Synthesis of N-benzothiazole derivative imide on polymeric chain, have possible biological activity

Entesar O.AL-Tamimi^{*}, Mohmoud A-AL-Issa^{**} Hind F-AL-Gburi^{**}

> Received 17, September, 2012 Accepted 9, December, 2012

Abstract:

In this reserch Some new substituted and unsubstituted poly imides compounds. were synthesized by reaction of acrylol chloride with different amides (aliphatic and aromatic) in a suitable solvent in the presence amount triethyl amine (Et₃N) with heating. The Structure confirmation of all polymers were confirmed using FT-IR,¹H-NMR,¹³C-NMR and UV spectroscopy. Thermal analysis (TG) for some polymers showed their thermal stabilities. Other physical properties including softening points, melting point and solubility of the polymers were also measured

Key word:2-aminobenzothaizol,acrylol chloride.

Introduction

A heterocyclic compound is one which possesses a cyclic structure with at least two different kinds of hetero atoms in the ring. Nitrogen, oxygen and sulphur are the most common hetero atoms. Benzothiazole is a heterocyclic compound, weak having varied biological base. activities and still of great Scientific interest nowa days. They are widely found in bioorganic and medicinal chemistry with application in drug discovery[1]. Benzothiazole moieties are part of compounds showing numbering biological activities such as antimicrobial [2-6], anticancer [7-11], antilmintic and anti-diabetic activities. Polyimides have been widely used as high temperature insulators and dielectrics, coatings, adhesives and materials in a variety of advanced technologies related to microelectronics. where miniaturization and large-scal integration are important technical issues [13-14]. Then high thermal stability and balanced mechanical and electrical properties [15-17]. Polyimides are mainly used in the aerospace and electronics industries in the form of film and mouldings, but high melting point and insolubility in organic solvent limited their [18-20], application. furthermore, few successful attempts have been made to convert or modify some specific Nsubstituted imide to serve as ion exchange resins, such as cross linked poly[N-phenyl maleimide] which was prepared by free radical polymerization of the corresponding imide in benzene. The precipitated polyimides were hydrolyzed to obtain some pendant carboxylic groups on the polymeric chains. The last compounds were found to be useful cationic [21] exchange resins of good capacities.

Materals and Methods General

- 1. Melting points were recorded by using Gallen Kamp MFB-600 capillary melting point apparatus.
- 2. FT-IR spectra were recorded using solid KBr discs by testing

^{*}Department of Chemistry, College of Science, University of Baghdad, Iraq

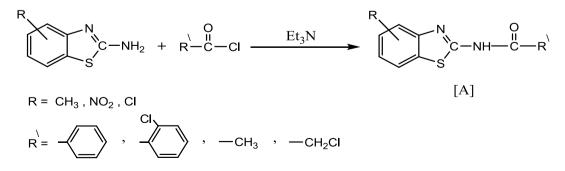
^{**}Department of Chemistry, College of Science for Woman, University of Baghdad, Iraq

ShimadzuFT-IR8000seriesFouriertransform,infraredspectrophotometer.

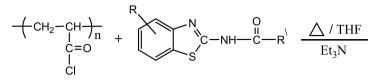
- Thermal analyses were performed using thermal analysis system consisting from TG₅₀ Shimadzu, Japan. Ibn Sina in Iraq.
- 4. ¹H-NMR and ¹³C-NMR spectra. Company Bruker, model ultra shield 300MHz, were made at the Chemistry Department, Al-Albyt University, Jordan.

Preparation of 2aminobenzothiazole Derivatives[22, 23]

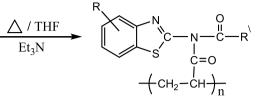
In a 250 ml round bottomed flask equipped with a magnetic bar stirrer and dropping funnel, a solution of bromine (1.2 ml) in glacial acetic acid (75 ml) was allowed to run through the dropping funnel drop wise during 30 min. To a mixture of Para substituted aromatic amine (0.03 mol) and ammonium thiocyanate (0.1 mol) in 150 ml glacial acetic acid with stirring. The mixture was stirred for 1 hr., then diluted with water and neutralized solid with sodium hydroxide. The precipitated substance was filtered. triturated and recrystallized from a suitable solvent to obtain 2-amino benzothiazole derivatives. The physical properties of the synthesized compounds are given in Table (1).

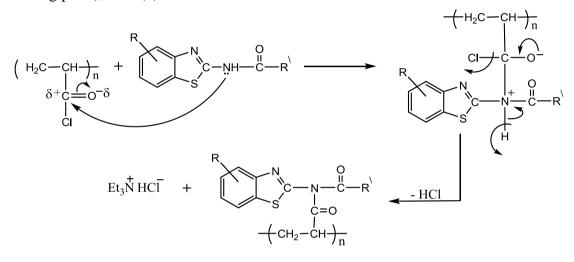

2. General Procedure Preparation of 2-[N-(sub or unsub benzoyl and sub or unsub acetyl)amidyl sub benzothiazole]

In a round bottom flask equipped with a magnetic bar stirrer and reflux condenser was placed a mixture of sub-benzoyl chloride (0.06 mol) and (0.06 mol)6-sub-2aminobenzothiazole with (3) drops of triethyl amine (Et₃N) in (25 ml) of suitable solvent (Benzene) and refluxed (1-3) hrs after the solvent was removed and recrystallized from ethanol.


3. General Procedure Preparation of Poly 2-(N-acryl-N-sub or unsub benzoyl) imidyl Substituted Benzothiazole

In a round bottom flask equipped with a magnetic bar stirrer a mixture of poly was placed (acryloyl chloride) (0.06 mol) and (0.06 mol) of 2-N-sub amidyl-sub benzothiazole with (1 ml) of triethyl amine (Et₃N) in (25 ml) of suitable solvent (THF or DMF) and refluxed for (5-7) hrs. after cooling and removed the solvent. The solid separated was filtered and purified by dissolving at DMF or DMSO and re precipitating from water or acetone. This procedure was applied on compounds as shown in Table (1). All physical properties are listed in Table (1).


Results and Discussion Preparation of [2-(N-benzoyl) amidyl sub benzothiazole]


All poly [2-(N-acryl-N-benzoyl) imidyl substituted benzothiazole. were prepared by the reaction of poly

of triethyl amine (Et₃N) as a catalyst [24].All these compounds characterised by (FT.IR,UV,and softing point),Table(1). (acryloyl chloride) with different amides . in presence

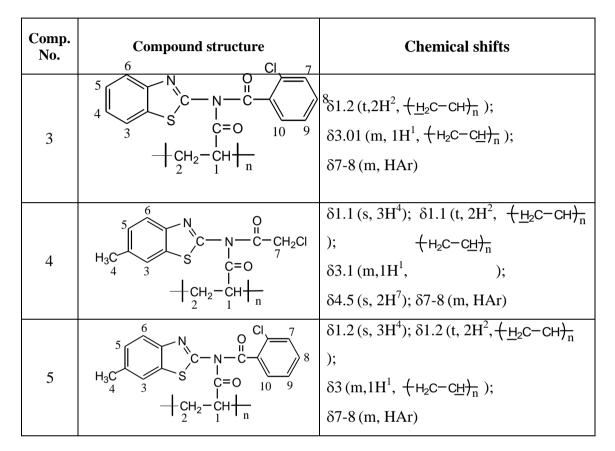
The mechanism of reaction involves a nucleophilic attack on the carbonyl as shown below [25].

Structures confirmation of all prepared polymer proved using FT-IR, ¹H-NMR, ¹³C-NMR, TG UV. and physical properties including softening point, solubility, Tg and percent conversion of the polymers. FT-IR spectrum of compounds showed the same bands appearance. Stretching band at 1670 cm^{-1} v(C=O), (2800-2920)cm⁻¹ v(C-H) aliphatic, (1590-1630)cm⁻¹ v(C $\stackrel{\text{m}}{=}$ C) and (3010-3100)cm⁻¹ v(C-H) aromatic as shown (2).¹H-NMR spectrum of Table polymers [3,4,5] showed the signals at $\delta(1.2)$ (t, 2H,), $\delta(3.1)$ (m, 1H.) while a signal at $\delta(7-$ 8) (d or m, 1H, Ph-H) and $\delta 1.02$ (s, 3H, Ph-C \underline{H}_3), as shown listed in The ¹³C-NMR Table (3).

spectrum of compound showed the signal at (170-180)ppm for carbonyl group (C=O) and appeared at (120-140)ppm and appeared at (20-50.48)ppm. UV spectrum of compounds absorption λ_{max} at 300nm and 380nm which attributed to $(\pi \rightarrow \pi^*)$ and $(n \rightarrow \pi^*)$ transitions. See Table (4). TG analysis provides a change in the mass of the polymer during heating. The thermal analysis was carried out at temperatures (200-400)°C with heating rate 20.0 °C/min. in N₂ atmosphere. Thermal stability of the product was estimated from TG and DTG thermograms. See Table (5), it was found that the prepared polymers high stability, resists to isomerization by heat, light or using acidic or basic solution[26,27].

Comp. No.	Compound structure	Conversion %	Softing point °C	Color	Solvent used in reaction
1	Poly [2-(N-acryl-N-chloroacetyl) imidyl benzothiazole	75	120-135	Brownish yellow	THF or DMF
2	$ \begin{array}{c} $	80	120-135	Brownish yellow	THF or DMF
3	Poly [2-(N-acryl-N-2-chlorobenzoyl) imidyl benzothiazole	82	125-140	Brownish yellow	THF or DMF
4	$H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{2}C$ H	78	112-125	Light yellow	THF or DMF
5	$H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{2}C$ $H_{2}-CH$ $H_{2}-CH$ $H_{2}-CH$ $H_{2}-CH$ $H_{2}-CH$ $H_{3}C$	85	120-132	Light yellow	THF or DMF
6	$\begin{array}{c} & & & & & \\ O_2N & & & & \\ & & & \\ & & & \\ & & & \\ O_2N & & \\ & &$	80	200-205	Light yellow	THF or DMF

Table (1): Physical properties of the poly imide


7	CI CI CI CI CI CI CI CI CI CI	78	85-100	Light yellow	THF or DMF
Comp. No.	Compound structure	Conversion %	Softing point °C	Color	Solvent used in reaction
8	CI CI	70	170-180	Light yellow	THF or DMF
9	$\begin{array}{c} NO_{2} \\ \hline \\ CI \\ \hline \\ CI \\ \hline \\ \\ CI \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	85	95-105	Brown	THF or DMF
10	CI $(CH_2 - CH_2 - CH_3)$ $(CH_2 - CH_2 - CH_3)$ $(CH_2 - CH_3)$ $(CH_3 - CH_3)$ (CH	87	125-142	Brown	THF or DMF
11	$CI \xrightarrow{N} CH \xrightarrow{C} N \xrightarrow{O} H$ $CI \xrightarrow{V} CH \xrightarrow{C} N \xrightarrow{O} H$ $C \xrightarrow{V} CH \xrightarrow{V} CH \xrightarrow{V} H$ $C \xrightarrow{V} CH \xrightarrow{V} H$ $C \xrightarrow{V} CH \xrightarrow{V} H$ $C \xrightarrow{V} H$	85	170-180	Brown	THF or DMF
12	$H_{3}C$ H	82	130-140	Light yellow	THF or DMF

FTIR					R spectral data cm ⁻¹					
Comp . No.	Compound structure	v(C=O) imide	v(C-N) imide	v(C=C) aromatic	v(C-H) aliphatic	v(C-H) aromatic	v(C=N) imine	v(C-S)	Others	
1	$ \begin{array}{c} $	1697	1410	1590	2900 2970	3010	1500	680	C-Cl 1010	
2	$ \begin{array}{c} $	1690	1420	1610	2905 2975	3000	1520	700	-	
3	$ \begin{array}{c} $	1685	1460	1600	2900	3000	1510	650	C-Cl 1000	
4	$H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{2}C$ H	1690	1400	1640	2890 2920	3100	1550	700	C-Cl 1005	
5	$H_{3}C$ N C N C	1682	1480	1610	2945	3100	1500	650	C-Cl 1010	
6	$O_{2}N \xrightarrow{N} C = N \xrightarrow{O} C = O$ $C = O$	2 1685	1440	1640	2900	3010	1520	600	C-Cl 1100	
7	$CI \qquad \qquad$	1699	1400	1640	2945 2980	3020	1550	779	C-Cl 1157	
8	$CI \qquad \qquad$	1716	1431	1635	2947 2975	3074	1535	779	C-Cl 1157	
9	$CI \xrightarrow{NO_2} \xrightarrow{N} \xrightarrow{C} \xrightarrow{N} \xrightarrow{O} \xrightarrow{U} \xrightarrow{C} \xrightarrow{O} \xrightarrow{U} \xrightarrow{O} \xrightarrow{O} \xrightarrow{U} \xrightarrow{O} \xrightarrow{O} \xrightarrow{U} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{U} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} O$	1708	1400	1543	2943 2978	3100	1543	750	C-Cl 1037 C- NO ₂ 1346	
10	$CI \xrightarrow{N} CH_{2} \xrightarrow{N} CH_{3} \xrightarrow{OI} CH_{3}$	1695	1410	1600	2945 2985	3105	1540	650	C-Cl 1020	
11	C	1697	1446	1636	2943 2978	3062	1535	763	C-Cl 1037	

Table (2): FT-IR spectra of the prepared heterocyclic polyimide

12	$H_{3C} \xrightarrow{N} C \xrightarrow{N} C \xrightarrow{N} C \xrightarrow{O} C \xrightarrow{H} C \xrightarrow{O} C \xrightarrow{H} C \xrightarrow{O} C \xrightarrow{H} C \xrightarrow{O} C \xrightarrow{I} C $	1700	1430	1620	2949 2980	3010	1510	610	-
----	---	------	------	------	--------------	------	------	-----	---

Table (3): The ¹H-NMR chemical shifts of some of the prepared poly heterocyclic imides

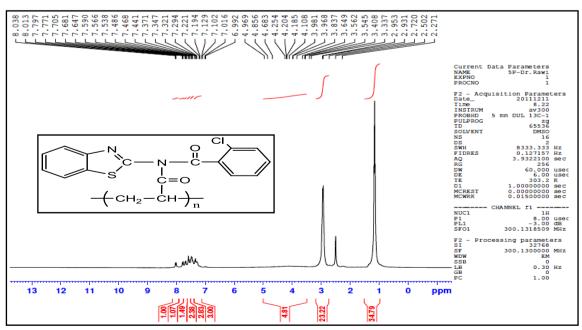


Fig.(1): ¹H-NMR for compound[3]

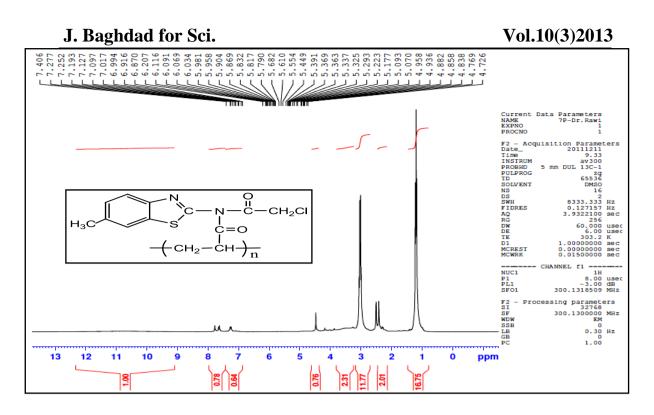


Fig.(2): ¹H-NMR for compound[4]

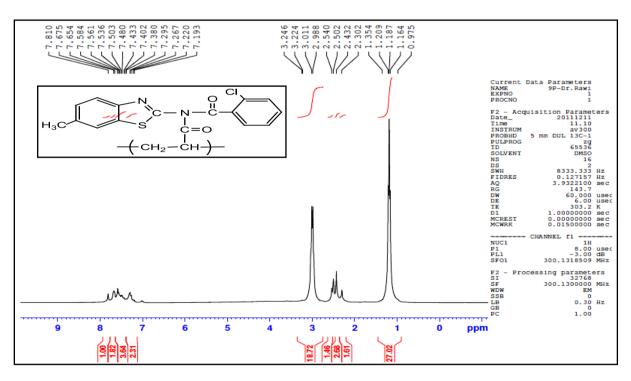
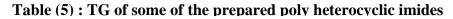



Fig.(3): ¹H-NMR for compound[5]

G		Peak			
Comp. No.	Compound structure	λ _{max} nm	ABC		
1	$ \begin{array}{c} $	301	1.336		
2	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}$ \left(\begin{array}{c} \end{array}\\ \end{array}\\ \left(\begin{array}{c} \end{array}\\ \end{array}\\ \left(\begin{array}{c} \end{array}\\ \end{array}\right) \\ \left(\begin{array}{c} \end{array}\\ \left(\begin{array}{c} \end{array}\right) \\ \left(\begin{array}{c} \end{array}\right) \\ \left(\begin{array}{c} \end{array}\\ \end{array}\right) \\ \left(\begin{array}{c} \end{array}\\ \left(\begin{array}{c} \end{array}\right) \\ \left(\end{array}) \\ \left(\begin{array}{c} \end{array}\right) \\ \left(\end{array}) \\ \left(\end{array} \left) \\ \left(\end{array} \left) \\ \left(\end{array} \left) \\ \left(\\ \left) \\ \left(\end{array} \left) \\ \left(\end{array} \left) \\ \left(\\ \left) \\ \left(\\ \left) \\ \left(\end{array} \left) \\ \left(\\ \left)	317 459.5	1.362 0.035		
3	$ \begin{array}{c} $	370	1.22		
4	$H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{2}C$ H	303.5	1.724		
5	$H_{3C} \xrightarrow{N} C \xrightarrow{O} C \xrightarrow{C} C \xrightarrow{O} C \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow$	317	1.272		
6	$O_{2}N \xrightarrow{N} C - N \xrightarrow{O} NO_{2}$ $C = O \xrightarrow{I} C + O \xrightarrow{I} NO_{2}$ $C = O \xrightarrow{I} O O \xrightarrow{I} O$	435.5 361.0	0.716 1.099		
7	$CI \qquad \qquad$	315	2.298		
8	$CI \qquad N \qquad CH \qquad N \qquad CH \qquad CH \qquad CH \qquad CH \qquad CH \qquad$	303.5 248	0.752 0.053		
9	$\begin{array}{c} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$	409.5 303	0.76 0.913		
10	$CI \xrightarrow{N} C \xrightarrow{N} C \xrightarrow{O} C \xrightarrow{O} CH_3$ $CI \xrightarrow{V} C \xrightarrow{V} C \xrightarrow{V} C \xrightarrow{O} CH_3$ $CI \xrightarrow{V} C \xrightarrow{V} C \xrightarrow{V} C \xrightarrow{V} CH_3$ $CI \xrightarrow{V} C \xrightarrow{V} C \xrightarrow{V} C \xrightarrow{V} CH_3$ $CI \xrightarrow{V} C \xrightarrow{V} \xrightarrow{V} C \xrightarrow{V} X \xrightarrow{V} \xrightarrow{V} X \xrightarrow{V}$	305	1.747		
11	$CI \xrightarrow{N} C \xrightarrow{N} C \xrightarrow{N} C \xrightarrow{O} U \xrightarrow{SH} C \xrightarrow{O} C O$	315.5 454	1.195 0.068		
12	$H_{3}C$ H	316 449.5	1.225 0.01		

 Table (4): UV spectra of the prepared heterocyclic polyimide

Comp. No.	Compound structure	10% wt Loss temp °C	50% wt Loss temp °C	Peak 1 Temp °C	Peak 2 Temp °C
10	$C = C + CH_2$	177.39	266.63	180.9	253 392
11	$CI \xrightarrow{N} C \xrightarrow{N} C \xrightarrow{O} \overset{SH}{\downarrow} \overset{O}{\downarrow} \overset{C}{\downarrow} \overset{C}{$	175.21	341.7	279.95	339 384.8
12	$H_{3C} \xrightarrow{N} C \xrightarrow{N} C \xrightarrow{U} C \xrightarrow{N} C \xrightarrow{U} C \xrightarrow{V} X \xrightarrow{V} C \xrightarrow{V} X $	189.65	269	236	286.8 377.9

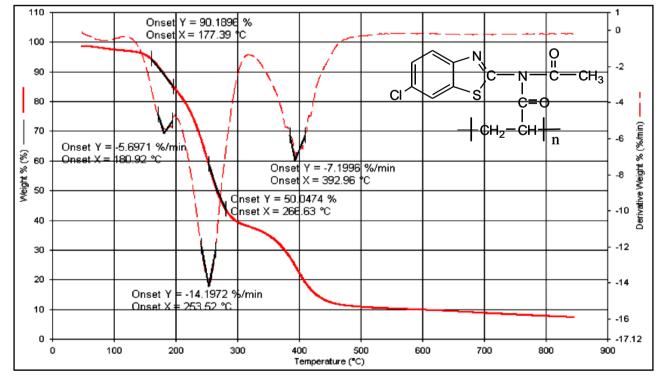


Fig.(4): TG for compound[10]

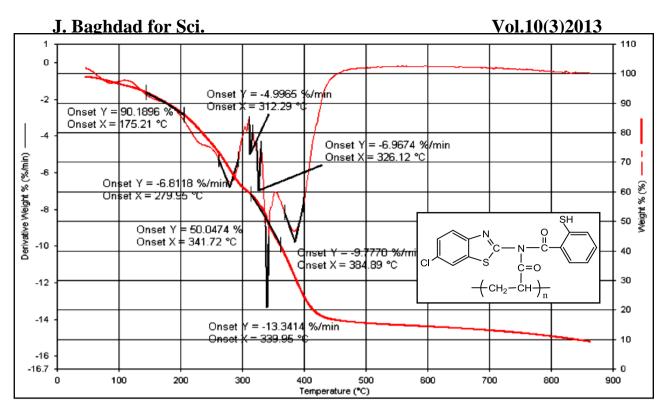


Fig.(5): TG for compound[11]

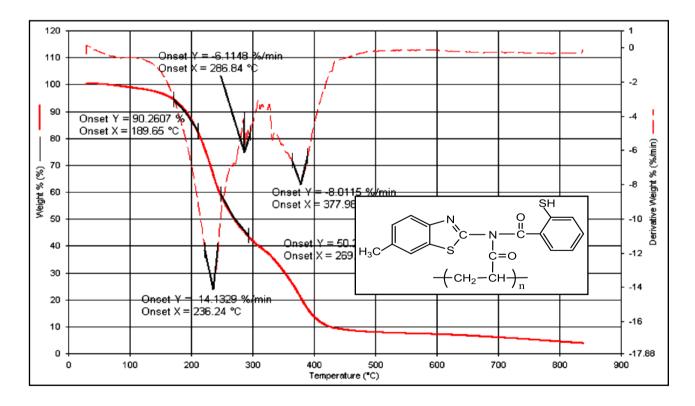


Fig.(6): TG for compound[12]

References 1. Yadav.P.S

S and

Senthilkumar.D.G.P. 2011.

"Benzothiazole: Different methods of synthesis and diverse biological activities". IJPSDR., 3(1): 1-7.

- Gupta.S, Ajmera,N. Gautam,N. Sharma.R. and Gautam.D. 2009. "Novel synthesis and biological activity study of pyrimido[2,1b]benzothiazoles". Ind. J. Chem., 48B: 853-858.
- 3. Kumbhare, R.M. Ingle.V.N. 2009. "Synthesis of novel benzothiazole and benzisoxazole functionalized unsymmetrical alkanes and study of their antimicrobial activity". Ind. J. Chem., 48B: 996-1000.
- 4. Muthi.Y, and Pathak.D. 2008"Synthesis and antimicrobial screening of substituted 2mercaptobenzothiazoles".J Pharm Res.7(3);153-155
- 5. Rajeeva,B, Srinivasulu.N. and Shantakumar.S 2009. "Synthesis and antimicrobial activity of some new 2-substituted benzothiazole derivatives. Ejournal of chemistry., 6(3): 775-779.
- Maharan.M . William.S . Ramzy.F and Sembel.A. 2007. "Synthesis and in vitro evaluation of new benzothiazole derivatives as schistosomicidal agents". Molecules., 12: 622-633.
- Kini S. Swain.S and Gandni.A 2007. "Synthesis and evaluation of novel benzothiazole derivates against human cervical cancer cell lines". Ind. J. Pharm. Sci., Jan-Feb: 46-50.
- 8. Stanton.H , Gambari.R, Chung.H.C, Johny.C, Filly.C, and Albert.S 2008. "Synthesis and anticancer activity of benzothiazole containing phthalimide on human carcinoma

cell lines". Bioorg. Med. Chem., 16: 3626-3631.

- Wang. M, Gao.M , Mock B, Miller.K, Siedge, G, Hutchins.G and Zheng.Q,2006. "Synthesis of E₁₁ labelled flulorinated 2-aryl benzothiazoles as novel potential PET cancer imaging agent". Bioorg. Med. Chem.., 14: 8599-8607.
- 10. Gupta.S , Moorthi.N and Sanyal.U 2010. "Synthesis, cytotoxic, evaluation, in silico pharmaco kinetic and QSAR study of some benzothiazole derivatives". Ind. J. Pharmacy pharm. Sci., 2(3): 57-62.
- 11. Sreenivasa.M. Jaychand.E ShivakumarB, Jayrajkumar.K and Vigaykumar.J.2005. "Synthesis of bioactive molecule flurobenzothiazole comprising potent heterocyclic moieties for anthelmintic activity". Ind. J. Chem., 44B: 2404-2408.
- 12. Pattan.S, Suresh.C, Pujar.V Reddy.V, Rasal.V and Koti.B 2005. "Synthesis and antidiabtic activity of 2-amino[5(4sulphonyl benzylidine)-2,4thiazolidine none]-7-chloro-6flouro benzothiazole. Ind. J. Chem., 44B: 2404-2408.
- Omote.T. 1996."Polyimidefundametals and application". M. K. Ghosh and K. L. Mittal, Ed. Marcell Dekker. Inc, New York., p.121.
- 14. Bureau.J.M. and Mittal.J.P. 1996. "Applications of polyimides as photosensitive materials". M. K. Ghoh, K. L. Mittal. Marcel Dekker, New York., p.743.
- 15. Feger.C, Khojasteh.M.M and Grath.J.E. 1989. Polyimides materials chemistry and characterization amesterdam. Elsevier, 453-478.

- Wilson.D, Stenzenberger.H.D. and Hergenrother.P.M. 1990. "Polyimide". Glasgow, black., p.360-395.
- 17. Barikani.M. 2002. "Polyimides derived from diisocyanate". Iran. Polym. J., 11: 215-236.
- 18. Rozhanskii.I, Okuyama.K. and Goto.K. 2000. "Synthesis and properties of polyimides derived from isomeric biphenyl-tetra carboxylic dianhydrides". Polymer., 41: 7057-7065.
- 19. Der-jang L. Been-yang.L and Chia-wei.Y. 2001"Synthesis and characterization of new organosaluble polyimides based on flexible diamine".Polymer ..42:839-845.
- 20. Tamami.B. and Yeganeh.H. 2001. "Synthesis and characterization of novel aromatic polyimides derived from 4-aryl-2,6-bis(4-

aminophenyl)pyridines". Polymer., 42: 415-420.

- 21. Hussain.S.M.2003. Ph.D. Thesis, College of Science, University of Baghdad.
- 22. Stuckwisch.C.G. 1949. J. Am. Chem. Soc., 71: 3417.
- 23. Mahdi.S.A.2008.M.Sc. Thesis, College of Science, University of Baghdad.
- 24. Carey.F.A and Sundber.R.J. 2007. "Advanced Organic Chemistry Part A: Structure and Mechanisms", 5th Ed., New York.
- 25. Crews.P . Rodriguez.J and Jaspars.M. 1998. "Organic structure analysis", Oxford University Press, New York.
- 26. Korshak.U.V. 1969. "The Chemical structure and thermal characteristics of polymer".
- 27. Al-Farajy.G.H.A. 2003. M.Sc. Thesis, College of Science, University of Baghdad.

(تحضير مشتقات ن _بنزوثايازول ايمايدعلى السلسله البوليمريه, ذات فعاليه بايولوجية متوقعه)

انتصار عبيد التميمي* محمود العيسي** هند فاضل الجبورى**

*كلية العلوم ــقسم الكيمياء . **كلية العلوم للبنات-قسم الكيمياء

الخلاصة:

في هذا البحث حضر بولي ايمايدات جديدة معوضة وغير معوضة من تفاعل بولي كلوريد الاكريلويل مع امايدات مختلفة (اليفاتية , اروماتية) بوجود مذيب مناسب وكمية مناسبة من ثلاثي مثيل امين (Et₃N) مع التسخين. وتم اثبات التراكيب الكيميائية للبوليمرات المحضرة باستخدام الطرق الطيفية، اطياف الاشعة تحت التسخين. وتم اثبات التراكيب الكيميائية للبوليمرات المحضرة باستخدام الطرق الطيفية، اطياف الاشعة تحت الحمراء FT-IR، اطياف الرنين النووي المغناطيسي H-NMR، اطياف الله العياف الاشعة فوق المناسبة من تلاثي من تلاثي مثيل امين (Et₃N) مع التسخين. وتم اثبات التراكيب الكيميائية للبوليمرات المحضرة باستخدام الطرق الطيفية، اطياف الاشعة تحت الحمراء المحضرة باستخدام الطرق الطيفية، اطياف الاشعة تحت الحمراء RT-IR، الحياف الرنين النووي المغناطيسي H-NMR، الحياف حرارياً عن طريق التحاليل الحرارية البنفسجية للوليافية المحضرة الرائية التحاليل الحرارية بعض البوليمرات المحضرة حرارياً عن طريق التحاليل الحرارية بالاضعة الرائية الحرارية الحرارية بعض البوليمرات المحضرة محارياً من طريق التحاليل الحرارية بعض البوليمرات المحضرة حرارياً عن طريق التحاليل الحرارية بعض البوليمرات المحضرة حرارياً عن طريق التحاليل الحرارية بلاضائية الن النوبي الخالي الخالي ورجات التين ورجات الائمة من مرائية النوبي معليم المحضرة محارمة مرارياً عن طريق التحاليل الحرارية بعض البوليمرات المحضرة حرارياً عن طريق التحاليل الحرارية بلاضافة الى القياسات الفيزيائية المختلفة من درجات التلين ودرجات الانصهار والذوبانية