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Abstract: 
         In this paper, we introduce a new concept named St-polyform modules, and show that the class of St-

polyform modules is contained properly in the well-known classes; polyform, strongly essentially quasi-

Dedekind and 𝜅-nonsingular modules. Various properties of such modules are obtained. Another 

characterization of St-polyform module is given. An existence of St-polyform submodules in certain class of 

modules is considered. The relationships of St-polyform with some related concepts are investigated. 

Furthermore, we introduce other new classes which are; St-semisimple and 𝜅-non St-singular modules, and 

we verify that the class of St-polyform modules lies between them.  

 

Keywords: 𝜅-nonsingular modules, Polyform modules, Semi-essential submodules, St-closed submodules, 

Strongly essentially quasi-Dedekind modules.  

 

Introduction: 
         Throughout this paper, all rings are assumed 

to be commutative with a non-zero unity element, 

and all modules are unitary left R-modules. The 

notations V ≤eU and V ≤𝑠𝑒mU mean that V is an 

essential and semi-essential submodule of U 

respectively. A submodule V of U is called essential 

if every non-zero submodule of U has a non-zero 

intersection with V (1, P.15). A submodule V of U 

is called semi-essential if every non-zero prime 

submodule of U has a non-zero intersection with V 

(2). A submodule V of U is called closed if V has 

no proper essential extensions inside U (1, P.18). 

Ahmed and Abbas introduced the concept of St-

closed submodule, where a submodule V of U is 

said to be St-closed, if V has no proper semi-

essential extensions inside U (3).  

        In this paper, we introduce and study a new 

class named St-polyform modules. This type of 

modules is contained properly in some classes of 

modules such as polyform, strongly essentially 

quasi-Dedekind and 𝜅-non St-singular modules. An 

R-module U is called polyform if for every 

submodule V of U and for any homomorphism 𝑓: 

VU, ker𝑓 is closed submodule in U (4). A 

module U is called strongly quasi-Dedekind, if  

HomR(
U

V
, U)=0 for all semi-essential submodule V 

of U (5). An R-module U is called 𝜅-nonsingular, if 

for each homomorphism 𝑓End(U) such that ker𝑓 

is essential submodule of V, then 𝑓= 0 (6, P.95). 
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        We define in this work a proper class of 𝜅-

nonsingular modules named 𝜅-non St-singular. We 

define St-polyform as follows: an R-module U is 

called St-polyform, if for every submodule V of U 

and for every homomorphism 𝑓: VU, ker𝑓 is St-

closed submodule in V. We verify that an St-

polyform module is smaller than all of the classes: 

polyform, strongly quasi-Dedekind, 𝜅-nonsingular 

and 𝜅-non St-singular modules, see remark 2, 

proposition 30, proposition 40 and proposition 56. 

Beside that we give another generalization for St-

polyform modules. 

        This work consists of three sections. In the first 

section we provide another characterization of St-

polyform modules, we show that a module U is St-

polyform if and only if for each non-zero 

submodule V of U and for each non-zero 

homomorphism 𝑓: VU; ker𝑓 is not semi-essential 

submodule of V, see theorem 4. Also we present the 

main properties of St-polyform module, for 

example we show in proposition 7 the existence of 

St-polyform in certain class of modules, also we 

prove in the proposition 11; if W≤semV for every 

submodule V of U with HomR( 
V

W 
, U) = 0, then U is 

a St-polyform module, and we show in the 

proposition 13 that a module U is an St-polyform if 

its quasi-injective hull is St-polyform. In section 

two we investigate the relationships of St-polyform 

with polyform module and small polyform, where a 

submodule V of U is called small if V+W≠ U for 

every proper submodule W of U (1, P.20). An R-

module U is called small polyform if for each non-

Open Access 

http://dx.doi.org/10.21123/bsj.2018.15.3.0335
https://creativecommons.org/licenses/by/4.0/
mailto:munaaa_math@csw.uobaghdad.edu.iq


Baghdad Science Journal                      Vol.15(3)2018 

 

336 

zero small submodule V of U, and for each 

𝑓HomR(V,U); ker 𝑓 ≰e V (4). Furthermore, we 

introduce another generalization for St-polyform 

module named essentially St-polyform module, and 

we show in theorem 26; the two concepts are 

equivalent under the class of uniform modules. The 

last section of this paper is devoted to study the 

relationships of St-polyform with other related 

concepts such as quasi-Dedekind and some of its 

generalizations as well as 𝜅-nonsingular and Baer 

modules. We show that under certain condition an 

strongly essentially quasi-Dedekind module can be 

St-polyform, see theorem 31. Also, we give a partial 

equivalence between St-polyform and 𝜅-

nonsingular modules, see theorem 42. Moreover, 

other related concepts of St-polyform module are 

introduced which are St-semisimple, and 𝜅-non St-

singular modules. 

St-polyform modules: 

         In this section, various properties and anther 

characterization for St-polyform modules are 

investigated. We start by the following definition. 

Definition 1: An R-module U is called St-polyform, 

if for every submodule V of U and for any 

homomorphism 𝑓:VU, ker𝑓 is St-closed 

submodule in V. A ring R is called St-polyform, if 

R is St-polyform R-module. 

Remark 2: The St-polyform module is a proper 

class of polyform module. In fact if U is St-

polyform module, then for every submodule V of U 

and for any homomorphism 𝑓: VU, ker𝑓 is St-

closed submodule in V. Since the class of closed 

submodule is greater than the class of St-closed 

submodule, thus ker𝑓 is closed submodule in U; 

hence U is a polyform module. On the other hand, 

not every polyform module is St-polyform for 

example; Z2 as Z-module is clearly polyform 

module, but not St-polyform, since the identity 

homomorphism I: Z2  Z2 has zero kernel which is 

not St-closed submodule in Z2 (3). 

 Examples and Remarks 3: 

i. Simple module is not St-polyform 

module. The proof is similar as proving Z2 

is not St-polyform in remark 2. 

ii. Z8 is not St-polyform module. In fact there 

exists 𝑓: (2̅) Z8 defined by 𝑓(𝑥̅) = 2̅x 

𝑥̅(2̅). Note that ker 𝑓= (4̅), and (4̅) is 

not St-closed submodule in Z8. 

iii. Epimomorphic image of St-polyform 

module may not be St-polyform; for 

example Z10 is St-polyform, while  
𝑍10

(2)̅̅ ̅̅  
  

Z5. By i, Z5 is not St-polyform. 

iv. Monoform module need not be St-

polyform. For example, Z2 is a monoform 

Z-module, but it is not St-polyform as we 

seen in remark 2. 

v. Uniform may not be St-polyform module, 

where a non-zero module U is called 

uniform if U every non-zero two 

submodules of U have non-zero 

intersection (1, P.85).  

vi. Q as Z is not St-polyform. In fact Q is 

uniform module, hence it is semi-uniform, 

and the result follows by v. 

vii. Z6 is an St-polyform module, since every 

submodule of Z6 is St-closed. So the 

kernel of any homomorphism from each 

submodule to Z6 is St-closed. For the same 

argument Z10 is St-polyform. 

viii. Z12 is not St-polyform Z-module. 

ix. A submodule of St-polyform module may 

not be St-polyform, for example; by vii, 

Z6 is an St-polyform module, but A = (2̅) 

≤ Z6 is not St-polyform, since A is simple 

module, which is not St-polyform as we 

showed in i. 

         The following theorem gives another 

characterization of St-polyform module. 

Theorem 4: An R-module U is St-polyform, if and 

only if for each non-zero submodule V of U and for 

each non-zero homomorphism 𝑓: VU; ker𝑓 is not 

semi-essential submodule of V. 

Proof: ⇒) Assume that there exists a non-zero 

submodule V of U and a non-zero 

homomorphism 𝑓:VU such that ker𝑓 is semi-

essential submodule of V. But ker𝑓 ≤StcV, 

therefore ker𝑓=V, hence 𝑓=0 which is a 

contradiction. That is ker𝑓 ≰𝑠𝑒𝑚V. ∎ 

⇐) Suppose that there exists a submodule V of U 

and a homomorphism 𝑓: VU such that ker𝑓 is not 

St-closed submodule in V. By definition of St-

closed, there exists a submodule W of V such that 

ker𝑓 ≤semW ≤ V. Consider the homomorphism 

𝑓 ∘ 𝑖: W  U. It is clear that 𝑓 ∘ 𝑖≠ 0, and since 

ker𝑓 W, then  ker(𝑓 ∘ 𝑖) ≤semW (2). But this is 

contradict with our assumption, thus ker𝑓 is St-

closed submodule of V. 

         The following examples are checked by using 

theorem 4.  

Examples 5:  
i. Any semi-uniform module is not St-polyform 

module, where a non-zero R-module U is 

called semi-uniform if every non-zero 

submodule has non-zero intersection with all 

prime submodules of U (2).  

Proof i: Let V be a non-zero submodule of U, 

and 𝑓: VU be a non-zero homomorphism. 

Assume that U is St-polyform module, so 

ker𝑓 ≰sem V, hence ker𝑓 ≰sem U (2). But 

this contradicts the definition of semi-

uniform module, thus U is not St-polyform. 

∎ 
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ii. Z is not St-polyform Z-module. In fact since 

Z is semi-uniform module, so the result 

follows by i. 

iii. Z4 is not St-polyform module. In fact if we 

take V=Z4 in the theorem 4 as a submodule of 

itself, so there exists a homomorphism 

𝑓HomR(Z4,Z4) defined by 𝑓(x)=2x xZ4, 

note that  ker 𝑓= (2̅) which is semi-essential 

submodule of Z4. Thus Z4 is not St-polyform 

module. 

iv. Z⨁Z2 is not St-polyform Z-module. To show 

that; assume there exists a submodule 

V=Z⨁Z2 and a homomorphism 𝑓: VU 

defined by 𝑓(x, 𝑦̅) = (0,𝑥̅), where xZ, 𝑦̅Z2. 

Note that 𝑓≠ 0, and ker𝑓={(x, 𝑦̅)  V| 𝑓(x, 𝑦̅) 

= (0,0)} = {(x, 𝑦̅)  V|𝑥̅= 0̅}= 2Z⨁Z2, hence 

ker𝑓 ≤semV. So Z⨁Z2 is not St-polyform 

module. 

Proposition 6: A direct summand of St-polyform 

module is St-polyform. 

Proof: Let U=U1⨁U2 be a St-polyform module, 

where U1 and U2 are R-submodules of U. Let V1 be 

a non-zero submodule of U1, and 𝑓: V1  U1 be a 

non-zero homomorphism. Consider the following 

sequence: 

    V1 
𝑓
→ U1

𝑗
→ U1⨁U2 

where j is an injection homomorphism.  Now, 𝑗 ∘ 𝑓: 

V1  U, and U is St-polyform, then ker( 𝑗 ∘ 𝑓) 

≰semV1. Since ker( 𝑗 ∘ 𝑓) = {v1V1| ( 𝑗 ∘ 𝑓)(v1) = 

0} = {v1V1| 𝑓(v1) = 0}= ker𝑓⨁ U2, then ker𝑓⨁ U2 

≰semU. But U2 ≤sem U2, thus ker𝑓 ≰semU1 (5, 

Lemma(1.18)). That is U1 is St-polyform. ∎ 

        The converse of proposition 6 is not true in 

general; for example each of Z10 and Z6 are St-

polyform Z-modules; see 3vii, but Z10 ⨁Z6 is not 

St-polyform Z-module. 

         Recall that an R-module U is called Artinian if 

every descending chain of submodules in U is 

stationary (1,P.7). The following proposition 

indicates the existence of St-polyform submodules 

in certain class of modules. 

Proposition 7: Every nonzero Artinian module has 

a submodule which is an St-polyform. 

Proof: Let U be a non-zero Artinian module, and V 

be a submodule of U. If V is St-polyform, then we 

are done. Otherwise there exists a submodule V1 of 

V and a homomorphism 𝑓1: V1 V with 

ker(𝑓1 ) ≰St 𝑉1 and ker(𝑓1 ) ≤St V2 for some proper 

submodule V2 of V1. Now, if V1 is St-polyform, 

then we are through, otherwise there exists a 

submodule V3 of V2 and a homomorphism 𝑓2: V3 

V2 with ker(𝑓2 ) ≰St 𝑉3 and ker(𝑓2 ) ≤𝑆𝑡 𝑉4 for 

some proper submodule V4 of V3. We continue in 

this manner until we arrive in a finite number of 

steps at a submodule which is an St-polyform 

submodule. Otherwise, we have an infinite 

descending chain VV1V2 . . . . . of submodules 

of the module U. But this is a contradiction, since U 

is Artinian. Therefore U contains an St-polyform 

submodule. ∎ 

Proposition 8:  Let U be an R-module. If either V1 

or V2 are St-polyform module, then V1∩ V2 is St-

polyform module. 

Proof: Assume that V1 is St-polyform module. Let 

V be a non-zero submodule of V1∩ V2, and let f: 

VV1∩V2 be a non-zero homomorphism. Consider 

the following sequence: 

V 
𝑓
→ V1∩ V2

𝑖
→ V1 

Since V1 is a St-polyform module, then ker (𝑖 ∘
𝑓) ≰sem V. But ker𝑓=ker(𝑖 ∘ 𝑓), then ker 𝑓 ≰semV. 

That is V1∩ V2 is a St-polyform module. ∎ 

       Recall that an R-module U is called scalar if for 

any 𝑓 EndR(U), there exists rR such that 𝑓(x)=rx 

xU, where EndR(U) is the endomorphism ring of 

U (5). 

Proposition 9: Let U be a faithful scalar R-module. 

Then R is an St-polyform ring if and only if 

EndR(U) is  an St-polyform ring.  

Proof: Since U is a faithful scalar module, then 

EndR(U)  R (7). So if R is an St-polyform module, 

then EndR(U) is polyform, and vice versa. ∎ 

        An R-module U is called multiplication for 

every submodule V of U there exists an ideal I of R 

such that V= IU (8, P.200). 

Corollary 10: Let U be a finitely generated faithful 

and multiplication R-module. Then R is St-

polyform ring if and only if EndR(U) is St-polyform 

module.  

Proof: Since U is finitely generated and 

multiplication, then U is a scalar module (7), and 

the result follows by proposition 9. ∎ 

Proposition 11: Let U be an R-module. If 

W≤semV for every submodule V of U, such that 

HomR( 
V

W 
, U) = 0, then U is a St-polyform module. 

Proof: Assume U is not St-polyform module, so 

there exists a submodule V of U and a non-zero 

homomorphism 𝛼: V U such that ker𝛼 ≤sem U. 

Define 𝜑: 
V

kerα 
 U by 𝜑(v+ker𝛼) = 𝛼(v) v+ 

ker𝛼
V

kerα 
. We can easily show that 𝜑 is well 

defined and homomorphism. Since 𝛼 is a non-zero 

homomorphism, then 𝜑 is also non-zero, thus 

HomR( 
V

W 
, U)≠0. But this contradicts our 

assumption, therefore ker𝛼 ≰semU. ∎ 

Proposition 12: Let U be an R-module, and I be an 

ideal of R such that I  annR(U), then U is St-

polyform R-module if and only if U is St-polyform 
R

I 
 - module.  
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Proof: Assume that U is an St-polyform R-module. 

Since I  annR(U), then it can be easily shown that 

HomR(V , U) = HomR

I

 (V, U) for each submodule V 

of U, hence the result follows directly. ∎ 

        Recall that an R-module U is called injective if 

for every monomorphism 𝑓: AB where A and B 

be any R-modules, and for every homomorphism 𝑔: 

AU, there exists a homomorphism h: B U such 

that ℎ ∘ 𝑓 = 𝑔 (8, P.33). A module U is called 

quasi-injective if it is U-injective R-module (8, 

P.83). The injective hull (quasi- injective hull) of a 

module U is defined as an injective (quasi- 

injective) module with essential extension of U, it is 

denoted by E(U) (respectively U̅) (8, P.39). Clark 

and Wisbauer in (9) proved that  a module U is 

polyform if its quasi-injective hull is polyform. As 

analogue of that, we have the following result. 

Proposition 13: Let U be an R-module. If the 

injective hull E(U) of U is St-polyform module, 

then U is St-polyform module. 

Proof: Let V be a non-zero submodule of U, 

and 𝑓:VU be a non-zero homomorphism. 

Suppose the converse is not true, that is 

ker𝑓 ≤semV. Consider the following Fig. 1. 

 

 
Figure 1. The diagram of injective the module 

E(U) 

 

where 𝑖: V  E(V) and 𝑗: U  E(U) are the 

inclusion homomorphisms. Since E(U) is injective, 

then there exists a non-zero homomorphism 𝑔: V 

U such that 𝑔 ∘ 𝑖 = 𝑗 ∘ 𝑓. It is clear that ker(𝑔 ∘ 𝑖)  

ker𝑔 and ker𝑓 = ker(𝑗 ∘ 𝑓). Since E(U) is an St-

polyform module, then ker(𝑔) ≰sem E(V). By 

definition of injective hull V≤e E(V), hence V≤sem 

E(V), and by our assumption ker𝑓 ≤semV, then by 

transitivity of semi-essential submodules ker𝑓 ≤sem 

E(V) (2). On the other hand, clearly ker𝑓  ker𝑔, 

therefore ker𝑔 ≤sem E(V) (2), which is a 

contradiction. Therefore, ker𝑓 ≰semV, i.e V is an 

St-polyform module. ∎ 

        In example 3ix, we verified that a submodule 

of St-polyform may not be St-polyform. In the 

following proposition, we satisfy that under certain 

condition. 

Corollary 14: Let U be an injective and St-

polyform module. If V is an essential submodule, 

then V is St-polyform module. 

Proof: Since V is an essential submodule of U, then 

E(V) = E(U) (10, Prop(2.22), P.45). But U is 

injective module, so U = E(U). This implies that 

E(V) = U. Since U is St-polyform, then E(V) is St-

polyform. The result follows by proposition 13. ∎ 

        Recall that a module over integral domain R is 

called divisible if U=rU rR (10, P.32). 

Corollary 15: Let R be a division ring, and U be an 

St-polyform R-module. If V is essential submodule 

of U, then V is an St-polyform module. 

Proof: Since R is a division ring, then U is an 

injective module (10, P.30), and the result follows 

by corollary 14. ∎ 

Corollary 16: If R is a division St-polyform ring, 

then each ideal of R is an St-polyform. 

Proof: Let I be an ideal of R. Since R is a division 

ring, then clearly every ideal of R is essential. On 

the other hand, since every module over division 

ring is an injective module (10, P.30), therefore I is 

injective. But R is an St-polyform ring, so by 

corollary 14, I is a St-polyform ideal. ∎ 

Corollary 17: Let U be a divisible St-polyform 

module over P.I.D. If V is an essential submodule 

of U, then V is St-polyform module. 

Proof: Since U is divisible over P.I.D, then U is 

injective (10, Th(2.8), P.35). The result follows by 

corollary 14. ∎ 

         Recall that a commutative domain R is called 

Dedekind; if every non-zero ideal of R is invertible 

(10, P.36).  

Corollary 18: Let U be a divisible module over 

Dedekind domain R, and V≤eU. If U is a St-

polyform module, then V is St-polyform. 

Proof: Since Every divisible module over a 

Dedekind domain is injective (10, P.36), then by 

corollary 14, we are done. ∎ 

St-polyform and Polyform modules: 

        In this section, we investigate the relationships 

of St-polyform module with polyform and small 

polyform modules. Besides that, we introduce 

another generalization for St-polyform modules.  

       In the previous section, we verified that the 

class of St-polyform modules is a proper subclass of 

polyform modules. In the following theorems, we 

use certain conditions under which St-polyform 

module can be polyform module. Before that; an R-

module U is called fully prime if every proper 

submodule of U is prime (2). 

Theorem 19: Let U be a fully prime R-module, 

then U is St-polyform if and only if U is a polyform 

module. 

Proof: ⇒) By remark 2. 

⇐) Assume that U is polyform module, and let V be 

a submodule of U, and 𝑓: V U be a 
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homomorphism. Since U is polyform, then ker𝑓 is 

closed submodule in U. But U is fully prime, then 

ker𝑓 is an St-closed in U (3), hence U is St-

polyform. ∎ 

          Recall that an R-module U is called fully 

essential, if every semi-essential submodule of U is 

essential (2). 

Theorem 20: Let U be a fully essential R-module, 

then U is St-polyform if and only if U is a polyform 

module. 

Proof: ⇒) By remark 2. 

⇐) Let V be a non-zero submodule of U, and𝑓: V 

U be a non-zero homomorphism. Since U is 

polyform, then ker 𝑓 ≰e V. But U is fully essential; 

therefore, ker 𝑓 ≰semV (2), that is U is St-polyform 

module. ∎    

         The following proposition shows that the class 

of St-polyform domain coincides with the class of 

polyform domain.         

Theorem 21: An integral domain R is an St-

polyform if and only if R is polyform domain.  

Proof: ⇒) It is obvious. 

⇐) Assume that R is a polyform domain. Let I be a 

non-zero ideal of R, and 𝑓: I R be a non-zero 

homomorphism. Since R is integral domain, then 

ann(I)=0; that is annR(I)≰semR. Thus R is St-

polyform. ∎   

        Hadi and Marhoon in (4) gave a generalization 

of polyform module as follows: 

Definition 22: An R-module U is called small 

polyform module if for each non-zero small 

submodule V of U, and for each non-zero 

homomorphism 𝑓: VU; ker 𝑓 ≰e V. 

Remark 23: Every St-polyform module is small 

polyform. 

Proof: Since every St-polyform module is 

polyform, so the result follows directly. ∎ 

         Now, we need to introduce another class of 

polyform modules which is bigger than polyform 

modules. 

Definition 24: An R module U is called essentially 

polyform module if for each non-zero proper 

essential submodule V of U, and for each non-zero 

homomorphism 𝑓: VU; ker 𝑓 ≰e U. 

We can generalize St-polyform as follows: 

Definition 25: An R module U is called essentially 

St-polyform module if for each non-zero proper 

essential submodule V of U, and for each non-zero 

homomorphism 𝑓: VU; ker 𝑓 ≰sem V. 

         It is clear that every St-polyform module is 

essentially St-polyform, and every essentially St-

polyform module is essentially polyform module. 

Furthermore, it should be noted that the polyform 

module lies between St-polyform and essentially St-

polyform module. 

         The following theorem gives a partial 

equivalence between St-polyform and essentially 

St-polyform module. 

Theorem 26: Let U be a uniform module, then U is 

St-polyform if and only if U is essentially St-

polyform. 

 Proof: ⇒) It is straightforward. 

⇐) Assume that U is essentially St-polyform, and 

let V be a non-zero submodule of U, and 𝑓: V U 

be a non-zero homomorphism. Since U is a uniform 

module so V ≤eU. But U is essentially St-polyform; 

therefore, ker 𝑓 ≰sem V; that is U is an St-polyform 

module. ∎ 

        By replacing uniform module by hollow and 

essential submodule by small, we have the 

following; and the proof is in a similar way. 

Proposition 27: Let U be a hollow module, then U 

is St-polyform if and only if U is small St-polyform. 

We can summarize the main results of this section 

by the following implications of modules: 

St-polyform  ⇒ Polyform  ⇒ Small polyform  

 

St-polyform ⇒ Polyform ⇒ Essentially St-polyform  

                                                                 ⇓ 

                                          Essentially polyform  

 

St-polyform and other related concepts: 

       This section is devoted to study the 

relationships of St-polyform with some related 

concepts such as quasi-Dedekind and some of its 

generalizations, 𝜅-nonsingular, injective, extending, 

Baer and 𝜅-non St-singular module. 

          Recall that an R-module U is called quasi-

Dedekind, if for every non-zero homomorphism 

𝑓End(U), ker𝑓=0 (11). 

Remark 28: It is worth mentioning that St-

polyform modules and quasi-Dedekind modules are 

independent; for example the Z-module Z6 is St-

polyform module see example 3vii, but not quasi-

Dedekind. On the other hand, Z is quasi-Dedekind 

(11), but not St-polyform, see example 5ii.   

Proposition 29: Let U be a semi-uniform module. 

If U is St-polyform then U is a quasi-Dedekind 

module. 

Proof: Assume that U is St-polyform module, and 

let 𝑓End(U). If V be a non-zero submodule of U, 

then we have the following sequence: 

V 
𝒊

→ U
𝒇
→ U 

Where 𝑖 is the inclusion homomorphism. Suppose 

that ker𝑓 ≠ 0, since U is St-polyform. Note that 𝑓 ∘ 𝑖 
≠ 0. Since U is St-polyform, then ker(𝑖 ∘ 𝑓) ≰semV, 

hence ker(𝑖 ∘ 𝑓) ≰semU (2). But this is a 

contradiction since U is a semi-uniform module, 

thus ker𝑓 = 0. ∎ 



Baghdad Science Journal                      Vol.15(3)2018 

 

340 

The converse of proposition 29 is not true in 

general, for example Z2 is a quasi-Dedekind 

module, but not St-polyform. 

         Recall that an R-module U is called strongly 

essentially quasi-Dedekind if for each non-zero 

homomorphism 𝑓EndR(U), ker𝑓 ≰sem U (5).  

Proposition 30: Every St-polyform module is 

strongly essentially quasi-Dedekind. 

Proof: Let U be St-polyform module. Let V be a 

non-zero submodule of U, and 𝑓: VU be a non-

zero homomorphism. By assumption ker𝑓 is not 

semi-essential submodule in V. In particular, all 

non-zero endomorphisms of U have kernels which 

are not semi-essential in U, proving our assertion. ∎ 

        The converse of proposition 30 is not true in 

general, for example Z2 is strongly essentially 

quasi-Dedekind module (5, Ex (1.11)) but not St-

polyform as we saw in remark 2. In the following 

theorem we use a condition under which the 

converse is true.  

Proposition 31: Let U be a quasi-injective R-

module then U is U is St-polyform if and only if U 

is a strongly essentially quasi-Dedekind module.  

Proof: ⇒) By proposition 30. 

⇐) Let V be a non-zero submodule of U, 

and 𝑓:VU be a non-zero homomorphism. 

Consider the following Fig. 2. 

 

 
Figure 2. The diagram of injective module U 

 

where 𝑖: V U is the inclusion homomorphism. 

Since U is quasi-injective, then there exists a 

homomorphism 𝑔: UU such that 𝑔 ∘ 𝑖 = 𝑓. Now, 

𝑔End(U) and U is essentially quasi-Dedekind; 

therefore, ker𝑔 ≰semU. But ker𝑓  ker𝑔, then by 

transitivity of semi-essential submodule, ker 

𝑓 ≰sem U (2), and we are done. ∎ 

          In (3) Ahmed and Abbas proved that if every 

submodule of U is St-closed, then every submodule 

of U is direct summand. This motivates us to 

introduce the following. 

Definition 32: An R module U is called St-

semisimple if every submodule of U is St-closed. 

         This concept is clearly a proper subclass of 

semisimple modules, and we can easily prove the 

following. 

Remark 33: Every St-semisimple module is St-

polyform module. 

 

       We think that the converse of the remark 33 is 

not true in general, but we cannot find example. 

Definition 34: Let U be an R-module. We define 

St-singular submodule as follows: 

{uU| annR(u) ≤sem R} 

It is denoted by St-sing(U). If St-sing(U) = U, then 

U is called St-singular module, and U is called non 

St-singular  if St-sing(U) = 0. ∎ 

Example 35: Q as Z-module is non St-singular, 

where Q is the set of all rational numbers, since St-

sing(Q) = 0. For the same reason Z is non St-

singular Z-module. 

Proposition 36: Let U and V be R-modules. If 

HomR(V,U)=0 for each St-singular module V, then 

U is non St-singular module. 

Proof:  Consider the inclusion homomorphism 𝑖: 
St-sing(U)  U. It is clear that St-sing(U) is St-

singular module, so by assumption 𝑖=0. But 𝑖(St-

sing (U)) = St-sing(U), therefore sing U=0. That is 

U is non St-singular. ∎ 

Remark 37: For any submodule V of an R-module 

U, St-sing(V)=St-sing(U)∩V. 

Proof: It is clear that St-sing(V)  St-sing(U), so 

the result follows directly. ∎ 

Remark 38: By using remark 37, we can easily 

show that the class of St-singular module is closed 

under submodules.  

         Recall that an R-module U is called 𝜅-

nonsingular, if for each 𝑓EndR(U); ker𝑓 ≤e U, 

then 𝑓=0 (6, P.95). In other words, for every non-

zero homomorphism 𝑓EndR(U);  ker 𝑓 ≰e U. As 

example for this class of modules is Z-module Zp, it 

is 𝜅-nonsingular for every prime number P, since Zp 

is a simple module; therefore, all non-zero 

endomorphisms are automorphisms.  

Remark 39: The concept of 𝜅-nonsingularity is 

strictly weaker than the concept of nonsingularity 

for modules (6, Ex(4.1.10), P.96), where an R-

module U is called nonsingular if Z(U)=0, where 

Z(U)= {uU| annR(u)≤e R} (1, P.30). 

Proposition 40: Every St-polyform module is 𝜅-

nonsingular. 

Proof: Let U be St-polyform module. Let V be a 

non-zero submodule of U, and 𝑓: V U be a non-

zero homomorphism. By assumption, ker 𝑓 ≰semV. 

As we take V=U, then we obtain 𝑓: U  U, and ker 

𝑓 ≰sem U. Since every essential submodule is semi-

essential (2), then ker𝑓 ≰e U, hence U is 𝜅-

nonsingular. ∎ 

         The converse of proposition 40 is not true in 

general as the following examples show: 
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Examples 41:  

1. Every simple module is 𝜅-nonsingular (12), 

but not St-polyform, see example 3i. 

2. The Z-module Q is nonsingular module, 

hence it is 𝜅-nonsingular (12). But Q is not 

St-polyform module, see example 3vi.  

3. The Z-module U = Q ⨁Z2 is not St-

polyform module. In fact if V= Z⨁(0) be a 

non-zero submodule of U. Let 𝑓: V  U be 

a map defined by 𝑓(x,0) =(0,𝑥̅), where xZ. 

It is clear that 𝑓 is a non-zero 

homomorphism, then ker𝑓={(x,0)V| 

𝑓(x,0)=(0,0̅)}=2Z⨁(0). We can easily 

verify that 2Z⨁(0) ≤semV, hence U is not 

St-polyform module. On the other hand, U 

is 𝜅-nonsingular Z-module (12). 

       The following proposition gives a partial 

equivalence between St-polyform and 𝜅-

nonsingular modules. 

Theorem 42: Let U be a fully essential quasi-

injective module, then U is St-polyform if and only 

if U is 𝜅-nonsingular provided that HomR(V,U) ≠ 0. 

Proof: ⇒) By proposition 40.  

⇐ ) Suppose that U is a 𝜅-nonsingular, and let V be 

a non-zero proper submodule of U. Let 𝑓: V U, 

Since HomR(V,U)≠0, so we can take 𝑓≠0. Consider 

the following Fig. 3. 

 

 
Figure 3. The diagram of injective module U 

 

where 𝑖: V U is the inclusion homomorphism. 

Since U is quasi-injective, then there exists a 

homomorphism 𝑔: UU such that 𝑔 ∘ 𝑖 = 𝑓. Now, 

𝑔 EndR(U) and U is 𝜅-nonsingular, thus ker 

𝑔 ≰e U. But ker𝑓  ker𝑔, thus ker 𝑓 ≰e U. Since U 

is fully prime, then ker 𝑓 ≰sem U. ∎ 

Corollary 43: Let U be a fully prime injective 

module. Then U is an St-polyform module if and 

only if U is 𝜅-nonsingular. 

Proof: Since every fully prime module is fully 

essential (2), and EndR(U) ≠ 0, then the result 

follows by theorem 42. ∎ 

Lemma 44: (11) If U is an injective module, then 

J(EndR(U)) = {𝑓 EndR(U)| ker𝑓 ≤eU}. 

Corollary 45: Let U be a fully essential module. If 

U is injective and J(EndR(U)) = 0, then U is St-

polyform. 

Proof: Since J(EndR(U)) = 0, then It is clear that U 

is 𝜅-nonsingular. Since EndR(U) ≠ 0, then by 

theorem 42 we are done ∎ 

       The following theorem gives some useful 

relationships of St-polyform ring with some related 

concepts. Before that, we need the following 

characterization of essential submodules. 

Lemma 46: (10, P.40) Let U be an R-module. A 

submodule V of U is essential, if 0≠uU, there 

exists rR such that 0 ≠ ru V. 

Theorem 47: Let R be a fully essential quasi-

injective ring. Consider the following statements: 

1. R is an St-semisimple ring 

2. R is an St-polyform ring. 

3. R is a 𝜅-nonsingular ring. 

4. R is a polyform ring. 

5. R is a semiprime ring. 

6. R is a nonsingular ring. 

Then: (1) ⇒(2) ⇔(3)⇒(4),(5) ⇒(4), (5) ⇔ (6) ⇒(3), 

(6) ⇒(4) and (5) ⇒(2).      

Proof: (1) ⇒(2) By remark 33.       

          (2) ⇔(3) Since U is fully essential quasi-

injective, then by theorem 42 we are done. 

          (4) ⇒(3) (6, Prop(4.1.5), P.95). 

          (5) ⇒(3) Assume that R is not 𝜅-nonsingular 

ring, so there exists a non-zero 

homomorphism 𝜑EndR(R) with 

ker𝜑 ≤semR. If 𝜑≠0 then there exists 

0≠xR such that 𝜑(x) = tx tR. By 

lemma 46 there exists 0≠kR such that 

0≠xkker𝜑.This implies that 0=𝜑(xk) =x
2
k, 

hence (xk)
2
 = 0. But R is semiprime, 

therefore xk = 0 which is a contradiction. 

Thus 𝜑 = 0. 

              (5) ⇔ (6) (1, Prop(1.27), P.35).  

              (6) ⇒(3)   By remark 39. 

              (6) ⇒(4)   (6, P.95). 

              (5) ⇒(2)  Assume that R is not St-polyform 

ring, so for each non-zero ideal I of R, there exists a 

homomorphism 𝑓:IR such that ker𝑓 ≤sem R. 

Since R is fully essential ring, then ker𝑓 ≤eR. The 

remain steps of the proof are similar of the direction 

(5) ⇒(3). ∎  
         An R-module U is called extending, if every 

closed submodule of U is direct summand of U (8, 

P.118). 

Proposition 48: Let U be a fully essential module. 

If U is an extending module, then U is St-polyform 

module. 

Proof:. Let 0≠V≤ U and 𝑓: V  U be a non-zero 

homomorphism. Since U is an extending module, 

then ker𝑓 ≤cU, hence ker𝑓 ≤cV (1, Prop(1.5), 

P.18). But U is fully essential, thus ker𝑓 ≤StU, so 

we are done. ∎ 

        We need to give the following definition.  
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Definition 49 (6, P.94): An R-module U is called 

Baer, if for every submodule V of U, annS(V) = (𝑓), 

where 𝑓2=𝑓EndR(U). 

        In order to verify the relation of St-polyform 

with Baer module, we need to introduce the 

following proposition. 

Proposition 50: Every Baer quasi-injective module 

is polyform. 

Proof: Let V be a non-zero submodule of U, and 𝑓: 

VU be a non-zero homomorphism. Suppose the 

converse; that is ker𝑓 ≤eV. Consider the following 

Fig. 4:  

 

 
Figure 4. The diagram of injective module U 

 

where 𝑖: V U is the inclusion homomorphism. 

Since U is quasi-injective, then there exists a 

homomorphism 𝑔: UU such that 𝑔 ∘ 𝑖 = 𝑓. Now, 

𝑔EndR(U) and U is Baer, so ker𝑔 = annS 𝑔 = e, 

e
2
=e, and S= EndR(U). This implies that ker𝑔 is 

direct summand of U (12). Since ker(𝑖 ∘ 𝑔)  ker𝑔, 

then clearly ker(𝑖 ∘ 𝑔) is a direct summand of V. 

But 𝑔 ∘ 𝑖 = 𝑓, thus ker𝑓 is direct summand of V. 

On the other hand, ker𝑓 ≤eV, therefore ker𝑓 =V, 

hence 𝑓= 0 which is a contradiction with 

assumption, thus ker𝑓 ≰eV. ∎ 

 Corollary 51: For a fully prime (or fully essential) 

module, every Baer quasi-injective module is St-

polyform. 

Proof: Since in the class of fully prime (or fully 

essential) modules the concept of essential 

submodules coincides with the concept of semi-

essential, so the proof is in similar of the 

proposition 50. ∎ 

Proposition 52: Let U be an extending module. If 

U is St-polyform, then U is a Baer module. 

Proof: Since U is St-polyform, then by proposition 

40, U is 𝜅-nonsingular. On the other hand, U is 

extending, so U is Baer (6, Lemma(4.1.17), P.97). 

∎  
Theorem 53: Let U be an quasi-injective module. 

Consider the following statements: 

1. U is an St-polyform module. 

2. U is a 𝜅-nonsingular module. 

3. U is a Baer module. 

4. U is a polyform module. 

Then: (1) ⇒ (2) ⇒  (𝟑) ⇔ (4), and if U is fully 

prime then (4) ⇒ (1).   

Proof:  (1) ⇒ (2) By proposition 40.  

    (2) ⇒ (3) Since U is quasi-injective, so 

clearly U is extending. But U is St-polyform, 

thus U is a Baer module (6, Lemma(4.1.17), 

P.97). 

           (3) ⇔(4) Since U is Baer and quasi-injective, 

then by proposition 50, U is polyform. Conversely; 

Since U is polyform, then U is 𝜅-nonsingular (6, 

Prop(4.1.5), P.95). But U is quasi-injective; 

therefore, U is extending. So U is 𝜅-nonsingular and 

extending, this implies that U is a Baer module (6, 

Lemma(4.1.17), P.97). 

          (4) ⇒ (1) Since U is fully prime, then by 

theorem 20, we are done. ∎ 

        Now we introduce a subclass of 𝜅-nonsingular 

module. 

Definition 54: An R-module U is called 𝜅-non St-

singular, if for any non-zero homomorphism 𝑓 

EndR(U) ker𝑓 ≤sem U, then 𝑓=0. In other words, 

for every non-zero homomorphism 𝑓 EndR(U) ; 

ker 𝑓 ≰sem U. 

Remark 55: Every 𝜅-non St-singular R-module is 

𝜅-nonsingular. 

Proof: Let 𝑓EndR(U) be a non-zero 

homomorphism. Since U is a 𝜅-non St-singular 

module, then ker 𝑓 ≰sem U, hence ker 𝑓 ≰e U (2). 

Thus U is 𝜅-non St-singular module. ∎ 

       The converse of remark 55 is true under certain 

condition as the following proposition shows. 

Proposition 56: Let U be a fully essential module, 

then U is 𝜅-non St-singular module if and only if U 

is 𝜅-nonsingular. 

Proof: ⇒) By remark 55. 

⇐) Assume that U is a 𝜅-nonsingular module. Let 

V be a non-zero submodule of U, and 𝑓EndR(U) 

be a non-zero homomorphism, so ker 𝑓 ≰semV. 

Since U is a fully essential module, then ker 𝑓 ≰eV 

and we are done. ∎ 

Proposition 57: Every St-polyform module is 𝜅-

non St-singular module. 

Proof: It is similar of the proof of the proposition 

(40), but in this proposition we use the transitive 

property of semi-essential submodules (2), instead 

of the generalized property of semi-essential 

submodules. ∎ 

          We end this work by the following. 

Remark 58: We can summarize the main results 

which were introduced in last section about the 

relationships of the St-polyform module with 

related concepts as follows: 

 

St-polyform ⇒   strongly essentially quasi-Dedekind 

   

St-polyform  ⇒   polyform  ⇒  𝜅-nonsingular  
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St-semisimple ⇒ St-polyform ⇒ 𝜅-non St-singular   

                                                                      ⇓ 

                                                      𝜅-nonsingular  
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 والمفاهيم ذات العلاقة-St مقاس بوليفورم من النمط 

 
 منى عباس أحمد

 
 بغداد، بغداد، العراق.رياضيات، كلية العلوم للبنات، جامعة قسم ال 

 

  الخلاصة:
والذي برهنا أنه محتوى فعلياً في بعضٍ  -Stفي هذا البحث قدمنا نوع جديد من المفاهيم أطلقنا عليه إسم مقاس بوليفورم من النمط          

. قمنا بالتحقق في هذا -𝜅أصناف المقاسات المعروفة، مثل  مقاس بوليفورم، مقاس كواسي ديدكند واسع  بقوة والمقاس غير الشاذ من النمط 

تم البرهنة على وجود مقاس ، وأعطينا تشخيصاً آخر له. كما -Stالبحث من مجموعة من الخواص الأساسية لمقاس بوليفورم من النمط 

ببعض المقاسات  -St كمقاس جزئي في اصناف معينة من المقاسات. كذلك درسنا علاقة المقاس بوليفورم من النمط  -Stبوليفورم من النمط 

 -Stمن النمط ، هما المقاس شبه البسيط -Stالاخرى. إضافة الى ذلك تم اعطاء مفهومين جديدة لهما علاقة بالمقاس بوليفورم من النمط 

 يقع بينهما. St –، وبرهنا أن المقاس بوليفورم من النمط -𝜅Stوالمقاس الغير شاذ من النمط 

 

المقاسات الجزئية شبه الواسعة، المقاسات الجزئية المغلقة من ، مقاسات بوليفورم، -𝜅المقاسات غير الشاذة من النمط  الكلمات المفتاحية:

  .الديديكاندية الواسعة بقوة، المقاسات شبه St-النمط

 

 

 
 


