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Abstract:

In this paper, we introduce a new concept named St-polyform modules, and show that the class of St-
polyform modules is contained properly in the well-known classes; polyform, strongly essentially quasi-
Dedekind and x-nonsingular modules. Various properties of such modules are obtained. Another
characterization of St-polyform module is given. An existence of St-polyform submodules in certain class of
modules is considered. The relationships of St-polyform with some related concepts are investigated.
Furthermore, we introduce other new classes which are; St-semisimple and x-non St-singular modules, and
we verify that the class of St-polyform modules lies between them.

Keywords: K-nonsingular modules, Polyform modules, Semi-essential submodules, St-closed submodules,

Strongly essentially quasi-Dedekind modules.

Introduction:

Throughout this paper, all rings are assumed
to be commutative with a non-zero unity element,
and all modules are unitary left R-modules. The
notations V <,U and V <,,,U mean that V is an
essential and semi-essential submodule of U
respectively. A submodule V of U is called essential
if every non-zero submodule of U has a non-zero
intersection with V (1, P.15). A submodule V of U
is called semi-essential if every non-zero prime
submodule of U has a non-zero intersection with V
(2). A submodule V of U is called closed if V has
no proper essential extensions inside U (1, P.18).
Ahmed and Abbas introduced the concept of St-
closed submodule, where a submodule V of U is
said to be St-closed, if V has no proper semi-
essential extensions inside U (3).

In this paper, we introduce and study a new
class named St-polyform modules. This type of
modules is contained properly in some classes of
modules such as polyform, strongly essentially
quasi-Dedekind and k-non St-singular modules. An
R-module U is called polyform if for every
submodule V of U and for any homomorphism f:
V—-U, kerf is closed submodule in U (4). A
module U is called strongly quasi-Dedekind, if

HomR(%, U)=0 for all semi-essential submodule V

of U (5). An R-module U is called k-nonsingular, if
for each homomorphism f €End(U) such that kerf
is essential submodule of V, then f=0 (6, P.95).
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We define in this work a proper class of k-
nonsingular modules named k-non St-singular. We
define St-polyform as follows: an R-module U is
called St-polyform, if for every submodule V of U
and for every homomorphism f: V—U, kerf is St-
closed submodule in V. We verify that an St-
polyform module is smaller than all of the classes:
polyform, strongly quasi-Dedekind, k-nonsingular
and x-non St-singular modules, see remark 2,
proposition 30, proposition 40 and proposition 56.
Beside that we give another generalization for St-
polyform modules.

This work consists of three sections. In the first
section we provide another characterization of St-
polyform modules, we show that a module U is St-
polyform if and only if for each non-zero
submodule V of U and for each non-zero
homomorphism f: V—U; kerf is not semi-essential
submodule of V, see theorem 4. Also we present the
main properties of St-polyform module, for
example we show in proposition 7 the existence of
St-polyform in certain class of modules, also we
prove in the proposition 11; if W<,V for every

submodule V of U with Homg( % U) =0, then U is

a St-polyform module, and we show in the
proposition 13 that a module U is an St-polyform if
its quasi-injective hull is St-polyform. In section
two we investigate the relationships of St-polyform
with polyform module and small polyform, where a
submodule V of U is called small if V+W+# U for
every proper submodule W of U (1, P.20). An R-
module U is called small polyform if for each non-


http://dx.doi.org/10.21123/bsj.2018.15.3.0335
https://creativecommons.org/licenses/by/4.0/
mailto:munaaa_math@csw.uobaghdad.edu.iq

Baghdad Science Journal

Vol.15(3)2018

zero small submodule V of U, and for each
feHomg(V,U); ker f £,V (4). Furthermore, we
introduce another generalization for St-polyform
module named essentially St-polyform module, and
we show in theorem 26; the two concepts are
equivalent under the class of uniform modules. The
last section of this paper is devoted to study the
relationships of St-polyform with other related
concepts such as quasi-Dedekind and some of its
generalizations as well as k-nonsingular and Baer
modules. We show that under certain condition an
strongly essentially quasi-Dedekind module can be
St-polyform, see theorem 31. Also, we give a partial
equivalence  between  St-polyform and k-
nonsingular modules, see theorem 42. Moreover,
other related concepts of St-polyform module are
introduced which are St-semisimple, and k-non St-
singular modules.

St-polyform modules:

In this section, various properties and anther
characterization for St-polyform modules are
investigated. We start by the following definition.
Definition 1: An R-module U is called St-polyform,
if for every submodule V of U and for any
homomorphism f:V—U, kerf is  St-closed
submodule in V. A ring R is called St-polyform, if
R is St-polyform R-module.

Remark 2: The St-polyform module is a proper
class of polyform module. In fact if U is St-
polyform module, then for every submodule V of U
and for any homomorphism f: V—U, kerf is St-
closed submodule in V. Since the class of closed
submodule is greater than the class of St-closed
submodule, thus kerf is closed submodule in U;
hence U is a polyform module. On the other hand,
not every polyform module is St-polyform for
example; Z, as Z-module is clearly polyform
module, but not St-polyform, since the identity
homomorphism I: Z, — Z, has zero kernel which is
not St-closed submodule in Z, (3).

Examples and Remarks 3:

i. Simple module is not St-polyform
module. The proof is similar as proving Z,
is not St-polyform in remark 2.

Zg is not St-polyform module. In fact there
exists f: (2)— Zg defined by f(x) = 2x
Vxe(2). Note that ker f= (4), and (4) is
not St-closed submodule in Zg.

Epimomorphic image of St-polyform
module may not be St-polyform; for
example Z,, is St-polyform, while Z1o

@)
Zs. By i, Zsis not St-polyform.
Monoform module need not be St-
polyform. For example, Z, is a monoform
Z-module, but it is not St-polyform as we
seen in remark 2.

~
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Uniform may not be St-polyform module,
where a non-zero module U is called
uniform if U every non-zero two
submodules of U have non-zero
intersection (1, P.85).
Q as Z is not St-polyform. In fact Q is
uniform module, hence it is semi-uniform,
and the result follows by v.
Zs is an St-polyform module, since every
submodule of Zg is St-closed. So the
kernel of any homomorphism from each
submodule to Zg is St-closed. For the same
argument Zy, is St-polyform.
Z;, is not St-polyform Z-module.
A submodule of St-polyform module may
not be St-polyform, for example; by vii,
Zs is an St-polyform module, but A = (2)
< Zs is not St-polyform, since A is simple
module, which is not St-polyform as we
showed in i.
The following theorem gives
characterization of St-polyform module.
Theorem 4: An R-module U is St-polyform, if and
only if for each non-zero submodule V of U and for
each non-zero homomorphism f: V—U; kerf is not
semi-essential submodule of V.
Proof: =) Assume that there exists a non-zero
submodule VvV of U and a non-zero
homomorphism f:V—U such that kerf is semi-
essential submodule of V. But kerf <g.V,
therefore kerf=V, hence f=0 which is a
contradiction. That is kerf £5.p,V. m
&) Suppose that there exists a submodule V of U
and a homomorphism f: V—U such that kerf is not
St-closed submodule in V. By definition of St-
closed, there exists a submodule W of V such that
kerf <semW <V. Consider the homomorphism
foi: W — U. It is clear that f o i# 0, and since
kerf cW, then Kker(f oi) <gemW (2). But this is
contradict with our assumption, thus kerf is St-
closed submodule of V.
The following examples are checked by using
theorem 4.

Examples 5:

i.  Any semi-uniform module is not St-polyform
module, where a non-zero R-module U is
called semi-uniform if every non-zero
submodule has non-zero intersection with all
prime submodules of U (2).

Proof i: Let V be a non-zero submodule of U,
and f: V—U be a non-zero homomorphism.
Assume that U is St-polyform module, so
kerf £gem V, hence kerf £¢em U (2). But
this contradicts the definition of semi-
uniform module, thus U is not St-polyform.
|

Vi.

Vii.

viii.

another
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ii.  Zis not St-polyform Z-module. In fact since
Z is semi-uniform module, so the result
follows by i.

Z4 is not St-polyform module. In fact if we
take V=2, in the theorem 4 as a submodule of
itself, so there exists a homomorphism
feHomg(Z4,Z,) defined by f(x)=2x VxeZ,,
note that ker f= (2) which is semi-essential
submodule of Z,. Thus Z, is not St-polyform
module.

Z@Z, is not St-polyform Z-module. To show
that; assume there exists a submodule
V=Z®Z, and a homomorphism f: V—U
defined by f(x, ¥) = (0,x), where xeZ, yeZ,.
Note that f# 0, and kerf={(x, ¥) € V| f(X, y)
= (0,00} = {(x, ¥) € V|x=0}= 2Z&®Z,, hence
kerf <¢emV. SO Z@Z, is not St-polyform
module.

Proposition 6: A direct summand of St-polyform
module is St-polyform.

Proof: Let U=U;@®U, be a St-polyform module,
where U; and U, are R-submodules of U. Let V; be
a non-zero submodule of Uy, and f: V; — U; be a
non-zero homomorphism. Consider the following
sequence:

vibudueu,
where j is an injection homomorphism. Now, j o f:
V. — U, and U is St-polyform, then ker( j o f)
£semV1. Since ker( j o f) = {vieVy| (jo f)(v1) =
0} = {vie V4| f(v1) = 0}=kerf @ U,, then kerf & U,
FsemU. But Uy <gem Uy, thus kerf £gemU: (5,
Lemma(1.18)). That is U, is St-polyform. m

The converse of proposition 6 is not true in
general; for example each of Z;, and Zg are St-
polyform Z-modules; see 3vii, but Z;; ©Zs is not
St-polyform Z-module.

Recall that an R-module U is called Artinian if
every descending chain of submodules in U is
stationary (1,P.7). The following proposition
indicates the existence of St-polyform submodules
in certain class of modules.

Proposition 7: Every nonzero Artinian module has
a submodule which is an St-polyform.

Proof: Let U be a non-zero Artinian module, and V
be a submodule of U. If V is St-polyform, then we
are done. Otherwise there exists a submodule V; of
V and a homomorphism f;: V; —V with
ker(f;) %£s¢ V1 and ker(f; ) <st V, for some proper
submodule V, of V.. Now, if V; is St-polyform,
then we are through, otherwise there exists a
submodule V; of V, and a homomorphism f,: V;
—V, with ker(f; ) £ V3 and ker(f,) <g V, for
some proper submodule V, of Vs. We continue in
this manner until we arrive in a finite number of
steps at a submodule which is an St-polyform
submodule. Otherwise, we have an infinite
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descending chain VoV;oV,o of submodules
of the module U. But this is a contradiction, since U
is Artinian. Therefore U contains an St-polyform
submodule. m

Proposition 8: Let U be an R-module. If either V;
or V, are St-polyform module, then VN V, is St-
polyform module.

Proof: Assume that V; is St-polyform module. Let
V be a non-zero submodule of ViN V,, and let f:
V—V;1NV, be a non-zero homomorphism. Consider
the following sequence:

vivinv,sv,

Since V; is a St-polyform module, then ker (io
) £sem V. But kerf=ker(i o f), then ker f £sernV.
That is V;N V;, is a St-polyform module. m

Recall that an R-module U is called scalar if for
any f e Endr(U), there exists reR such that f(x)=rx
VxeU, where Endg(U) is the endomorphism ring of
U (5).
Proposition 9: Let U be a faithful scalar R-module.
Then R is an St-polyform ring if and only if
Endg(U) is an St-polyform ring.
Proof: Since U is a faithful scalar module, then
Endgr(U) = R (7). So if R is an St-polyform module,
then Endg(U) is polyform, and vice versa. m

An R-module U is called multiplication for
every submodule V of U there exists an ideal | of R
such that V= 1U (8, P.200).
Corollary 10: Let U be a finitely generated faithful
and multiplication R-module. Then R is St-
polyform ring if and only if Endg(U) is St-polyform
module.
Proof: Since U is finitely generated and
multiplication, then U is a scalar module (7), and
the result follows by proposition 9. m
Proposition 11: Let U be an R-module. If
W<emV for every submodule V of U, such that

Homg( % U) =0, then U is a St-polyform module.

Proof: Assume U is not St-polyform module, so
there exists a submodule V of U and a non-zero
homomorphism a: V— U such that kera <., U.

Define ¢: % —U by @(vt+kera) = a(v) Vv+

kerae%. We can easily show that ¢ is well

defined and homomorphism. Since « is a non-zero
homomorphism, then ¢ is also non-zero, thus
HomR(%,U)qﬁO. But this contradicts our
assumption, therefore kera £gemU. B

Proposition 12: Let U be an R-module, and | be an
ideal of R such that I < anng(U), then U is St-
polyform R-module if and only if U is St-polyform

R
T module.
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Proof: Assume that U is an St-polyform R-module.
Since | < anng(U), then it can be easily shown that
Homg(V,U) = Homr (V,U) for each submodule V

I

of U, hence the result follows directly. m

Recall that an R-module U is called injective if
for every monomorphism f: A—B where A and B
be any R-modules, and for every homomorphism g:
A—U, there exists a homomorphism h: B —U such
that ho f =g (8, P.33). A module U is called
quasi-injective if it is U-injective R-module (8,
P.83). The injective hull (quasi- injective hull) of a
module U is defined as an injective (quasi-
injective) module with essential extension of U, it is
denoted by E(U) (respectively U) (8, P.39). Clark
and Wisbauer in (9) proved that a module U is
polyform if its quasi-injective hull is polyform. As
analogue of that, we have the following result.
Proposition _13: Let U be an R-module. If the
injective hull E(U) of U is St-polyform module,
then U is St-polyform module.
Proof: Let V be a non-zero submodule of U,

and f:V—>U be a non-zero homomorphism.
Suppose the converse is not true, that s
kerf <semV. Consider the following Fig. 1.
N L » E(V)
f l
U
: g
J
E(U)
Figure 1. The diagram of injective the module
E(V)

where i: V — E(V) and j: U —» E(U) are the
inclusion homomorphisms. Since E(U) is injective,
then there exists a non-zero homomorphism g: V—
Usuchthat goi =jo f.Itisclearthatker(g i) c
kerg and kerf = ker(j o f). Since E(U) is an St-
polyform module, then ker(g) £sem E(V). By
definition of injective hull V<. E(V), hence V<¢er,
E(V), and by our assumption kerf <g.;,V, then by
transitivity of semi-essential submodules kerf <¢em
E(V) (2). On the other hand, clearly kerf < kerg,
therefore kerg <¢em E(V) (2), which is a
contradiction. Therefore, kerf £gemV, 1.6 V is an
St-polyform module. m

In example 3ix, we verified that a submodule
of St-polyform may not be St-polyform. In the
following proposition, we satisfy that under certain
condition.
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Corollary 14: Let U be an injective and St-
polyform module. If V is an essential submodule,
then V is St-polyform module.

Proof: Since V is an essential submodule of U, then
E(V) = E(U) (10, Prop(2.22), P.45). But U is
injective module, so U = E(U). This implies that
E(V) = U. Since U is St-polyform, then E(V) is St-
polyform. The result follows by proposition 13. m

Recall that a module over integral domain R is
called divisible if U=rU VreR (10, P.32).
Corollary 15: Let R be a division ring, and U be an
St-polyform R-module. If V is essential submodule
of U, then V is an St-polyform module.

Proof: Since R is a division ring, then U is an
injective module (10, P.30), and the result follows
by corollary 14. m

Corollary 16: If R is a division St-polyform ring,
then each ideal of R is an St-polyform.

Proof: Let I be an ideal of R. Since R is a division
ring, then clearly every ideal of R is essential. On
the other hand, since every module over division
ring is an injective module (10, P.30), therefore I is
injective. But R is an St-polyform ring, so by
corollary 14, | is a St-polyform ideal. m

Corollary 17: Let U be a divisible St-polyform
module over P.I.D. If V is an essential submodule
of U, then V is St-polyform module.

Proof: Since U is divisible over P.I.D, then U is
injective (10, Th(2.8), P.35). The result follows by
corollary 14. m

Recall that a commutative domain R is called
Dedekind; if every non-zero ideal of R is invertible
(10, P.36).

Corollary 18: Let U be a divisible module over
Dedekind domain R, and V<,U. If U is a St-
polyform module, then V is St-polyform.

Proof: Since Every divisible module over a
Dedekind domain is injective (10, P.36), then by
corollary 14, we are done. m

St-polyform and Polyform modules:

In this section, we investigate the relationships
of St-polyform module with polyform and small
polyform modules. Besides that, we introduce
another generalization for St-polyform modules.

In the previous section, we verified that the
class of St-polyform modules is a proper subclass of
polyform modules. In the following theorems, we
use certain conditions under which St-polyform
module can be polyform module. Before that; an R-
module U is called fully prime if every proper
submodule of U is prime (2).

Theorem 19: Let U be a fully prime R-module,
then U is St-polyform if and only if U is a polyform
module.

Proof: =) By remark 2.

<) Assume that U is polyform module, and let V be
a submodule of U, andf: V—> U be a
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homomorphism. Since U is polyform, then kerf is
closed submodule in U. But U is fully prime, then
kerf is an St-closed in U (3), hence U is St-
polyform. m

Recall that an R-module U is called fully
essential, if every semi-essential submodule of U is
essential (2).

Theorem 20: Let U be a fully essential R-module,
then U is St-polyform if and only if U is a polyform
module.

Proof: =) By remark 2.

&) Let V be a non-zero submodule of U, andf: V—
U be a non-zero homomorphism. Since U is
polyform, then ker f £, V. But U is fully essential,
therefore, ker f £semV (2), that is U is St-polyform
module. m

The following proposition shows that the class
of St-polyform domain coincides with the class of
polyform domain.

Theorem 21: An integral domain R is an St-
polyform if and only if R is polyform domain.
Proof: =) It is obvious.

<) Assume that R is a polyform domain. Let | be a
non-zero ideal of R, and f: I —R be a non-zero
homomaorphism. Since R is integral domain, then
ann(1)=0; that is anng(l)%£semR. Thus R is St-
polyform. m

Hadi and Marhoon in (4) gave a generalization
of polyform module as follows:

Definition 22: An R-module U is called small
polyform module if for each non-zero small
submodule V of U, and for each non-zero
homomorphism f: V—U; ker f £, V.

Remark 23: Every St-polyform module is small
polyform.

Proof: Since every St-polyform module
polyform, so the result follows directly. m

Now, we need to introduce another class of
polyform modules which is bigger than polyform
modules.

Definition 24: An R module U is called essentially
polyform module if for each non-zero proper
essential submodule V of U, and for each non-zero
homomorphism f: V—U; ker f £, U.

We can generalize St-polyform as follows:
Definition 25: An R module U is called essentially
St-polyform module if for each non-zero proper
essential submodule V of U, and for each non-zero
homomorphism f: V—U; ker f £sem V.

It is clear that every St-polyform module is
essentially St-polyform, and every essentially St-
polyform module is essentially polyform module.
Furthermore, it should be noted that the polyform
module lies between St-polyform and essentially St-
polyform module.

is
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The following theorem gives a partial
equivalence between St-polyform and essentially
St-polyform module.

Theorem 26: Let U be a uniform module, then U is
St-polyform if and only if U is essentially St-
polyform.

Proof: =) Itis straightforward.

<) Assume that U is essentially St-polyform, and
let V be a non-zero submodule of U, and f: V—> U
be a non-zero homomorphism. Since U is a uniform
module so V <.U. But U is essentially St-polyform;
therefore, ker f £gem V; that is U is an St-polyform
module. m

By replacing uniform module by hollow and
essential submodule by small, we have the
following; and the proof is in a similar way.
Proposition 27: Let U be a hollow module, then U
is St-polyform if and only if U is small St-polyform.
We can summarize the main results of this section
by the following implications of modules:

St-polyform = Polyform = Small polyform

St-polyform = Polyform = Essentially St-polyform
U
Essentially polyform

St-polyform and other related concepts:

This section is devoted to study the
relationships of St-polyform with some related
concepts such as quasi-Dedekind and some of its
generalizations, x-nonsingular, injective, extending,
Baer and k-non St-singular module.

Recall that an R-module U is called quasi-
Dedekind, if for every non-zero homomorphism
feEnd(U), kerf=0 (11).

Remark 28: It is worth mentioning that St-
polyform modules and quasi-Dedekind modules are
independent; for example the Z-module Zs is St-
polyform module see example 3vii, but not quasi-
Dedekind. On the other hand, Z is quasi-Dedekind
(12), but not St-polyform, see example 5ii.
Proposition 29: Let U be a semi-uniform module.
If U is St-polyform then U is a quasi-Dedekind
module.
Proof: Assume that U is St-polyform module, and
let feEnd(U). If V be a non-zero submodule of U,
then we have the following sequence:

viulu
Where i is the inclusion homomorphism. Suppose
that kerf # 0, since U is St-polyform. Note that f o i
# 0. Since U is St-polyform, then ker(i o f) £semV,
hence ker(iof) <Z¢emU (2). But this is a
contradiction since U is a semi-uniform module,
thus kerf =0. m
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The converse of proposition 29 is not true in
general, for example Z, is a quasi-Dedekind
module, but not St-polyform.

Recall that an R-module U is called strongly
essentially quasi-Dedekind if for each non-zero
homomorphism f eEndg(U), kerf £sem U (5).
Proposition _30: Every St-polyform module is
strongly essentially quasi-Dedekind.

Proof: Let U be St-polyform module. Let V be a
non-zero submodule of U, and f: V—U be a non-
zero homomorphism. By assumption kerf is not
semi-essential submodule in V. In particular, all
non-zero endomorphisms of U have kernels which
are not semi-essential in U, proving our assertion. m

The converse of proposition 30 is not true in
general, for example Z, is strongly essentially
guasi-Dedekind module (5, Ex (1.11)) but not St-
polyform as we saw in remark 2. In the following
theorem we use a condition under which the
converse is true.

Proposition 31: Let U be a quasi-injective R-
module then U is U is St-polyform if and only if U
is a strongly essentially quasi-Dedekind module.
Proof: =) By proposition 30.

<) Let V be a non-zero submodule of U,
and f:V—>U be a non-zero homomorphism.
Consider the following Fig. 2.

i

X’Y

\/

f

U
Figure 2. The diagram of injective module U

wherei: V— U is the inclusion homomorphism.
Since U is quasi-injective, then there exists a
homomorphism g: U—U such that g o i = f. Now,
ge€End(U) and U is essentially quasi-Dedekind;
therefore, kerg £semU. But kerf  kerg, then by
transitivity of semi-essential submodule, ker
f %£sem U (2), and we are done. m

In (3) Ahmed and Abbas proved that if every
submodule of U is St-closed, then every submodule
of U is direct summand. This motivates us to
introduce the following.
Definition 32: An R module U is called St-
semisimple if every submodule of U is St-closed.

This concept is clearly a proper subclass of
semisimple modules, and we can easily prove the
following.
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Remark 33: Every St-semisimple module is St-
polyform module.

We think that the converse of the remark 33 is
not true in general, but we cannot find example.
Definition 34: Let U be an R-module. We define
St-singular submodule as follows:

{ueU| anng(u) <sem R}
It is denoted by St-sing(U). If St-sing(U) = U, then
U is called St-singular module, and U is called non
St-singular if St-sing(U) =0. m
Example 35: Q as Z-module is non St-singular,
where Q is the set of all rational numbers, since St-
sing(Q) = 0. For the same reason Z is non St-
singular Z-module.
Proposition 36: Let U and V be R-modules. If
Homg(V,U)=0 for each St-singular module V, then
U is non St-singular module.
Proof: Consider the inclusion homomorphism i:
St-sing(U) — U. It is clear that St-sing(U) is St-
singular module, so by assumption i=0. But i(St-
sing (U)) = St-sing(V), therefore sing U=0. That is
U is non St-singular. m
Remark 37: For any submodule V of an R-module
U, St-sing(V)=St-sing(U)NV.
Proof: It is clear that St-sing(V) < St-sing(U), so
the result follows directly. m
Remark 38: By using remark 37, we can easily
show that the class of St-singular module is closed
under submodules.

Recall that an R-module U is called x-
nonsingular, if for each feEndgr(U); kerf <. U,
then f=0 (6, P.95). In other words, for every non-
zero homomorphism feEndg(U); ker f £, U. As
example for this class of modules is Z-module Z,, it
is k-nonsingular for every prime number P, since Z,
is a simple module; therefore, all non-zero
endomorphisms are automorphisms.

Remark 39: The concept of k-nonsingularity is
strictly weaker than the concept of nonsingularity
for modules (6, Ex(4.1.10), P.96), where an R-
module U is called nonsingular if Z(U)=0, where
Z(U)={ueU] anng(u)<. R} (1, P.30).

Proposition 40: Every St-polyform module is k-
nonsingular.

Proof: Let U be St-polyform module. Let V be a
non-zero submodule of U, and f: V— U be a non-
zero homomorphism. By assumption, ker f £semV.
As we take V=U, then we obtain f: U — U, and ker
f £sem U. Since every essential submodule is semi-
essential (2), then kerf £.U, hence U is k-
nonsingular. m

The converse of proposition 40 is not true in
general as the following examples show:
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Examples 41:
1. Every simple module is x-nonsingular (12),

but not St-polyform, see example 3i.

2. The Z-module Q is nonsingular module,
hence it is x-nonsingular (12). But Q is not
St-polyform module, see example 3vi.

3. The Z-module U = Q@Z, is not St-

polyform module. In fact if V= Z®(0) be a
non-zero submodule of U. Let f: V — U be
a map defined by f(x,0) =(0,x), where xeZ.

It is clear that f is a non-zero
homomorphism,  then  kerf={(x,0)eV]|
f(x,00=(0,0)}=2Zd(0). We can easily

verify that 2Z®(0) <gemV, hence U is not
St-polyform module. On the other hand, U
is k-nonsingular Z-module (12).

The following proposition gives a partial
equivalence  between  St-polyform and k-
nonsingular modules.

Theorem 42: Let U be a fully essential quasi-
injective module, then U is St-polyform if and only
if U is k-nonsingular provided that Homg(V,U) # 0.
Proof: =) By proposition 40.

< ) Suppose that U is a k-nonsingular, and let V be
a non-zero proper submodule of U. Let f: V—> U,
Since Homg(V,U)#0, so we can take f#0. Consider
the following Fig. 3.

y

v

U
Figure 3. The diagram of injective module U

where i: V— U is the inclusion homomorphism.
Since U is quasi-injective, then there exists a
homomorphism g: U—U such that g o i = f. Now,
ge< Endg(U) and U is k-nonsingular, thus ker

g *e U. But kerf c kerg, thus ker f %, U. Since U
is fully prime, then ker f £¢on U. B

Corollary 43: Let U be a fully prime injective
module. Then U is an St-polyform module if and
only if U is x-nonsingular.

Proof: Since every fully prime module is fully
essential (2), and Endg(U) # 0, then the result
follows by theorem 42. m

Lemma 44: (11) If U is an injective module, then
J(Endr(V)) = {f € Endr(V)| kerf <.U}.

Corollary 45: Let U be a fully essential module. If
U is injective and J(Endg(U)) = 0, then U is St-
polyform.
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Proof: Since J(Endr(U)) = 0, then It is clear that U
is k-nonsingular. Since Endgr(U) # 0, then by
theorem 42 we are done m
The following theorem gives some useful
relationships of St-polyform ring with some related
concepts. Before that, we need the following
characterization of essential submodules.
Lemma 46: (10, P.40) Let U be an R-module. A
submodule V of U is essential, if V0£ueU, there
exists reR such that 0 #ru V.
Theorem 47: Let R be a fully essential quasi-
injective ring. Consider the following statements:
R is an St-semisimple ring
R is an St-polyform ring.
R is a k-nonsingular ring.
R is a polyform ring.
R is a semiprime ring.
6. R isanonsingular ring.
Then: (1) =2(2) ©(3)=(4),(5) =(4), (5) & (6) =(3),
(6) =(4) and (5) =(2).
Proof: (1) =(2) By remark 33.
(2) &(3) Since U is fully essential quasi-
injective, then by theorem 42 we are done.
(4) =(3) (6, Prop(4.1.5), P.95).
(5) =(3) Assume that R is not x-nonsingular
ring, so there exists a non-zero
homomaorphism @ eEndr(R) with
kerp <semR. If @#0 then there exists
0#£xeR such that ¢(X) tx VteR. By
lemma 46 there exists 0#keR such that
0#xkekerg.This implies that 0=¢(xk) =x’k,
hence (xk)> = 0. But R is semiprime,
therefore xk = 0 which is a contradiction.
Thus ¢ = 0.
(5) & (6) (1, Prop(1.27), P.35).
(6) =(3) By remark 39.
(6) =(4) (6, P.95).
(5) =(2) Assume that R is not St-polyform
ring, so for each non-zero ideal | of R, there exists a
homomorphism f:I-R such that kerf <gem R.
Since R is fully essential ring, then kerf <.R. The
remain steps of the proof are similar of the direction
(5)=>(3). m
An R-module U is called extending, if every
closed submodule of U is direct summand of U (8,
P.118).
Proposition 48: Let U be a fully essential module.
If U is an extending module, then U is St-polyform
module.
Proof:. Let 0#V< U and f: V — U be a non-zero
homomorphism. Since U is an extending module,
then kerf <.U, hence kerf <.V (1, Prop(1.5),
P.18). But U is fully essential, thus kerf <s U, so
we are done. m
We need to give the following definition.

IS
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Definition 49 (6, P.94): An R-module U is called
Baer, if for every submodule V of U, anng(V) = (f),
where f2=f eEndg(U).

In order to verify the relation of St-polyform
with Baer module, we need to introduce the
following proposition.

Proposition 50: Every Baer quasi-injective module
is polyform.

Proof: Let V be a non-zero submodule of U, and f:
V—U be a non-zero homomorphism. Suppose the
converse; that is kerf <.V. Consider the following
Fig. 4:

v

v

U
Figure 4. The diagram of injective module U

wherei: V— U is the inclusion homomorphism.
Since U is quasi-injective, then there exists a
homomorphism g: U—U such that g o i = f. Now,
ge€Endr(U) and U is Baer, so kerg = anng g = e,
e’=e, and S= Endg(U). This implies that kerg is
direct summand of U (12). Since ker(i o g) < kerg,
then clearly ker(i o g)is a direct summand of V.
But goi = f, thus kerf is direct summand of V.
On the other hand, kerf <.V, therefore kerf =V,
hence f= 0 which is a contradiction with
assumption, thus kerf £.V. m

Corollary 51: For a fully prime (or fully essential)
module, every Baer quasi-injective module is St-
polyform.

Proof: Since in the class of fully prime (or fully
essential) modules the concept of essential
submodules coincides with the concept of semi-
essential, so the proof is in similar of the
proposition 50. m

Proposition 52: Let U be an extending module. If
U is St-polyform, then U is a Baer module.

Proof: Since U is St-polyform, then by proposition
40, U is k-nonsingular. On the other hand, U is
extending, so U is Baer (6, Lemma(4.1.17), P.97).
|

Theorem 53: Let U be an quasi-injective module.
Consider the following statements:

1. U is an St-polyform module.
2. U is ax-nonsingular module.
3. Uis a Baer module.

4. U is a polyform module.
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Then: (1) = (2) = (3) © (4), and if U is fully
prime then (4) = (1).
Proof: (1) = (2) By proposition 40.

(2) = (3) Since U is quasi-injective, so
clearly U is extending. But U is St-polyform,
thus U is a Baer module (6, Lemma(4.1.17),
P.97).

(3) &(4) Since U is Baer and quasi-injective,
then by proposition 50, U is polyform. Conversely;
Since U is polyform, then U is x-nonsingular (6,
Prop(4.1.5), P.95). But U is quasi-injective;
therefore, U is extending. So U is k-nonsingular and
extending, this implies that U is a Baer module (8,
Lemma(4.1.17), P.97).

(4) = (1) Since U is fully prime, then by
theorem 20, we are done. m

Now we introduce a subclass of x-nonsingular
module.
Definition 54: An R-module U is called x-non St-
singular, if for any non-zero homomorphism fe
Endr(U) kerf <sem U, then f=0. In other words,
for every non-zero homomorphism fe Endgr(U) ;
ker f £gem U.
Remark 55: Every k-non St-singular R-module is
K-nonsingular.
Proof: Let feEndg(U) be a non-zero
homomorphism. Since U is a k-non St-singular
module, then ker f %s.m U, hence ker f £, U (2).
Thus U is k-non St-singular module. m

The converse of remark 55 is true under certain
condition as the following proposition shows.
Proposition 56: Let U be a fully essential module,
then U is x-non St-singular module if and only if U
is k-nonsingular.
Proof: =) By remark 55.
<) Assume that U is a k-nonsingular module. Let
V be a non-zero submodule of U, and f eEndg(U)
be a non-zero homomorphism, so ker f £¢emV.
Since U is a fully essential module, then ker f £,V
and we are done. m
Proposition 57: Every St-polyform module is x-
non St-singular module.
Proof: It is similar of the proof of the proposition
(40), but in this proposition we use the transitive
property of semi-essential submodules (2), instead
of the generalized property of semi-essential
submodules. m

We end this work by the following.

Remark 58: We can summarize the main results
which were introduced in last section about the
relationships of the St-polyform module with
related concepts as follows:

St-polyform = strongly essentially quasi-Dedekind

St-polyform = polyform = k-nonsingular



Baghdad Science Journal Vol.15(3)2018

5. Hadi IM, Ghawi Th. Strongly Essentially Quasi-
Dedekind Modules. Ibn AL-Haitham J Pure and

St-semisimple = St-polyform = k-non St-singular Applied Sci. 2012 April; 25(1). _
U 6. Birkenmeier GF, Park JK, Rizvi ST. Extentions of
) inaul Ring and Modules. Ph.D. Springer New York
fe-nonsingular Heidelberg Dordrecht London; 2013. 95p.
7. Naoum AG. On The Ring of Endomorphisms of a
Conflicts of Interest: None Finitely Generated Multiplication Module. Periodica

mathematica Hungarica. 1990; 21(3): 249-255.
8. Tercan A, Yucel C. Module Theory. Extending

References: " ; :
. . . Modules and Generalizations. Springer International
1. Goodearl KR. Ring Theory. Non Singular Rings and Publishing Switzerland: 2016. 200p.

Modules. Marcel Dekker, New York and Basel; 1976. 9. Clark J, Wisbauer R. Polyform and Projective -

7p. : ; . .
2. Ahmed MA, Abbas MR. On Semi-essential ggtle_ng(l)rég Modules. Algebra Colloquium. 1998; 5(4):

Su_bmodules. _Ipn AL.-Haltham J Pure and Applied 10. Sharpe DW, Vamos P. Injective Modules. Cambridge
Sci. 2015 April; 28(1):179-185. University Press: 1972, 45

3. Ahmed MA, Maysaa RA. St-closed Submodules. J MIVETSITY T ress, - P

' ’ ' ' 11. Mijbass AS. Quasi-Dedekind Modules. Ph. D.

4 HAIAN?:/:&'I\T;' UE'V' ZE|1K5 SSeR}Iembfer; 18[\(/?);jlfl-l|dgéR Thesis. University of Baghdad, Iraq; 1997.
- hadi IM, viarhoon - >-Monotorm Modules. ) 12. Rizvi ST, Roman CS. On k-Nonsingular Modules

2014 December; 10(6): 26-31. and Applications. Comm in Algebra. 2007
September; 35(9): 2960-2982.

A8l ifd asaliall g St- Jaall) (e a9 g3 Gulla
daaf b e

LGB el calazy calar dxala c&@ﬂe#\g\gﬁ‘&h\*bgj\wﬁ
sdadl)
(any 8 Ulad (5 gina 4l Lia 5 St- Jaaill (g gy sl g9 (lie ] agle Lallal aalial) (3o daa g 55 Liadd Candl 130
1o 8 @aailly Liad - Jaaill (pe SLAD e (el 858 ol 5 2S00 (ol oS Galia oy sl sr (ulie S e g pmall Lliall Ciliaal
odie 25a s o Al 23 LS Al AT Laiis Whaely oSt daaill (e aysid s (ulial Zpulul) (ol A1) (e Ao sana (o Canyl)
Cluiall Gary St- daaill (e a5l g Geliall A8De Ui o @IS lulial) (e Aigrae Calial 8 e (el8aS St- daaill (e a5l 5
St- Laaill (e gl 4nd Gl Laa (St aaill (e o ysid s (ulially Ale Lagd 3aaa (e sgie sllac) &5 clld ) ddla) 5 AY)
Lo @ St— Jaaill (g0 oy sl 53 ulall o Ui a5 epeSt- Jaail (o 3L sl (alaall

e Al A jal) i) e o 4ad A el Cllidl o i s lulia - daadl (g 3ILEN e Ll sdaliball cilalgl)
5 i sl o) L€l 4 lliall (Stodaadl

343



