilinphotodegradation by nanocrystalline TiO₂,chem. Ind. Chem. Eng. Q. 2017; 23 (2): 187–195.
- Obeed E, Khalida Th A. Synthesis, Characterization and Polymerization of 1, 3,4- Oxadiazole Derivatives of Amoxicillin and Evaluation Antibacterial Activities, Int. J. Curr. Microbiol. App. Sci, 2016; 5(2): 511-522
- Raed ASM. Corrosion Protection Enhancement of; Zn, Cu, Al, Carbon steel and Stainless steel 316in Artificial Sea Water by Coating with Nanomaterials M.sc thesis, university of Baghdad, 2014.
- 10. Morrsion RT, Boyed RN .Organic Chemistry 6thed.Prentice Hall. 1992
- Mishra Rk, Thakur BG. Synthesis and structure investigation of some lanthanide complexes of cloxacillin, J. Res. in form App and Natural. Sci,. 2014; 6(2):130-135.

- Hodgson JB, Percy GC. Assignments of the metal ligand stretching vibrations in the infrared spectra of some metal (II) complexes of substituted salicyadehyde, spectrochimica Acta. 2014; 34(A):777-780
- Socrates G. Iinfrared Characteristic group frequencies2nded .John Wiley and sons, ltd, New York. 1980.
- 14. Imam H, Kumar B, Shafay at MD. Mixed ligand complexes of transition metal chelates of 1-nitroso-2-naphthol and 8-hydroxy quinoline with picolinic Acid and Quinaldinic acid, Orien J, Chem.2011; 27(1):289-291.
- 15. Lever ABP. Inorganic electronic spectroscopy. 2ndedition, New York. 1984.
- 16. Figgis B, Hitchem M. Ligand filed theory and its Application ,wiley, New York. 2000
- 17. Abbas H, Sahar SH. Synthesis, characterization, thermal Analysis and structural studies of new complexes with tetra dentate ligand, Baghdadscienece Journal.2015; 12(2).
- Adawiya JHR, Ghadah R Ch T. Exploring potential environmental applications of TiO₂ nanoparticles, TMREES International Conference.2017;17: 21-24,
- 19. Mahmoud B, Masoud M, Sahar E. 2017; effect of different alcohols, gelatinizing times, calcination and microwave on characteristics of Ti_{O2} nanoparticles synthesized by sol–gel method, J .TheorApplPhys , 2017; 11:79–86
- 20. Zainab N J, Adawiya J H, Samar Y T. Synthesis of TiO_2 nan particles by using Sol-Gel method and its applications as antibacterial agents. Eng. &Tech. J. 2014; 32(3).
- 21. Maya D, Manas R, Singh UP. Synthesis of TiO₂nanocrystalline powder prepared by Sol-Gel technique using Tio₂ powder reagent, adv. Appl. Sci. Res., 2014; 5(3):140-145,
- 22. Emad S, Chaudhuri M. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO₂ and UV/H₂O₂/TiO₂photocatalysis. Desalination, 2010; 252:(46-52)
- 23. Mills A, Davies R. Activation energies in semiconductor photocatalysis for water purification: the 4-chlorophenol-TiO₂ photosystem J. photochem. photobiol. 1995; 85: 173-178.

تحضير وتشخيص معقعد الكوبلت من الليكند C₁₆H₁₉N₃O₃Sوالتحلل الضوئي باستخدام اوكسيد تيتانيوم الناوني كعامل مساعد

ماب خطاب عمر سحر صبيح حسن احلام محمد فرحان

قسم الكيمياء، كلية العلوم للبنات، جامعة بغداد، بغداد، العراق.

الخلاصة:

تم تحضير معقد الكوبلت من تفاعل اللينكد المشتق C₁₆H₁₉N₃O₃S مع ملح كلوريد الكوبلت الثنائي وشخص المقعد بواسطة (جهاز تحليل العناصر ومطيافية الامتصاص الذري واطياف الاشعة تحت الحمراء واطياف الاشعة الفوق البنفسجية والمرئية والحساسية المعناطسية والتوصيلية) حيث تبين من خلال التشخيص ان الارتباط تم من خلال ذرة الاوكسجين لمجموعة الكاربونيل وذرة النايتروجين في لاكتام –β والترتيب الهندسي لمعقد الكوبلت هو هرم رباعي السطوح . تمت دراسة حركية التفكك الضوئي للمعقد المحضر بوجود ثنائي اوكسيد التيتانيوم النانوي المحضر كعامل مساعد في ظروف مختلفة (التركيز،درجة الحرارة ،الاس الهيدروجيني) وجد ان تفاعل التجزئة الضوئية من الرتبة الاولى وتم حساب طاقة التنشيط وكانت تساوي (6.6512 kJ/mol).

الكلمات المفتاحية: مشتق الاموكسسلين، التحال الضوئي،العامل المساعداوكسيد التيتانيوم النانوي