DOI: http://dx.doi.org/10.21123/bsj.2018.15.3.0278

Assessment of Radiological Air Contamination for Selected Places at Al-Tuwaitha Nuclear Site during Winter and Spring

Naheel Abbas Mohammed Salih¹ Yousif Muhsin Zayir AL-Bakhat² Altaf Abd ulmajeed Al-Rahmani¹ Omar Mahmood Murbat² Nabeel Hashem Ameen² Nadia Abdulhameed Majed²

Received 28/12/2017, Accepted 2/7/2018, Published 13/9/2018

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:

 \odot

This study presents the results of atmospheric particulates sampling using high volume air sampler for selected places at Al Tuwaitha nuclear site. The collected samples were analyzed for gross alpha /beta radioactivity using Ludlum model 3030 and measurement particles activity in Al Tuwaitha nuclear site and the surrounding areas for the period from 28/12/2016 to 13/4/2017.The measurement of activity concentrations ranged from $(0.42\pm0.03 \text{ to } 4.18\pm0.13)$ Bq/m³ for alpha particles and from $(0.93\pm0.06 \text{ to } 9.21\pm0.26)$ Bq/m³ for beta particles. The activity concentration of nuclides inversely proportional with air temperature and wind speed while humidity is directly proportional with it. Highest value of activity concentration has been found at(Near nuclear and radiation safety directorate/ In the center of planning department/T9)while the lowest value has been found at (the right side of Nuclear application and researches directorate / building 61/T42). The results of this study show that the region has natural nuclides which are the daughters of the two decay series, namely the thorium and the uranium series. In both cases, it is a radioactive Radon isotope which can escape from the soil and ascend into the air.

Keywords: Air radioactivity concentration, Hi Vol3000, Ludlum model 3030, Tuwaitha Nuclear site.

Introduction:

Radiological contamination is the deposition of, or presence of radioactive substances on surfaces or within solids, liquids or gases (including the human body), where their presence is unintended or undesirable. Such contamination presents a hazard because of the radioactive decay of the contaminants which emit harmful ionizing radiation (1).

Airborne radioactive particles may emit alpha, beta, gamma or neutron radiation, depending on the radioisotope present. The most dangerous of these is alpha particles, since they have high energy (>4 MeV for most alpha-emitting isotopes), leading to large localized radiation doses when inhaled or ingested, compared to betas, gammas and neutrons. For an airborne radioactivity detection system, it is the most important to be able to detect alpha particles and their energies, for radioisotope identification and risk evaluation (2). Atmospheric radioactivity is a matter of concern because the inhalation pathway is a major avenue for the entry

²Ministry of Science and Technology (MOST) -Radiation and Nuclear Safety Directorate (RNSD). Corresponding author: <u>naheel_ammar@yahoo.com</u> of contaminants into the body.

We take in a larger mass of air than either food or water; the daily intakes by a reference person are only 1.9 kg of food and 2.2 kg of water, but 26 kg of air. Additionally, the area of interface in the lungs between the body's internal milieu and the outside atmosphere is $50-100 \text{ m}^2$. This large interface facilitates the transfer of noxious agents from the inhaled air into the body fluids. Therefore, if the quantity of radioactivity being handled is great enough to pose a significant inhalation hazard, in case of an accidental release of the radioactivity to the air (3).

In 2012, Clemenza *et al.* (4) studied the presence of air borne¹³¹I, 134 Cs, and 137 Cs in air particulate due to accident of Fukushima reactors that have been detected and measured in the Low Laboratory Radioactivity operating in the Department of Environmental Sciences of the University of Milano-Bicocca. The sensitivity of the detecting apparatus is of 0.2 $\mu Bq/m^3$ of air. Concentration and time distribution of these radionuclides were determined and some correlations with the original reactor releases were found. Radioactive contaminations ranging from a few to 400 μ Bg/m³ for the ¹³¹I and of a few tens of

¹Department of Physics, College of Science for Women, University of Baghdad, Baghdad, Iraq.

 μ Bq/m³ for the ¹³⁷Cs and ¹³⁴Cs have been detected(4).

In 2016, Mann et al.(5) showed that the radon and thoron at ground levels from Hisar district varied from 11 to 112 and 11 to 80 Bq m⁻³, while for Fatehabad district from 5 to 24 and 59 to 105 Bq m⁻³, respectively, in summer season. In winter season, indoor radon and thoron levels from Hisar district varied from 15 to 43 and 32 to 102 Bq m⁻³, while for Fatehabad district from 18 to 31 and 11 to 80 Bq m⁻³, respectively. The radon levels of 95 % locations lie well below the limit recommended by International Commission of Radiation Protection, 2011. The radon mass exhalation rate varied from 6 to 56 mBq kg⁻¹ h^{-1} . The radon mass exhalation rates from the soil samples were lower than the worldwide average, i.e. 56 mBq kg⁻¹ h⁻¹ There exists a poor correlation between indoor radon and exhalation rates. More investigations of measurement of radionuclide contents from rock and stone of study area can improve the understanding (5).

In 2017, Hague and Ferdous (6) measured the radioactivity levels of naturally occurring radionuclides ²²⁶Ra, ²²⁸Ra and ⁴⁰K in eighteen water and eight air samples, collected from Savar Atomic Energy Center Bangladesh, were determined using gamma ray spectrometry system using a High Purity Germanium (HPGe) detector of 40% relative efficiency. The air samples had activity concentrations of ²²⁶Ra, ²²⁸Ra and ⁴⁰K varied from 1.49±0.00 to 613.56±0.01, 0.00±0.01 to 79.90±0.02 and from 19.70±0.05 to 206.82±0.00 mBq/m³ respectively. They calculated average activity(6).

In 2017, Karkoush *et al*(7). measured the activity of airborne radon in the outdoor air environment near contaminated zones at two scrap

yards at Al-Tuwaitha Nuclear Site and they recorded using RAD7 electronic radon detector. Outdoor air-borne radon activity ranged from 5.9 to 11.84 Bq/m³ for the first zone and from below detection limit (<4 Bq/m³) to 17.76 Bq/m³ for second zone, which were less than the International Atomic Energy Agency (IAEA) prescribed action level (1000 Bq/m³) for workplaces(7).

In 2016, Rejah determined the activity of natural radionuclides ²²⁶Ra,²³²Th and⁴⁰K by sodium iodide and assessed the annual effective dose in Dielac1,2 and Nactalia 1 and 2 for children. The activity was in the range of allowed levels globally(8).

In 2012, Al- Fifi *et al.*(9) measured the concentration of radon activities and exhalation rate from sand in collected sand samples from different locations in Jazan / Saudi Arabia. The mean exhalation rate was 18.72 mBq/m^2 .d and radon concentration was 88.17 Bq/m^3 (9).

Materials and Methods: Areas of the Study

A number of sites in Iraq has some degree contamination radiological and require of decommissioning and remediation in order to ensure radiological safety. Many of these sites in Iraq are located at the nuclear research center at Al Tuwaitha. The International Atomic Energy Agency (IAEA) Board of Governors has approved a project to assist the Government of Iraq in the evaluation and decommissioning of former facilities that used radioactive materials (10). In this study, 50 locations were covered, many of them are inside Al Tuwaitha site and the other located outside are background areas as shown in Table (1) and Fig. 1.

Figure 1. Aerial photo for Al-Tuwaitha Nuclear Site shows locations of the measurement

Table 1. Sample Locations:

No.	sample Location	ID	GPS coordinates		
1	In the center of nuclear and radiation safety directorate	T1	N 33.20680	E 044.51370	
2	Near library	T2	N33.20917	E044.51562	
3	Near internal check point	Т3	N33.20631	E044.51874	
-	Near the center of nuclear application and researches				
4	directorate / building 61	T4	N33.20572	E044.50954	
5	Outer check point/Dyala bridge	Т5	N33 21860	F044 52541	
6	In the right side of nuclear and radiation safety directorate	Т5 Т6	N 33 20603	E044 51362	
7	Al Defidein bank. Duele bridge	T7	N22 22712	E044.51502	
0	Ai Kanuani bank -Dyala binge	1/ T0	N22 10226	E044.52054	
0	Ishtar area hear Al-Taachi prinary school	10	N55.19220	E044.33194	
9	planning department	T9	N33.20813	E044.51268	
10	In the left side of nuclear and radiation safety directorate	T10	N33.20705	E044.51375	
11	Near outer transport overland	T11	N33 20686	E044 51490	
12	Behind nuclear and radiation safety directorate	T12	N 33 20699	E044 51308	
12	Near agriculture & air condition storages	T12 T13	N 33 20693	E044.51300	
13	In the center of radiochemistry lab, building	T14	N 33 20580	E044.51570	
14	In the right side of dispensary directorate	T15	N 33.20509	E044.51554	
15	In the light side of dispersary directorate	T15 T16	N 33.20015	E044.31040	
16	In front of Radioactive waste management directorate building	110	N 33.20501	E044.51759	
17	Near decommissioning building	TT/	N 33.20693	E044.51370	
18	In the center of nuclear application building	T18	N 33.20693	E044.51370	
19	Near radioactive waste treatment system (RWTS)	T19	N 33.20144	E044.51816	
20	In the right side of radiochemistry lab. building	T20	N 33.20142	E044.51584	
21	Near radioactive waste silo	T21	N 33.20221	E044.51708	
22	In the left side of radiochemistry lab. building	T22	N 33.20524	E044.51583	
23	In the left side of nuclear application and researches	T23	N33.20572	E044.50954	
24	New Coll Chainsting Collin	TO 4	N 22 20024	E044 51051	
24	Near fuel fabrication facility	124	N 33.20034	E044.51251	
25	In front of restaurant	125	N33.20509	E044.51770	
26	storage	T26	N 33.20148	E044.51766	
27	In front of Tammuz-2 reactor	Т27	N 33 20341	F044 51746	
27	In front of playaround behind agricultural directorate	T28	N33 20760	E044.51640	
20	Near Al Elwist region	T20	N33 220700	E044 50707	
29	Real Al Elwiat legion	129	N 22 20106	E044.J0797	
30	facility	T30	N 55.20190	E044.51830	
31	Behind Central labs building	T31	N 33.20738	E044.51193	
32	Near middle check point opposite refuge	T32	N 33.20808	E044.52279	
33	Near park opposite Tammuz-2 reactor	T33	N33.20567	E044.51940	
34	Near old production directorate	T34	N33 20575	E044 51516	
35	Behind restaurant opposite Lama& Tammoz 2 reactor	T35	N33 20544	E011.51510 E011 51878	
36	In the left side of dispensary directorate	T36	N33 20018	E044 51180	
27	Neer Monitory, frinternal audit, directorate	T27	N 22 20722	E044 51752	
31	Near Monitory & Internal audit directorate	137	N 35.20735	E044.31732	
38	Near 14 Tammuz reactor/IRT-5000	138	N33.20467	E044.51547	
39	Near extinguish center	139	N33.20340	E044.52219	
40	In front of second Decommissioning building	T40	N33.20674	E044.51859	
41	In the left side of nuclear application building	T41	N33.20748	E044.51374	
42	the right side of Nuclear application and researches directorate / building 61	T42	N 33.20576	E044.50926	
43	Near transport building opposite production building	T43	N 33.20662	E044.51491	
	Near Salman Pack entrance check point opposite Al Salman	-		TO 11 51050	
44	bridge	Т44	N 33.20746	E044.54850	
45	Western Al-Tuwaitha – near Al Masudy school	T45	N 33.18438	E044.48763	
46	On the top of earthen berms	T46	N 33.20883	E044.50990	
47	Near nuclear application building/ in front of green houses	T47	N 33.20751	E044.51376	
40	In front of nuclear and radiation safety directorate/ towards	T40	N 22 20672	E044 51267	
48	production building	148	IN 33.20072	E044.3136/	
49	Near nuclear and radiation safety directorate / In the left side	T49	N 33 20813	E044 51276	
	of planning department	т <u>г</u> о	N 22 20651	E014 51414	
- 50	mean radioisolopes production facility	1 30	IN 33.20031	E044.31414	

Collection of samples:

The method was based on the collection of aerosols, using high volume air sampling (High Volume 3000) sampler Particulate from Australia. This devise is used for outdoor sampling, with air flow rate (10-15) m^3/hr . The measurement was done by putting the devise 20 meter far from the building and within established periods of time, usually an hour. The total volume of air can be calculated from the flow –rate multiplied by the sampling time (11). The aspiration was done through an air filter, type No.37030, glass fiber with diameter 5.5 cm, with collection efficiency 99% (3). The samples was collected from many locations at Al-Tuwaitha Nuclear Site and the surrounding areas. The atmospheric parameters are: temperature range15 -30 °C; pressure: 750.64-769.60mmHg; wind speed; wind direction and humidity are shown in Table (2).

Measurement of activity:

Almost all the air contaminants are alpha, gamma emitters; in this study the beta. measurements of air filters are performed by the measurement of alpha and beta particles using Ludlum 3030 alpha / beta sample counter from USA which have dual-channel counters designed alpha for simultaneous and beta sample measurement. and scintillation detector type ZnS(Ag) with a shielded chamber and chromeplated brass sample tray that can accept a maximum sample size of 5.1 cm (2 inches) in diameter. The Ludlum 3030 is powered by main supply of 95-250 Vac. The instrument was calibrated daily (prior to use) using standard sources supplied by the manufacturer to be used that day. every Twentyfour hours QC must be done. This feature ensures that the instrument is tested daily and that measurements are valid (12).

Measurement of activity concentration in air:

The measurement of alpha and beta activity was made by the use of the Alpha-Beta counter Ludlum 3030, having the background counting rates 3cpm or less for alpha, and 50cpm or less for beta radiations. The method consists of the following: after the expiry of the aspiration time (1 hour), the filter is removed from the aspiration motor and put in Ludlum 3030 devise and counted for 1minute then repeat. The measurement was repeated 3 times. The average for the three values was estimated. The following equation was applied for estimating the alpha and beta activity concentration in air (13)[§]

$$A = \frac{Activity \, net}{V \times E_f} \quad \dots (1)$$

where: A is radioactive concentrations (activity densities) expressed in units Bq.m⁻³, V is the air total volume (m³), E_f the filter efficiency=99%

(4).The instrument subtracts the back ground automatically. One Becquerel (Bq) is equal to one disintegration per second.1 Becquerel (Bq) is equal to 60 DPM (14). Activity_{net} (Bq)=(DPM_{ins}-DPM_{B.G})/60, where DPM is disintegration per minute, DPM_{ins} is instant disintegration per minute, DPM_{B.G} is background disintegration per minute.

Results and Discussion:

In this study, the outdoor alpha and beta concentrations were measured in 50 locations at Al-Tuwaitha nuclear site and some surrounding locations in winter and spring. Table (2) shows the concentrations of alpha and beta in many locations at Al-Tuwaitha.

Table (3) shows the concentrations of alpha and beta in many locations out of Al-Tuwaitha and the effect of weather factors (which represents background levels) (15). The highest value of activity concentration is $(4.18\pm0.13Bq/m^3 \text{ for alpha})$ and 9.21 ± 0.26 Bq/m³ for beta) which has been found at (Near nuclear and radiation safety directorate/ In the center of planning department/T9) while the lowest value $(0.42\pm0.03$ Bq/m³ for alpha and 0.93 ± 0.06 Bq/m³ for beta) has been found at (the right side of Nuclear application and researches directorate / building 61/T42). The variation in the activity of alpha and beta particles are due to many reasons including: the air temperature, humidity, pressure, wind speed and rains.

To define the relation between different metrological parameters related to activity concentration, we evaluate the correlation factor (R). The value of (R) lay between (1,-1), the maximum positive value (+1) refers to strong directly relation between any two parameters, the minimum negative value (-1) refers to strong inversely relation, if the value of (R) approach to (0) from the left side, it means weak inversely relation, but if the value of (R) approach to (0) from the right side, it means weak directly relation, also if (R=0) that means no relation as shown in Table (4).

The alpha and beta concentration was lower in spring than in winter as shown in Table (2) because the temperature became higher and that caused atmospheric disturbance and then diluted and diffused the airborne radioactivity.

Alpha concentrations are always lower than beta concentrations as shown in Tables (2 and 3) because Alpha particle has small range and small penetration then investigating it became a very difficult in the laboratory.

Some sites out of Al-Tuwaitha were chosen as background (T5, T7, T8, T44 and T45) where the average alpha activity concentration was (1.26±0.09) Bq/m³ for alpha and (2.79±0.20) Bq/m³ for beta while the average measurement of alpha activity concentration was (1.84±0.11) Bq/m³ for alpha and (4.07±0.24) Bq/m³ for beta at the studied areas which were considered within the background (less than twice the background level).

The alpha and beta radiations at Al-Tuwaitha site are from natural isotopes because of the fast disintegration for nuclides with time. This means that the nuclides have short half-life from natural decay series the thorium and the uranium series. As shown (In the left side of nuclear and radiation safety directorate T10) Fig. 2, (Near outer transport overland T11) Fig. 3, (Near agriculture and air condition storages T13) Fig. 4 and (In front of Radioactive waste management directorate building T16) Fig. 5 when the measurement is repeated after (30 minutes).Or (Near radioactive waste silo T21) Fig. 6, (In front of playground behind agricultural directorate T28) Fig. 7, (Beside waste station /opposite side of old waste storage facility T30) Fig. 8, (Near Al Elwiat region T29) Fig. 9, (In front of Tammuz-2 reactor T27) Fig. 10, (Behind waste building RWTS and in front of radioactive waste storage T26) Fig. 11, (Near radioactive waste treatment system(RWTS)T19) Fig. 12 and (In the right side of dispensary directorate T15) Fig. 13 measurement after when is repeated the (10minutes).

Table 2. Atmospheric parameters and the concentrations of alpha and beta in many locations at Al-Tuwaitha.

			Starting	End	Wind	Wind	Temperature	Humidity	Draccura	Alpha Activity	Beta Activity
No.	ID	date	Time	time	Speed	Direction		numuity %	mmHa	concentration	concentration
			Time	unic	(km/h)	Direction	e	70	mmig	Bq/m ³	Bq/m ³
1	T1	28/12/2016	09:40	10:40	10.8	NW	16.52	77	758.64	3.34 ± 0.63	7.81±1.63
2	T2	2/1/2017	10:04	11:04	10.8	Ν	17.35	70	760.64	1.50 ± 0.16	2.98 ± 0.67
3	T3	5/1/2017	10:50	11:50	14.4	Ν	18.7	52	759.67	0.63 ± 0.11	1.36 ± 0.27
4	T4	8/1/2017	09:50	10:50	11	NW	18.5	73	765.5	2.84 ± 0.18	6.30±0.29
5	T6	12/1/2017	09:50	10:50	14.4	NW	15.5	48	750.64	2.94 ± 0.19	6.18±0.34
6	T9	19/1/2017	09:15	10:15	3.7	NW	15.5	79	763.93	4.18 ± 0.13	9.21±0.26
7	T10	22/1/2017	9:30	10:30	14.4	NW	16.5	82	761.93	1.97 ± 0.14	4.57±0.39
8	T11	24/1/2017	9:49	10:49	11	NW	16	83	765.15	2.63 ± 0.31	5.76 ± 0.30
9	T12	29/1/2017	09:10	10:10	14.4	W	16.4	82	763.15	1.97 ± 0.08	4.68 ± 0.07
10	T13	29/1/2017	10:35	11:35	18	NW	18.33	69	765.23	1.43 ± 0.06	3.37 ± 0.16
11	T14	31/1/2017	9:59	10:59	7.2	E	15.00	43	758.64	3.05 ± 0.08	6.69 ± 0.10
12	T15	31/1/2017	11:25	12.25	14.4	calm	22.4	39	758.64	0.54 ± 0.01	1.26 ± 0.08
13	T16	1/2/2017	10.5	11.5	21.6	NW	18.57	56	761.43	1.52 ± 0.10	3.39 ± 0.19
14	T17	1/2/2017	11:20	12:20	25.2	NW	20.05	44	761.25	0.75 ± 0.05	1.71±0.16
15	T18	5/2/2017	9:35	10:35	21.5	NW	29.4	53	765.23	3.00 ± 0.08	6.02 ± 0.13
16	T19	6/2/2017	9:55	10:55	10.8	Ν	15.4	38	765.23	2.54 ± 0.04	5.61±0.15
17	T20	8/2/2017	9:12	10:12	10	NW	17.4	33	765.17	2.92 ± 0.12	6.73±0.87
18	T21	13/2/2017	10:10	11:10	14.4	W	20	74	755.34	2.05 ± 0.12	4.39 ± 0.11
19	T22	13/2/2017	11:38	12:38	21.6	NW	22.37	67	755.34	1.37 ± 0.10	3.04 ± 0.06
20	T23	15/2/2017	10:10	11:10	21.6	SE	19.56	58	768.64	2.46 ± 0.09	5.33 ± 0.18
21	T24	16/2/2017	9:50	10:50	25	SW	26.35	63	765.27	2.31±0.20	4.65±0.26
22	T25	16/2/2017	11.10	12.10	11	SW	21.25	48	761.78	1.16 ± 0.07	2.80 ± 0.10
23	T26	19/2/2017	10:05	11:05	10.8	NW	17.25	37	769.6	1.84 ± 0.11	4.21±0.12
24	T27	20/2/2017	10:20	11:20	14.4	NW	17.5	67	765.24	0.62 ± 0.02	1.41 ± 0.12
25	T28	21/2/2017	10:15	11:15	7.2	N	15.22	31	761.93	2.74 ± 0.11	6.21±0.09
26	T29	26/2/2017	10:15	11:15	10.8	NW	22.25	41	764.24	2.65 ± 0.02	5.71±0.08
27	T30	27/2/2017	10:15	11:15	10.8	W	23.13	36	761.93	2.40 ± 0.18	5.49 ± 0.16
28	T31	27/2/2017	11:35	12:35	7.2	W	23.5	31	761.93	1.04 ± 0.07	2.58±0.14
29	T32	28/2/2017	9:45	10:45	3.7	W	19.4	27	763.87	2.58±0.20	5.36±0.26
30	T33	28/2/2017	11:2	12:2	7.2	S	19.5	21	762.92	1.74 ± 0.04	3.98±0.22
31	T34	8/3/2017	10:03	11:03	10.8	NW	18	31	758.64	2.06±0.11	4.26±0.21
32	T35	7/3/2017	9:45	10:.45	22	NW	20	30	757.64	1.71±0.02	3.77±0.03
33	T36	7/3/2017	11:5	12:5	23	NW	22	62	757.64	1.54 ± 0.04	3.47±0.12
34	T37	5/3/2017	10:55	11:55	23.5	N	24.45	72	760.45	0.66±0.05	1.69±0.09
35	T38	5/3/2017	9:40	10:40	18	N	24	41	759.61	1.44 ± 0.02	3.23±0.18
36	T39	6/3/2017	9:40	10:40	18	NW	26	33	758.65	1.34 ± 0.05	2.81±0.16
37	T40	6/3/2017	11:03	12:03	19	N	26.7	53	758.64	1.19 ± 0.07	2.87±0.10
38	T41	12/3/2017	9:35	10:35	21	E	27	41	759.3	1.04 ± 0.05	2.21±0.19
39	T42	12/3/2017	11:00	12:00	21.6	E	28	30	758.8	0.42 ± 0.03	0.93±0.06
40	143	13/3/2017	10:00	11:00	10.8	NW	25	52	754.34	1.55 ± 0.05	3.41±0.18
41	T46	22/3/2017	09:45	10:45	7.2	Е	25	65	758.64	1.66 ± 0.12	3.54±0.18
42	T47	4/4/2017	09:42	10:42	21.6	N	26	49	763.8	1.14 ± 0.15	2.48±0.46
43	T48	2/4/2017	09:37	10:37	7.2	N	25	65	758.64	1.43 ± 0.18	3.44±0.17
44	T49	9/4/2017	10:18	11:18	10.8	NW	24	70	758.64	2.10 ± 0.10	4.57±0.34
45	T50	13/4/2017	10:58	11:58	21.6	SE	30	23	755.34	0.63±0.09	1.47±0.17
									αAVR	1.84±	0.11
									βAVR	4.07±	0.24
									αΜΑΧ	4.18±	0.13
									βΜΑΧ	9.21±	0.26
									αMIN	0.42±	0.03
									βMIN	0.93±	0.06

#	ID	date	Starting Time	End time	Wind Speed (km/h)	Wind Direction	Temperature	Humidity %	Pressure mmHg	Alpha Activity concentration Bq/m ³	Beta Activity concentration Bq/m ³
1	T5	8/1/2017	11:20	12:20	10.8	S	16.31	44	758.64	1.70 ± 0.09	3.64±0.29
2	T7	16/1/2017	10:45	11:45	18	NW	17.50	67	765.23	1.38 ± 0.08	3.35 ± 0.32
3	T8	17/1/2017	9:47	10:47	14.4	NW	16.90	72	765.23	1.37 ± 0.14	2.81±0.03
4	T44	14/3/2017	10:25	11:25	14.4	Ν	26.5	40	759.80	0.70±0.03	1.65 ± 0.07
5	T45	15/3/2017	10:30	11:30	14.4	SW	26	53	758.64	1.15 ± 0.09	2.51±0.27
	α.Α βΑ	AVR AVR	1.26 2.79	±0.09 ±0.20		αΜΑ βΜΑ	X X	1.70 3.64	±0.09 ±0.29	αMin βMin	0.70±0.03 1.65±0.07

Table 3. Atmospheric parameters and the concentrations of alpha and beta in many locations out of Al-Tuwaitha.

Table 4. The behavior of different parameters.

Parameter 1	Parameter 2	proportional	R
Alpha Activity concentration	temperature	Weak inversely	-0.45
Alpha Activity concentration	Wind speed	Weak inversely	-0.45
Alpha Activity concentration	humidity	Weak directly	0.18
Beta Activity concentration	temperature	Weak inversely	-0.47
Beta Activity concentration	Wind speed	Weak inversely	-0.47
Beta Activity concentration	humidity	Weak directly	0.19

Figure 2.Fastdecay for nuclides with time after repeat the measurements each 30 minute

Figure 3.Fast decay for nuclides with time after repeat the measurements each 30 minute

Figure 5. Fast decay for nuclides with time after repeat the measurement each 30 minute

Figure 6.fast decay for nuclides with time after repeat the measurement each 10 minutes

Figure 8.Fast decay for nuclides with time after repeat the measurement each 10 minutes.

Figure 7.Fast decay for nuclides with time after repeat the measurement each 10 minutes.

Figure 9.Fast decay for nuclides with time after repeat the measurement each 10 minutes.

Figure 11.Fast decay for nuclides with time after repeat the measurement each 10 minutes.

Figure 12.Fast decay for nuclides with time after repeat the measurement each 10 minutes

It noticed that the activity was concentration of nuclides decreased for same locations with existing of rain for sample T10. The activity concentration of T10 (1.97 ± 0.14 Bq/m³ for alpha and 4.57 ± 0.39 Bq/m³ for beta) is less than the activity concentration of sample T1(3.34±0.63 Bq/m^3 for alpha and 7.81±1.63 Bq/m^3 for beta) which is measured on a sunny day as shown in Table (2). This result can be found also for sample where the activity concentration was T9 $(4.18\pm0.13$ Bq/m³for alpha and 9.21 ± 0.26 Bq/m³for beta) for a sunny day and T49 where the activity concentration is (2.10±0.10Bq/m³ for alpha and 4.57 ± 0.34 Bq/m³ for beta) for a rainy day. This behavior has revealed the effect of rain on airborne radionuclides. Since the Radon and the aerosols dissolve in the rain, the radioactivity will decrease on the rainy day.

Conflicts of Interest: None.

Conclusion:

This study involves evaluation of airborne radioactivity levels for selected places at Al-Tuwaitha Nuclear Site during winter and spring. In general, the estimated airborne activities in winter were slightly higher than in spring because of the effect of the meteorological parameters on the activity concentration of nuclides. The airborne activities were slightly higher than the mean background level, indicating that there is no abnormal airborne radiological contamination at the studied areas. Also, it is found that the weather conditions have a mean factor on the radioactivity concentration in air. It is inverse proportional with the rain, temperature and wind speed and direct proportional with the humidity.

Figure 13.Fast decay for nuclides with time after repeat the measurement each 10 minutes

References:

- 1. International Atomic Energy Agency. Terminology Used in Nuclear Safety and Radiation Protection. IAEA, 2007.
- D H P. Human Protection and Performance Division Defense Science and Technology Organization: Defense Science and Technology Organization;2007.
- 3. Cember H, Jonsons D E. Human Protection and Performance Division Defense Science and Technology Organization: Defense Science and Technology Organization;2007.
- Clemenza M O, Fiorini E, Previtali E, Sala E. Measurement of airborne 131I, 134Cs, and 137Cs nuclides due to the Fukushima reactors accident in air particulate in Milan (Italy). J Environ Radioact. 2012;114:113-8.
- Mann N, Kumar A, Kumar S, Chauhan R P. Measurement of indoor radon-thoron in air and exhalation from soil in the environment of Western Haryana India. Radiat Prot Dosim. 2016 April;171(2):248–53.
- Haque M, Ferdous J, Natural Radionuclides Present in Air and Water near Nuclear Research Reactor Savar Bangladesh. Int J Sci Eng Res. 2017 may;8(5):978–83.
- Karkoush H, Al-Tameemi N. Measurement of Outdoor RadonLevels and Assessment of Radiological Hazards for Radioactively Contaminate Scrap Yards at Al-Tuwaitha Nuclear Site. Thirteen. Arab Conf. Peac. Uses At. Energy.2016;7–8.
- 8. Rejah B. Specific activities of natural radionuclides and annual effective dose due to the intake of some types of children powdered milk available in Baghdad Markets. J Coll Sci women. 2017 sep;14(3):6219-24.
- Alffi Z, El-Araby E, Elhaes H. Monitoring of Radon Concentrations in Jazan Beach Soil. J Appl Sci Res. 2012;8(2):823–27.
- Al-Atia A, Helou A. Decommissioning of the Iraq Former Nuclear Complex. 11th International Conference on Environmental Remediation and Radioactive Waste Management: 2007:2–3.
- 11. Ferntree, G. HiVol-3000PUF/XAD Sampler manual: 2009.

Baghdad Science Journal

- 12. Ludlum measurements Inc. measurements. LUDLUM MODEL 3030, 3030-2 &3030E Alpha-Beta Sample Counter manual:2012.
- 13. Al Banna, N. Fundamentals of protection from Ionizing radiation in Iraq:Iraqi Technical Institute authority;1990.
- 14. Reiman, R. Introduction to Radiation Physics, Quantities and Units:Duke University Medical Center Against Radiation; 2002.
- 15.Institute Iraqi Metrological. Metrological Records for Iraq: Iraqi Metrological Institute; 2017.

تقييم التلوث الاشعاعي للهواء لمناطق مختارة في موقع التويثة النووي خلال فصلى الشتاء والربيع

الطاف عبد المجيد الرحماني ¹	يوسف محسن زاير البخات ²	نهیل عباس محمد صالح ¹
نادية عبد الحميد مجيد ²	نبیل هاشم امین ²	عمر محمود مربط ²

¹ قسم الفيزياء، كلية العلوم للبنات، جامعة بغداد، بغداد، العراق. ²وزارة العلوم والتكنولوجيا- مديرية السلامة الاشعاعية والنووية.

الخلاصة:

تم في الدراسة الحالية تجميع الجسيمات العالقة في الهواء الجوي في موقع النويثة النووي والمناطق المحيطة بها على مرشحات هواء باستخدام جهاز سحب الهواء للفترة من 2016/12/28 لغاية 2017/4/13وتم قياس تركيز النشاط الاشعاعي للنويدات الباعثة لاشعة الفا وبيتا باستخدام جهاز لودلم 3030 وقد تراوحت قيمة النشاط الاشعاعي لأشعة الفا من (0.0±0.4كالى0.13±4) بكريل لكل متر مكعب اما جسيمات بيتا فقد تراوح تركيز النشاط الاشعاعي لها من (0.0±0.4±2) بكريل لكل متر مكعب حيث ان هذه التراكيز تتناسب عكسياً مع درجة الحرارة وسرعة الريح وطردياً مع الرطوبة النسبية. وان اعلى تركيز وجد قرب (مديرية السلامة الاشعاعية والنووية – مركز قسم التخطيط النموذج T2) بينما اقل تركيز وجد قرب (دائرة البحوث والتطبيقات النووية- المبنى 61 النموذج T42) خلال هذه الدراسة ان النويدات المشعة هي طبيعية ناتجة من سلاسل انحلال اليورانيوم والثوريوم والتي ينتج ضمن سلاسلها الرادون المشع الموجود في التربة والذي ينتشر الى الهواء الجوي.

الكلمات المفتاحية : تركيز النشاط الاشعاعي للهواء , جهاز سحب الهواءHi Vol3000 ،جهاز لودلم 3030،موقع التويثة النووي .