Synthesis and Characterization of [2-(carboxy methyleneamino)-phenyl imino] acetic acid (L) and its some metal complexes

Jasim Sh. Sultan^{*}, Falih H

Falih H. Mosa^{*}

Received 28, June, 2012 Accepted 9, December, 2012

Abstract

New Schiff base, namely [2-(carboxy methylene-amino)-phenyl imino] acetic acid (L) and its some metal complexes [LCo.2H₂O], [LNi.2H₂O], [LCu].3H₂O, [LCd.2H₂O], [LHg.2H₂O] and [LPb.2H₂O], were reported and characterized by elemental analysis, metal content, spectroscopic methods, magnetic moments and conductivity measurements, it is found that the geometrical structures of these complexes are octahedral [Co(II), Ni(II), Cd(II), Hg(II), Pb(II) and square planar Cu(II).The complexes have been found to posses 1:1 (M:L) stoichiometry

Key words: Synthesis, characterization, New Schiff base and its complexes.

Introduction

N-substituted imines. also known as Schiff bases, have been used extensively as ligands in the field of coordination chemistry, furthermore the Schiff bases are very important tools for the inorganic chemists as these are widely used to design molecular ferromagnets, in catalysis, in biological modeling applications, as liquid crystals and as heterogeneous catalysts[1,2]. Glyoxilic acid and its derivatives play important roles in natural processes, participating in glyoxylate cycle which functions in plants and in some microorganisms[3]. Physicalchemical study of complexation of glyoxilic acid aroyl hydrazones with Cu(I) in solution and reported[4]. solid phase is In continuation of earlier work[5], we report Schiff base derived by the condensation of o-phenylenediamine with glyoxylic acid (1:2) and its metal complexes.

Materials and Methods

All chemicals were purchased from BDH, and used without further purifications.

Instrumentation

- 1. FTIR spectra were recorded in KBr on Shimadzu- 8300Spectrophotometer in the range of (4000-400 cm⁻¹).
- 2. The electronic spectra in H_2O were recorded using the UV-Visible spectrophotometer type (spectra 190-900 nm) CECIL, England, with quartz cell of (1 cm) path length.
- 3. The melting point was recorded on "Gallen kamp Melting point Apparatus".
- 4. The Conductance Measurements were recorded on W. T. W. conductivity Meter.
- 5. Metal analysis. The metal contents of the complexes were determined by atomic absorption technique. Using a (A. A.) shimadzu PR-5. ORAPHIC PRINTER atomic obsorption spectrophotometer.

^{*}Department of Chemistry, College of Education, Ibn-Haitham, University of Baghdad.

- 6. Balance Magnetic Susceptibility model MSB-MLI Al-Nahrain University
- 7. The characterization of new ligand (L) is achieved by:
- A: ¹H and ¹³C-NMR spectra were recorded by using a bruker 300 MHZ (Switzerland). Chemical Shift of all ¹H and ¹³C-NMR spectra were recorded in δ (ppm) unit downfield from internal reference tetramethylsilane (TMS), using D₂O as a solvent.

o-phenylenediamine as a Scheme:

- B: Elemental analyses for carbon, hydrogen for ligand and its complexes were using a Euro Vector EA 3000 A Elemental Analysis (Italy).
- C: These analyses (A and B) were done in at AL-al-Bayt University, Al- Mafrag, Jordan.

Synthesis

1. Ligand Synthesis

The ligand (L) has been synthesized by the condensation of glyoxylic acid with

To a hot solution of ophenylenediamine (0.108g. 1m mole) in (5ml) of ethanol, a hot solution of glyoxylic acid (0.15 g. 2 m mole) in (15ml) of ethanol was added. The solution reflux for 3.5 h., upon cooling aprecipitate formed, was filtered off and recrystallized from a mixture of methanol: acetone: disttled water (5:5:2) giving light brown crystals, yield (86%), m.p. (170)C°

2. Synthesis of complexes

The complex [LCo.2H₂O] has been synthesized as follows:

To a hot solution of ligand (L) (0.220g. 1m mole) in (5ml) of ethanol, a hot solution of cobalt(II) Chloride hexa hydrate (0.238g. 1m mole) in (5 ml) of ethanol was added. The precipitation immediately formed, the mixture was boiled and stirring for 10-15min., filtered off. Recrestallized from a hot of (10ml) methanol, a dark green precipitate, yield 90%, melting point at 170 D°.

A similar method was used to prepare other complexes: [LNi.2H₂O], L(0.220g 1m mole), NiCl₂.6H₂O (0.238g, 1m mole), (10ml) ethanol, (10ml) methanol, vield 92% decomposed at 120 D°, [LCu].3H₂O, $L(0.220g, lm mole), CuCl_2.2H_2O$ (0.170g, 1m mole), (10ml) ethanol, (10ml) methanol, yield 88% melting point 150 C°, [LCd.2H₂O], L(0.220g, lm mole), CdCl₂.H₂O (0.202g, 1m mole). (10ml) ethanol, (10ml) methanol, [LHg.2H₂O], L(0.220g, lm mole), HgCl₂ (0.271g, 1m mole), (10ml) ethanol, (10ml) methanol, yield 80%. melting point 140 C°. (LPb.2H₂O), L(0.220g, lm mole), $Pb(NO_3)_2$ (0.331g, 1m mole), (10ml) ethanol, (10ml) methanol yield 85% melting point 230 C°.

The physical properties for synthesized ligand (L) and its complexes are shown in Table (1).

Results and Discussion

The Schiff base (L) was synthesized in one step. The structure of (L) was checked and confirmed by elemental analyses data which are in good agreement with proposed formula $C_{10}H_8N_2O_4$. The ¹H-NMR illustrated in Fig. (1) and Table (2a) is complicated multiplets corresponding to aromatic four protons at 7.37-7.79 ppm.

The proton of carboxylic group is slightly broad at 12.5 ppm. the two imine proton HC=N is singlet and appeared at 8.20 ppm., the peaks at (5.2, 3.5 and 2.5) ppm. are due to water[6], water in DMSO and undeutrated DMSO.

 13 C–NMR is shown in Fig. (2) and Table (2b) the peak at 159 ppm. belong to HC=N, the aromatic carbon peaks at (110-130) ppm, the COOH peak at 170 ppm[7-8]. IR spectrum at the (L) Fig. (3) shows disappearace of vNH_2 (3381, 3363) cm⁻¹ and appeared new strong bands at (1699 and 1683) cm^{-1} are due to $\upsilon(C=O)$ of carboxylic group and HC=N imine[9-10]. The stretching band of middle intensity at (3600-3330) cm⁻¹ attributed to v(OH)of carboxylic group compaired with precursors Fig. (4-5). Table (3), which indicates the ligand (L) has been obtained. Bands corresponding to C-H aromatic stretching at (3118- 3000) cm^{-1} .

Band at 750 cm⁻¹ is due to ortho disubstuted phenyl[1,11].

The UV- spectrum of (L) Fig. (6) Table (4) was recorded in distilled water gave molar absorption at (340) nm (29411) cm⁻¹ (ε_{max} =409 molar⁻¹ cm⁻¹) and (229) nm (43668) cm⁻¹ (ε_{max} =2347 molar⁻¹ cm⁻¹) may be assigned to the n- π^* and π - π^* [12].

The IR, UV spectral and magnetic moments of complexes

Elemental analysis with metal analysis (A.A) compatible with the formula ($C_{10}H_6N_2O_4$) M. nH₂O where (n=2 or 3).

The bonding of the synthesized ligand (L) to metal ions was investigated by comparing FT-IR spectra of complexes with the free ligand (L). Some important absorption bands, and their assignments are given in Table (3) and Fig. (7).

The spectra of these complexes exhibited a broad band around (3363-3120) cm⁻¹ assigned to water[8] υ (OH) associated with the complexes.

In addition to these modes coordinated water exhibited $\upsilon(H_2O)$ rocking at (979-894)cm⁻¹ all complexes except Cu (II) complex[13].

The band attributed to \cup HC=N shifted to low frequencies by (71-46) cm⁻¹ Table (3), supporting the idea that the ligand coordinate through the imine nitrogen[10-11].

The υ (C=O), υ _{asymm}. (COO) and v_{symm} (COO) stretching vibrations of the carboxylate O are observed at (1699,1541 and 1373) cm⁻¹ for the free ligand (L), these stretching vibrations are shifted to lower or higher at (1674-1612) cm⁻¹. frequencies (1577-1546) cm⁻¹ and (1400-1384) cm⁻¹ for all the complexes, (Δ asymm- Δ_{symm})=(187-146) cm⁻¹, supporting the idea that the ligand coordinate through deprotonated oxygen of carboxylate[14-15].

New bands are found in the spectra of the complexes in the regions (540-489) cm⁻¹ which are assigned to v(M - O) mode[7].

The bands at (459 - 424) cm⁻¹ have been assigned to $\upsilon(M - N)$ mode[10].

Therefore from IR spectra, it is concluded that the ligand behave as anion tetradentate and bind to the metal ions via the two imine N and two carboxylate O. The electronic spectrum of the Co(II) complex is observed multiple bands in the visible region near (462)nm (21645cm⁻¹) (ϵ_{max} =3895molar⁻¹ cm⁻¹) and (485) nm (20618)

cm⁻¹ (ε_{max} =3505 molar⁻¹ cm⁻¹) Fig. (8) Table (4). This may be assigned to the ³T₁g_(P) \leftarrow ⁴T₁g(υ_3) transition in admixture with spin forbidden transition to doublet states derived principally from the free ion ²G and ²H terms for a high spin octahedral geometry[16].

The magnetic susceptibility measurement for the solid Co(II) complex is (4.90) B.M. Table (1) also is indicative of four unpaired electron per Co(II) ion suggesting consistency with its octahedral environment.

The electronic spectrum of the Ni(II) complex showed d-d bands in the regions (651-718)nm center at (684)nm (14619) cm⁻¹ (ε_{max} =64 molar⁻¹ cm⁻¹) and (404-486)nm center at (445)nm (22471) cm⁻¹ (ε_{max} =3000 molar⁻¹ cm⁻¹) and are assigned to ${}^{3}T_{1}g_{(F)} \leftarrow {}^{3}A_{1}g_{(F)}$ and ${}^{3}T_{1}g_{(P)} \leftarrow {}^{3}A_{2}g_{(F)}$ transition, consistent with its octahedral configuration[17].

Ni(II) complex showed the magnetic moment value (3.20) B.M.[18-19].

The electronic spectrum of the Cu(II) complex showed a broad band center at (804) nm (12437) cm⁻¹ (ε_{max} =339 molar⁻¹ cm⁻¹) attributed to ${}^{2}A_{1}g \leftarrow {}^{3}B_{1}g$ transition and a broad

band center at (458) nm (21834) cm⁻¹ (ε_{max} =3999 molar⁻¹ cm⁻¹) attributed to ²Eg \leftarrow ²B₁g transition of squar planar environment[20].

The magnetic susceptibility measurement of Cu(II) complex is (1.90) B.M., which suggests the presence of one unpaired electron with square planar configuration.

The spectra of the Cd, Hg and Pb exhibited charge transfer bands only which is a common phenomenon for metal complexes, where d-d transitions are excluded[21].

According to the elemental analysis Table (1) and FT-IR spectra, the structures of these complexes can be suggested octahedral[22] except Cu(II) complex is square planar.

Solutions chemistry Molar ratio

The complexes of the ligand (L) with selected ions(Cu^{+2} , Cd^{+2}) were studied in solution using water as solvents, in order to determine (M:L) ratio in the prepared complexes, following molar ratio method[23].

A series of solutions were prepared having a constant concentration (C) 10^{-3} M of the hydrated metal salts and the ligand (L). The (M:L) ratio was determined from the relationship between the absorption of the observed light and mole ratio (M:L) found to be (1:1). The result of complexes formation in solution are show in Table (5–8), Fig. (9–10). To determined $\Delta G[24]$: k = ML/[M][L](1) $\alpha = (Am - As)/Am$ (2)k = The equation (1) is written to mole ratio (1:1) as the following $k_f = (1 - \alpha)/\alpha^2 C$ (3) $\Lambda = \varepsilon_{\text{max}}.b.c.$ (4) $k_f = stability constant$ α = decomposition Degree M = metal ionL = The ligand[] = concentration As = The absorption of the equivalent point of mole ratio Am = The maximum absorption of the mole ratio C = The complex concentration (mole. L^{-1}). Δ G = - 2.303 RT Log K. R = 8.303T = 273 + 25 = 298

Molar conductivity for the complexes of the ligand (L)

The molar conductance of the complexes in water Table (9) lie in the (130-180) S.cm² molar⁻¹ range, indicating its electrolytic nature with (1:1) ratio[25].

Conclusion:

The new Schiff (L) and metalcomplexeswhereprepared[LCo.2H2O],[LNi.2H2O],[LCu].3H2O.[LCd.2H2O],

 $H_{C=N_{H_{2}O}N=C}H_{D=C}$

[LHg.2H₂O] and [LPb.2H₂O]. The metal (II) ions are coordinated by two carboxylate -O atoms and two imine (H C= N) atoms.

Spectroscopic, structurical and magnetic data show that all complexes are six-coordinate metal complexes owing to the ligation of tetradentate Schiff base moieties with two coordinated water except [LCu].3H₂O showed square planar geometry as fellow:

 $[LM.2H_2O]$

Where $M^{II} = Co, Ni, Cd, Hg, Pb$

Empirical formula	Yield %	M.P. C°	Colour	μ_{effect}	Found (Calc.) %					Solubility
101111414		C			С	Н	Ν	metal		
									Water,	methanol,
			Light		(54.60)	(3.64)	(13.06)		ethanol,	ether,
$L = C_{10}H_8N_2O_4$	86	170	brown	-	54.54	3.63	12.72	-	acetone,	DMF,
										DMSO
					(37.61)	(3.61)	(9.21)	(18.20)	Water,	methanol,
[LCo.2H ₂ O]	90	170	Dark green	4.90	28.00	2 10	().21)	10.20)	ethanol,	cetone
					38.09	5.19	0.94	10.04	DN	MF, DMSO
				2 20	(37.63)	(3.61)	(8.91)	(18.31)		
[LNi.2H ₂ O]	92	120 D°	Pale brown	5.20	38.09	3.19	8.94	18.84)		=
		1.50	Redish	1.00	(36.84)	(2.09)	(7.62)	(30.11)		
[LCu].3H ₂ O	88	150	brown	1.90	37.85	2.73	7.65	30.60		-
			D 1 1		(32.00)	(2.09)	(7.62)	(30.11)		_
$[LCd.2H_2O]$	80	240 D°	Pale brown	-	32.78	2.73	7.65	30.60		-
		1.40	D 1 1		(26.68)	(2.25)	(6.76)	(44.80)		_
[LHg.2H ₂ O]	82	140	Pale brown	-	26.43	2.20	6.16	44.11		-
	95	220	D.L.L.		(25.71)	(1.86)	(6.61)	(44.20)		_
[LP0.2H ₂ O]	85	230	Pale brown	_	26.03	1.30	6.07	44.90		_

Table (1): The physical	properties for synthesiz	ed lignad (L) and its co	omplexes
Tuble (1). The physical	properties for synthesiz	the ingitial (12) and its ev	трислев

Aromatic protons	Water	Water in DMSO	Undeurated DMSO	HC=N	СООН
7.37-7.79 ppm	5.2 ppm	3.5 ppm	2.5 ppm	8.20 ppm	12.5 ppm

Table (2b): ¹³C-NMR Chemical Shifts for Ligand (L) (ppm in D 20)

Aromatic carbons	СООН	HC =N
110-130 ppm	170 ppm	159 ppm

	precursors and its complexes										
Compound	v(OH)	υ(NH ₂)	v(C=N)	ט(C-H) Aromatic	v(C=O)	υ _{assm.} COO [−]	υ _{symm.} COO ⁻	${\Delta \over cm^{-1}}$	Coordinate water	M-N	M-0
Glyoxylicacid	3361				1745						
o-phenylenc		3387		3057							
diamine		3363									
$L = C_{10}H_8N_2O_4$			1683	3118	1699	1541	1373				
				3000							
[LCo 2H.O]	3163		1614	3188	1660	1554	1396	158	894	511	424
[LC0.21120]				3014							
[I Ni 2H. O]	3363		1635	3100	1635	1546	1400	146	894	511	459
[LINI.2112 0]				3010							
	3182		1637	3057	1674	1577	1390	187	896	520	440
[LCu].51120				3020							
	3120		1614	3109	1614	1590	1388	146	914	489	426
[LCu.2II ₂ O]				3100							
[LHg.2H ₂ O]	3122		1612	3122 3047	1612	1546	1386	160	979	516	424
	3124		1620	3124	1620	1546	1384	162	902	540	424
[LI 0.211 ₂ 0]				3059							

Table (3): Infrared spectral data (wave number υ⁻) cm⁻¹ for the ligand,
precursors and its complexes

Table (4): Electronic spectral data of the Ligand (L) and its complexes

Compound	λnm	ບ ⁻ wave number cm ⁻¹	$(\epsilon_{max} molar^{-1} cm^{-1})$	Assignments	Proposed structure
$L=C_{10}H_8N_2O_4$	340	29411	409	$n \rightarrow \pi^*$	
	229	43668	2347	$\pi \rightarrow \pi^*$	
	462	21645	3825	${}^{4}T_{1}g_{(P)} \leftarrow {}^{4}T_{1}g$	Octahedral
[LC0.21120]	485	20.618	3505		
	684	14619	64	$^{3}T_{1}g_{(F)} \leftarrow ^{3}A_{2}g_{(F)}$	Octahedral
$[LN1.2H_2 O]$	445	22471	3000	$^{3}T_{1}g_{(P)} \leftarrow ^{3}A_{2}g_{(F)}$	
	804	12437	339	$^{2}A_{1}g \leftarrow ^{2}B_{1}g$	Square planar
$[LCu].3H_2O$	458	21834	3999	$^{2}\text{Eg}\leftarrow^{2}\text{B}_{1}\text{g}$	
[LCd.2H ₂ O]	342	29239	664	C. T.	Octahedral
[LHg.2H ₂ O]	342	29239	664	С. Т.	Octahedral
[LPb.2H ₂ O]	342	29239	664	С. Т.	Octahedral

Were C.T. = Charge Transfer

VM = volume of metal in ml, vl = Volume of ligand in ml						
[LCu].3H ₂ O		[LCd.2H ₂ O]			
VM	VL	Abs	VM	VL	Abs	
1ml	0.25	0.829	1ml	0.25	0.494	
1	0.50	1.100	1	0.50	0.621	
1	0.75	1.140	1	0.75	0.763	
1	1.00	1.280	1	1.00	0.862	
1	1.25	1.283	1	1.25	0.865	
1	1.50	1.288	1	1.50	0.868	
1	1.75	1.285	1	1.75	0.869	
1	2.00	1.285	1	2.00	0.867	
1	2.25	1.286	1	2.25	0.868	
1	2.50	1.285	1	2.50	0.869	

Table (5): VM, VL and absorption of ligand (L). VM= volume of metal in ml, vl= Volume of ligand in m

Table (6): The absorbance values against mole-ratio values of complex [I Cul 3H.O in solution $(1 \times 10^{-3} \text{ mole } \text{I}^{-1})$ in water at λ (270.5) nm

[LCu].3H ₂ O in solution (1×10 ⁻¹ mole. L ⁻¹) in water at λ (2/0.5) nm							
NO.	L: M	Absorbance					
1	0.5:1	0.100					
2	1:1	1.280					
3	2:1	1.285					

Table (7): The absorbance values against mole- values of complex [LCd.2H₂O] in solution $(1 \times 10^{-3} \text{ mole. L}^{-1})$ in water at λ (272.5) nm

		,,
NO.	L: M	Absorbance
1	0.5:1	0.621
2	1:1	0.862
3	2:1	0.867

Table (8): stability constant and ΔG for the Ligand (L) complexes

Compounds	As	Am	α	K	Log K	1/K	ΔG
[LCu].3H ₂ O	1.280	1.285	0.004	6.2×10^7	7.7	0.13	-43
[LCd.2H ₂ O]	0.862	0.867	0.006	2.7×10^{7}	7.4	0.13	-42
				[[LCu].3H ₂ (D > [LCd]	$2H_2O$]

Table (9): The molar conductance of the complexes

Compound fragmentations	$\Lambda m S.cm^2 molar^{-1}$	ratio
[LCo.2H ₂ O]	160	1:1
[LNi.2H ₂ O]	180	1:1
[LCu].3H ₂ O	130	1:1
[LCd.2H ₂ O]	170	1:1
[LHg.2H ₂ O]	135	1:1
[LPb.2H ₂ O]	180	1:1

Recorded in (water) solvent, where L = C_{10}H_8N_2O_4

References :

- 1. Dominik, C. and Branko, K. 2011 schiff base derived from 2hydroxyl-1-naphthaldehyde and liquid- assisted mechanochemical synthesis of its isostructural Cu(II) and Co(II) complexes, crystengcomm, 13, 4351-4357.
- Cemal, S.; Zeliha, H. and Hakan, D. 2011 synthesis, characterizations and structure of NO doner Schiff base ligands and nickel(II) and copper(II) complexes, J. of Molecu. Strc., 977, 53- 59.
- Kretovitch V. L. 1980 Plant Biochemistry, Vysshaya shkola, Moscow.
- 4. Mishchenco, A. V.; Lukov, V. V. and Popov, L. D. 2011 synthesis and physico- chemical study of complexation of glyoxylic acid arolhydrazone, with Cu(II) in solution and solid phale, J. of coord. Chem., 64, (11), 1963-1976.
- 5. Jasim Sh. S. 2012 Synthesis, Characterization of new Schiff base and some metal complexes derived from glyoxylic acid and *O*phenylenediamine, (to be published), Ibn-Haitham, University of Baghdad.
- Silverstein M. R. G. C. Bassler and Morrill T. C. 1981 "Spectrometric Identification of Organic Compounds", 4th ed., John Wiley and Sons, New York.
- Tajmir, R. 1990 coordination chemistry of vitamin c. part I. Interaction of L-Ascorbic Acid with Alkaline Earth Metal Ions in the Crystalline Solid and Aqueous Solution, J. Inorg. Biochem, 40, 181-188.
- 8. Tajmir, R. 1991 Coordination chemistry of vitamin C. part (II). Interaction of L- Ascorbic Acid

with Zn(II), cd(II), Hg(II), and Mn(II) Ions in the solid state and in Aqueous solution, Int. J. Inorg. Biochem, 42, 47-55.

- Sajjad, M.; Shokoh, B. and Asad, Sh. 2011 Hetero trinuclear manganese (II) and Vanadium (IV) Schiff base complexes, as epoxidation catalysts, transition met chem., 36, 425-431.
- Raj, K. D. and Sharad, K. M. 2011 synthesis, spectroscopic and antimicrobial studies of new iron (III) complexes, containing Schiff bases and substituted benzoxazole ligands, J. of coord. Chem., 64, (13), 2292-2301.
- Fleming and Williams D. H., 1966
 "Spectroscopic methods in organic chemistry", Ed. McGraw Hill publishing company ltd, London.
- 12. William, K. 1987 "Organic spectroscopy", 2nd, Edition.
- 13. Arif, M.; Qurashi, M. M. R. and Shad, M. A. 2001 metal- based antibacterial agents; synthesis, characterization, and in vitro biological evaluation of cefiximederived Schiff bases and their complexes with Zn(II), Cu(II), Ni(II) and Co(II), J. coord. Chem. 64, (11), 1914-1930.
- 14. Geeta, B. and Ravinder, V. 2011 synthesis, characterization and biological evaluation of mononuclear Co(II)m Ni(II) and Pd(II) complexes, with New N₂O₂ schiff base ligand, chem., pharm. Bull., 95 (2), 166-171.
- 15. Washed, M. G.; Refat, M. S. and Megharbel, S. M. 2009 "Synthesis spectroscopic and thermal characterization of some transition metal complexes of folic acid", spectrochimia acta A, 70, (4), 916– 922.
- 16. Lever, P. A. B. (1968) "In organic electronic spectroscopy", Elsevier

publishing company, New York, 6, 121.

- 17. Orgel, L. 1966 "An Introduction to transition metal Chemistry", 2nd ed, Wiley, New York.
- Sutton, D. 1986 Electronic spectra of Transition Metal complexes Mc GRAW-HILL., London.
- Malcolm, J. A.; Gordonk, A. and Nigam, P. R. 1999 Synthesis and characterization of platinum (II) complexes of L- Ascorbic Acid, Inorg. Chem., 38, 5864-5869.
- 20. Kamellia, N. and Razie, S. 2011 synthesis and mesomorphic of symmetric tetradentate shicff bases based on azo-containing salicylaldimines and their copper (II) complexes, J. of coord. Chem., 64, (11), 1859-1870.
- 21. Choi, K. Y.; Jeon, Y. M.; Lee, K. C.; Ryu, H.; Suh, M.; Park, H. S.; Kim, M. J. and Song, Y. H. 2004

Preparation and characterization of a bidentate carboxylate bridged dinuclear cadimium(II) complex with bis(2-pyridyl methyl) amino-3-propionic acid, J. Chem. Cryst., 34, (9), 591-596.

- 22. Rakesh, K. Sh.; Munirathnam, N. and Ashoka, G. S. 2008 Asymmetric allylic alkylation by palladium- bisphosphinites, Tetrahedron; Asymmetry, 19, 555– 663.
- 23. Skoog, D. A. and Donald, M. 1974 Fundamentals of Analytical chemistry Altoit London Edition.
- 24. Farrington Daniels and Robert Alberty A. 1975 "Physical Chemistry", 4th ed.
- 25. Kettle, S. F. 1975 "Coordination Compounds", Thomas Nelson and Sons, London, P. 165.

Fig. (4): The IR spectrum of glyoxylic acid

Fig. (9): The mole ratio curve of complex [LCu].3H₂O in solution (1×10⁻³ mole. L⁻¹) at (λ =272.8 nm)

Fig. (10): The mole ratio curve of complex [LCd.2H₂O] in solution (1×10⁻³ mole.L⁻¹) at (λ =270.5 nm)

تحضير، تشخيص بعض المعقدات الفلزية لـ[2-(كابوكسي مثيلين- أمينو)- فنيل إمينو] حامض الخليك (L)

جاسم شهاب سلطان* ، فالح حسن موسى

*كلية التربية ابن الهيثم/ جامعة بغداد

الخلاصة:

حضرت وشخصت قاعدة شف جديدة، [2-(كابوكسي مثيلين- أمينو) – فنيل إمينو] حامض الخليك (L) وبعض معقدات وشخصت قاعدة شف جديدة، [2-(كابوكسي مثيلين – أمينو) – فنيل إمينو] حامض الخليك (LHg.2H₂O]، [LCd.2H₂O]، [LCu.3H₂O]، [LCu.2H₂O]، [LCu.2H₂O]، [LCu.2H₂O]]، [LCu.2H₂O]], [LCu.2H₂O]], [LCu.2H₂O]]], [LCu.2H₂O]], [LCu.2H₂O]], [LCu.2H₂O]], [LCu.2H₂O]], [LCu.2H₂O]], [LCu.2H₂O]], [LCu.2H₂O]]], [LCu.2H₂O]]], [LCu.2H₂O]]], [LCu.2H₂O]], [LCu.2H₂O]],