### Six-coordinate oxime-imine cobalt(III) complexes with amino acid co-ligands; synthesis and characterisation

Mohamad J. Al-Jeboori\*, Hasan A. Hasan \*

Alaa M. Etheb\*

Received 17, September, 2012 Accepted 5, December, 2012

#### **Abstract :**

In this publication, several six coordinate Co(III)-complexes are reported. The reaction of 2,3-butanedione monoxime with ethylenediamine or o-phenylenediamine in mole ratios of 2:1 gave the tetradentate imine-oxime ligands diaminoethane-N,N`-bis(2-butylidine-3-onedioxime)  $H_2L^1$  and o-phenylenediamine-N,N`-bis(2-butylidine-3-onedioxime), respectively. The reaction of  $H_2L^1$  and  $H_2L^2$  with Co(NO<sub>3</sub>)<sub>2</sub>, and the amino acid co-ligands (glycine or serine) resulted in the formation of the required complexes. Upon complex formation, the ligands behave as a neutral tetradantate species, while the amino acid co-ligand acts as a monobasic species. The mode of bonding and overall geometry of the complexes were determined through physico-chemical and spectroscopic methods. These studies revealed octahedral geometry about Co(III) complexes in which the co-ligands bound through the amine and the carboxylate groups. Molecular structure for the complexes have been optimised by CS Chem 3D Ultra Molecular Modelling and Analysis Program and supported six coordinate geometry.

Keywords: Schiff-base imine-oxime ligands; diaminoethane-N,N`-bis(2-butylidine-3-onedioxime)  $H_2L^1$  and o-pheneyenediamine-N.N-bis(2-butylidine-3-onedioxime)  $H_2L^2$ ; Six coordinate Co(III)-complexes; Structural study.

#### **Introduction:**

The coordination chemistry of metal complexes of  $\alpha$ -dioxime has been investigated widely [1]. Approaches such as synthetic routes to obtain vicinal imine-oxime complexes and analytical and structural applications of oxime species have these been reviewed extensively [2]. Schiff-base oxime species based on transition metal compounds and polydentate ligands has been the subject of extensive research due to their potential applications in materials science [3, 4] and environmental chemistry and medicine [2] and biomimetic model including the preparation and molecular structure of Co(III)-complexes called cobaloxime [5, 6]. The interesting feature of these complexes is due to their relevance to the chemistry of vitamin  $B_{12}$ . As models for coenzyme  $B_{12}$ , cobaloxime have been subjected to extensive studies including their electrochemical [7] and structural properties [8]. Furthermore, a new family of cobalt and nickel complexes with tetradentate ligands providing a diimine-dioxime coordination sphere was reported as efficient and stable electrocatalysts for hydrogen evolution from acidic nonaqueous solutions with lower overvoltages [9]. Recently, we reported the formation of phenoxo-bridged binuclear transition metal ions with the Schiffe-oxime ligand -((E)-(hydroxyimino)methyl)-5methylbenzyldeneamino)ethylimino)m

<sup>\*</sup>Department of Chemistry, College of Education, Ibn AL-Haitham, University of Baghdad, P.O. 4150, Adhamivah. Baghdad. Iraa.

ethyl)-5- methylbenzaldehyde oxime [10]. As part of our continuing efforts to explore the use of mixed ligands based on the multidentate Schiff-base oxime ligands and amino acid co-ligands, we describe here the formation and the spectral investigations of Co(III)-complexes with the mixed ligands; the amino acids (glycine or serine) and the tetradentate imin-oxime ligands diaminoethane-N,N`-bis(2-butylidine-3-onedioxime) H<sub>2</sub>L<sup>1</sup> and ophenylenediamine-N,N`-bis(2-butylidine-3-onedioxime) H<sub>2</sub>L<sup>2</sup>.

#### Materials and methods

All reagents were obtained commercially (Aldrich) and used without further purification. Solvents used in the synthesis were distilled from appropriate drying agent immediately prior to use.

2.2. Physical measurements

Elemental analyses (C, H and N) were carried out on a Heraeus instrument (Vario EL). IR spectra were recorded as KBr discs using a Shimadzu 8300 FTIR spectrophotometer from 4000-400 cm<sup>-1</sup>. Melting points were obtained on a Buchi SMP-20 capillary melting point apparatus and are uncorrected. Electronic spectra were measured from 200-900 nm for  $10^{-3}$  M solutions in H<sub>2</sub>O at 25°C using a Shimadzu 160 spectrophotometer. <sup>1</sup>H NMR spectra were acquired in DMSO-d<sub>6</sub> solution using a Jeol 270 MHz spectrometers with tetramethylsilane (TMS) as an internal standard. Mass spectra obtained by positive Electron Impact (EI) recorded on a VG autospec micromass spectrometer. Metals were determined using a Shimadzu (A.A) 680 atomic absorption G spectrophotometer. Conductivity measurements were made with DMF solutions using a Jenway 4071 digital conductivity meter and room temperature magnetic moments were measured with a magnetic

susceptibility balance (Jonson Mattey Catalytic System Division).

#### 1. Synthesis

The preparation of the ligands was adopted according to a method published in [11], and as follows:

#### Preparation of $H_2L^1$

A solution of ethylenediamine(0.5 g, 8 mmol) in methanol (20 mL) was added slowly mixture of to a diacetylmonoxime (1.68 g, 16.6 mmol) dissolved in methanol (20 mL). The reaction mixture was allowed to reflux for 2 h, and then stirred at room temperature for a further 1h. A white solid was collected by filtration, recystallised from a mixture of hot methanol: $H_2O$ , and dried under vacuum for 24 hr to give  $H_2L^1$  as a white solid (yield 56%), m.p. = 166°C. <sup>1</sup>H NMR data (ppm),  $\delta_{\rm H}(270 \text{ MHz},$ DMSO-d<sub>6</sub>): 1.9 (6H, s, 2 x  $CH_3$ ), 2.0 (6H, s, 2 x CH<sub>3</sub>), 3.7 (4H, s, -C=NCH<sub>2</sub>) ), 11.5 (2H, s, -C=N-OH). The positive EI mass spectrum of  $H_2L^1$  showed the following fragments; 226 (96%) M+, 209 (19 %) [M-(OH)]<sup>+</sup>, 195 (15) [M- $(OH)_{2}^{+}, 166 (11\%) [M-{(OH)_{2}-CN}]^{+},$ 113 (64%) [M-{(OH)<sub>2</sub>-CN-CH<sub>3</sub>-CN- $(CH)^{+}$ , 97 (100%)  $[M-{(OH)_2-CN-}]$  $CH_3$ -CN-CH- $NH_2$ ]<sup>+</sup>, 69 (36%) [M-{(OH)<sub>2</sub>-CN-CH<sub>3</sub>-CN-CH-NH<sub>2</sub>- $(CNH_2)^{\dagger}$ , 42 (93%) [M-{(OH)<sub>2</sub>-CN- $CH_3$ -CN-CH- $NH_2$ - $CNH_2$ -CH- $CH_2$ }]<sup>+</sup>. Preparation of  $H_2L^2$ 

The method used to prepare the ligand  $H_2L^2$  was similar to that used for  $H_2L^1$ but o-phenylenediamine (0.50 g, 4.6 mmol) was used in place of ethylenediamine. The quantities of other reagents used were adjusted accordingly, and the reaction mixture was allowed to reflux for 6 h to yield (64%) of the title compound. m.p. = 192 °C. NMR data (ppm),  $\delta_{\rm H}(270$ MHz, DMSO-d<sub>6</sub>): 2.0 (6H, s, 2 x CH<sub>3</sub>), 2.7 (6H, s, 2 x CH<sub>3</sub>), 8.0-7.7

(4H, m, Ar-*H*), 11.4 (2H, br, -C=N-O*H*). The positive EI mass spectrum of  $H_2L^2$  showed the following fragments; 274 (6%) M<sup>+</sup>, 158 (100 %) [M-{(CH<sub>3</sub>-C=NOH)<sub>2</sub>}]<sup>+</sup>, 117 (67%) [M-{(CH<sub>3</sub>-C=NOH)<sub>2</sub>-(CH<sub>3</sub>-C=N)<sub>2</sub>]]<sup>+</sup>, 76 (25 %) [M-{(CH<sub>3</sub>-C=NOH)<sub>2</sub>-(CH<sub>3</sub>-C=N)<sub>2</sub>}]<sup>+</sup>, 40 (46 %) [M-{(CH<sub>3</sub>-C=NOH)<sub>2</sub>(CH<sub>3</sub>-C=NOH)<sub>2</sub>(CH<sub>3</sub>-C=NOH)<sub>2</sub>(CH<sub>3</sub>-C=N)<sub>2</sub>]<sup>+</sup>.

General synthesis of the Co(III)complexes with  $H_2L^1$  and  $H_2L^2$  & amino acid co-ligand

The appropriate imin-oxine ligand (1 mmol) was added in small portions to a solution of Co(NO<sub>3</sub>)<sub>2</sub>.6H<sub>2</sub>O (1 mmol) in methanol (10 mL), and followed by a solution of the appropriate amino acid, glycine or serine, (1 mmol) in methanol (15 mL), and then a saturated solution of NaIO<sub>4</sub> in water (2 mL) was added to above solution. The mixture was stirred vigorously and oxygen gas was then bubbled through the reaction mixture for 3 h, resulting in the formation of a solid mass which was washed several times with diethyl ether. Elemental analysis data, colours, and yields for the complexes are given in (Table 1).

#### Molecular modelling

3D molecular modelling of the proposed structure of the complexes was performed using CS Chem 3D Modelling Ultra Molecular and Analysis Program [12]. It is an interactive graphics program that structure allows rapid building, geometry optimization with minimum energy and molecular display. It is well known program and has the ability to handle transition metal complexes [13]. The correct stereochemistry was assured through the manipulation and the modification of molecular coordinates to obtain reasonable low energy molecular geometries.

#### **Results and Discussion**

#### 4.1. Chemistry

2,3-butanedione The reaction of monoxime with ethylenediamine or ophenylenediamine in mole ratios of 1:2 gave the tetradentate imine-oxime diaminoethane-N,N`-bis(2ligands butylidine-3-onedioxime)  $H_2L^1$  and ophenylenediamine-N,N<sup>-</sup>bis(2butvlidine-3-onedioxime).  $H_2L^2$ respectively in moderate vield (Scheme 1). The Schiff-base oxime ligands were characterised by elemental analysis (Table 1), IR (Table 2), UV–Vis (Table 3) spectroscopy, <sup>1</sup>H NMR and mass spectrometry. The <sup>1</sup>H NMR and the EI (+) mass spectra of the ligands were consistent with the proposed structural formula (see experimental section).

The di-electrolyte Co(III)-complexes were synthesised by mixing at RT 1 mmole of the appropriate ligand with 1 mmole of the cobalt nitrate in methanol followed by a solution of the appropriate amino acid, glycine or serine, (1 mmol) in methanol, and then a saturated solution of NaIO<sub>4</sub> in water was added to above solution. The mixture was stirred vigorously with bubbling air for 3 h. Bubbling air was introduced to facilitate the oxidation of Co(II) to Co(III). Complexes of the formulae  $[Co(H_2L^n)(A)]^{+2}$ general (where n = 1 or 2;  $A^{-} = amino acid,$ glycine or serine) was obtained (Scheme 1). The complexes are airstable solids, soluble in H<sub>2</sub>O, and partially in DMSO and DMF. The complexes are sparingly soluble in EtOH and not soluble in other common organic solvents. The coordination geometries of the complexes were deduced from their spectra. The analytical data (Table 1) agree well with the suggested formulae. Conductivity measurements of the Co(III) mixed complexes lie in the  $cm^2 \Omega^{-1} mol^{-1}$ 142.7-150 range,

indicating their 2:1 electrolytic behavior (Table 1) [14].

#### IR Spectra

The important infrared bands for the ligands and their complexes together with their assignments are listed in Table 2. The IR spectra of the ligands show characteristic bands at 1609 -1634 and 1473 -1481 cm<sup>-1</sup> due to the v(C=N)imine. v(C=N)oxime functional groups, respectively. The bands at  $3145, 1000 \text{ cm}^{-1}$  and  $3184, 989 \text{ cm}^{-1}$ assigned to the v(O-H) stretching of the oxime and v(N-O)stretching group  $H_2L^2$ , ligands  $H_2L^1$ and for respectively [10, 11, 15]. The IR spectra of the complexes exhibited ligand bands and the amino acid coligand with the appropriate shifts due to complex formation (Table 2). The v(C=N)imine v(C=N)oxime and stretching bands around 1609 - 1634 and 1473-1481 cm<sup>-1</sup>, respectively in the free Schiff-base oxime ligands is shifted to lower frequency and observed in the range 1604-1627 cm<sup>-1</sup> and 1408-1446 for the complexes. The bands are assigned to a v(C=N) stretch of reduced bond order. This can be attributed to delocalisation of metal electron density  $(t_{2g})$  to the  $\pi$ -system of ligand [16, 17], indicating the coordination of nitrogen of the C=N moieties to the metal atoms [18]. The strong v(N–O) stretching bands at 1000 and 989  $\text{cm}^{-1}$  in the free ligand are shifted to higher frequencies and appeared at  $1029-1091 \text{ cm}^{-1}$  for the complexes. The increase in the N-O bond order can be attributed to the distribution of the  $\pi$ -electron of the oxime moiety upon complex formation [19]. It seems that the two N–O bands are equivalent. Further, the IR spectra of the complexes display characteristic bands for the amino acid co-ligand. The asymmetric and symmetric bands at 1560, 1578 cm<sup>-1</sup> and 1412, 1435 cm<sup>-1</sup> of the carboxylate moiety for the

glycine and serine, respectively [20] is lower frequency shifted to and appeared around 1500-1512 and 1330 -1384 cm<sup>-1</sup> for the asymmetric and symmetric bands, respectively in the complexes. The bands in the range 3136-3147 cm<sup>-1</sup> assigned to the coordinated NH<sub>2</sub> amine moiety of the amino acids indicating the coordination through the nitrogen atom. The IR spectra of the complexes show a strong bands around 740-748  $cm^{-1}$  assigned to the v(IO<sub>4</sub><sup>-</sup>) group [15]. These bands have providing a further evidence for the formation of cationic ion for the cobalt complexes. At lower frequency the complexes exhibited bands around 410-450 and 530-582  $cm^{-1}$  which could be assigned to v(M-N) and v(M–O) vibration modes, respectively [13, 16]. Due to the larger dipole moment change for M-O compared to M–N, the v(M-O) usually appears at higher frequency than the v(M–N) band [21].

#### cv

The UV-Vis spectrum of  $H_2L^1$  exhibit a high intense absorption peak at 293 nm, assigned to overlapping of  $n \rightarrow \pi^*$ and  $\pi \to \pi^*$  [22]. The spectrum for  $H_2L^2$  exhibits a high intense absorption peak at 304 nm, with a shoulder at 273 nm, assigned to  $n \to \pi^*$  and  $\pi \to \pi^*$ . respectively. The electronic spectra of the cobalt (III) complexes of  $H_2L^1$ exhibit a high intense peaks at 227 and 236 nm for  $[Co^{III}(H_2L^1)(gly)](IO_4)_2$  (1)  $[Co^{III}(H_2L^1)(ser)](IO_4)_2$ and (2),respectively due to ligand field. The absorption bands at 291 and 295 nm for 1 and 2, respectively attributed to transition involving the metal oxime grouping [23]. The low intense peaks for 1 and 2 at 348 and 345 nm, respectively attributed to the charge transfer transitions. This may be to the spin-allowed assigned  ${}^{1}A_{1}g \rightarrow {}^{1}T_{2}g$  transition which is masked

Vol.10(3)2013

by the intense charge transfer bands of the complexes and confirming an octahedral structure around Co(III) ions [23-25]. The electronic spectra of the cobalt (III) complexes of  $H_2L^2$ show two peaks at 229 and 224 nm for  $Co^{III}(H_2L^2)(gly)$  $(IO_4)_2$ (3)and  $Co^{III}(H_2L^2)(ser)]$  (IO<sub>4</sub>)<sub>2</sub> (4) complexes, respectively. These peaks were assigned to ligand field. Bands at 298 and 295 nm for (3) and (4). respectively attributed to transition involving the metal oxime grouping. Additional low intense peaks at 348 and 350 nm for 3 and 4, respectively spin-allowed assigned to the  ${}^{1}A_{1}g \rightarrow {}^{1}T_{2}g$  transition which is masked by the intense charge transfer bands confirming an octahedral structure around Co(III) ions [23-25]. The room temperature magnetic moments of the complexes are reported in Table 3. They show magnetic moments in the range of 0-0.5 BM. The very low observed moments are allowed us to conclude safely that the complexes are diamagnetic, low-spin  $d^6$  cobalt(III) complexes [20, 21. 261. This assignment agrees with the electronic spectral measurements.

## D molecular modelling and analysis of bonding modes

Molecular mechanics attempts to reproduce molecular geometries, energies and other features by adjusting bond length, bond angles and torsion angles to equilibrium values that are dependent on the hybridization of an atom and its bonding scheme. In order to obtain estimates of structural details of these complexes and in view

the six-coordination of all the complexes, we have optimised the molecular structure of the ligands and their Co(III)-complexes and we have included  $[Co^{III}(H_2L^1)(gly)](IO_4)_2$  as a representative compound (Figure 3). The detail of bond lengths and bond angles per the 3D molecular structure is given in Tables 4. Energy minimization was repeated several times to find the global minimum [27]. The energy minimization value for octahedral and without restricting the structure for the prepared Co(III)compounds is 159.9147, 195.8127, 160.9463, 275.0271 kcal /mol for complexes 1, 2, 3 and 4, respectively (Table 3). The molecular modelling for the modulated Co(II)-complex (Figure 3 and Table 4) shows the bond lengths bond angles around cobalt atom, indicating a distorted octahedral geometry around Co(III) ion [28], and thus the proposed structure of the Co(III)-complexes are acceptable.

#### Conclusion

In this paper, we have explored the synthesis and coordination chemistry some imine-oxime of Co(III)complexes derived from the tetradentate Schiff-base oxime ligands  $H_2L^1$  and  $H_2L^2$  and the amino acid coligands. The ligands behave as a neutral species upon complexation with the involvement of the nitrogen atoms of the oxime groups in coordination for all complexes. The magnetic susceptibilities and electronic spectra of the complexes indicated that they are low-spin  $d^6$  octahedral.

| $\Lambda_{\rm M}({\rm cm}^2\Omega^{-1}{\rm mol}^{-1})$                                             |                 |    |           |       |                |              |       |
|----------------------------------------------------------------------------------------------------|-----------------|----|-----------|-------|----------------|--------------|-------|
|                                                                                                    |                 |    |           | М     | С              | Н            | N     |
| $H_2L^1$                                                                                           | White           | 56 | 166       | -     | 53.3           | 8.1          | 25.0  |
| -                                                                                                  |                 |    |           |       | (53.1)         | (8.0)        |       |
| (24.8)<br>[Co <sup>III</sup> (H <sub>2</sub> L <sup>1</sup> )(gly)](IO <sub>4</sub> ) <sub>2</sub> | Brown<br>142.7  | 50 | 240*      | 8.3   | 19.2           | 2.6          | 9.2   |
|                                                                                                    | 142.7           |    |           | (8.0) | (19.5)         | (2.9)        | (9.5) |
| $[\text{Co}^{\text{III}}(\text{H}_2\text{L}^1)(\text{ser})](\text{IO}_4)_2$                        | Brown yellow    | 55 | $220^{*}$ | 7.4   | 20.7           | 3.6          | 8.9   |
|                                                                                                    | 158.1           |    |           | (7.7) | (20.3)         | (3.0)        | (9.1) |
| $H_2L^2$                                                                                           | Brown yellow    | 64 | 192       | -     | 61.2<br>(61.3) | 6.9<br>(6.6) | 20.2  |
| $[Co^{III}(H_2L^2)(gly)](IO_4)_2$                                                                  | (20.4)<br>Brown | 38 | $270^{*}$ | 7.8   | 24.2           | 2.6          | 8.6   |
|                                                                                                    | 145.6           |    |           | (7.5) | (24.4)         | (2.7)        | (8.9) |
| $[\text{Co}^{\text{III}}(\text{H}_2\text{L}^2)(\text{ser})](\text{IO}_4)_2$                        | Dark brown      | 65 | 190*      | 7.7   | 24.7           | 3.1          | 8.8   |
|                                                                                                    | 150             |    |           | (7.2) | (25.0)         | (2.8)        | (8.6) |

Table(1): Colours, yields, elemental analyses, and molar conductance values.CompoundColourYield (%)m.p °CFound (Calcd.) (% $A_{\rm curr}^{2} O^{-1} m a^{-1}$ 

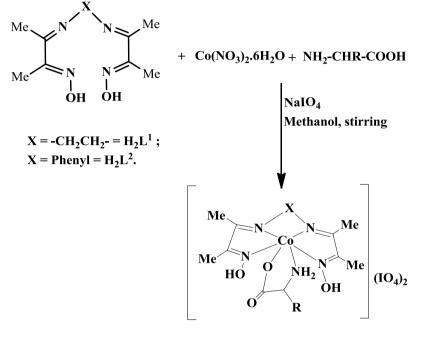
<sup>(\*)</sup>Decomposed.

| Compound                                                                    | ν ( <b>NH</b> <sub>3</sub> ) | ν( <b>OH</b> ) | v(C=N)imin<br>v(C=N)oxime | ν ( <b>N-O</b> ) | v (COO <sup>-</sup> )as, sy | ν ( <b>Co-N</b> ) | ν ( <b>Co-O</b> ) | ν ( <b>IO</b> <sub>4</sub> <sup>-</sup> ) |
|-----------------------------------------------------------------------------|------------------------------|----------------|---------------------------|------------------|-----------------------------|-------------------|-------------------|-------------------------------------------|
| $H_2L^1$                                                                    | -                            | 3145           | 1609(s)<br>1473(s)        | 1001 (s)         | -                           | -                 | -                 | -                                         |
| $H_2L^2$                                                                    | -                            | 3184           | 1634<br>1481              | 989 (s)          | -                           | -                 | -                 | -                                         |
| $[\text{Co}^{III}(\text{H}_2\text{L}^1)(\text{gly})](\text{IO}_4)_2$        | 3136<br>(br)                 | 3385           | 1604(s)<br>1446(w)        | 1091<br>(m)      | 1500 (m)<br>1330            | 450(w)            | 582 (w)           | 740 (s)                                   |
| $[\text{Co}^{III}(\text{H}_2\text{L}^1)(\text{gly})](\text{IO}_4)_2$        | 3147<br>(br)                 | 3360           | 1606<br>1408(m)           | 1037             | 1512 (w)<br>1384            | 412               | 551               | 748<br>(s.br)                             |
| $[\text{Co}^{\text{III}}(\text{H}_2\text{L}^1)(\text{gly})](\text{IO}_4)_2$ | 3143                         | 3380           | 1604<br>1408              | 1091             | 1492<br>1334                | 425               | 530               | 752                                       |
| $[\text{Co}^{III}(\text{H}_2\text{L}^1)(\text{gly})](\text{IO}_4)_2$        | 3145                         | 3332           | 1627<br>1411              | 1029             | 1509<br>1346                | 435               | 582               | 748                                       |

**Table (2):** IR frequencies  $(cm^{-1})$  of the compounds.

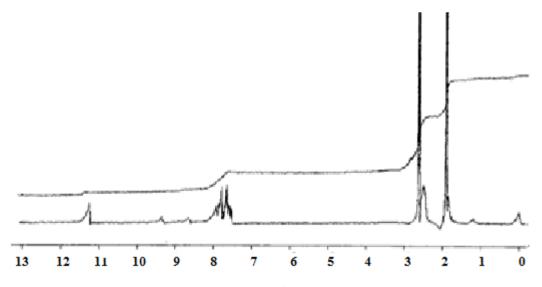
br = broad, w =weak, m =medium, sh =sharp, s.br =strong broad

| Compound                                                                                         | $\mu_{eff}\left(BM\right)$ | Band<br>position<br>(λnm) | Extinction coefficient $\varepsilon_{max}(dm^3 mol^{-1}cm^{-1})$ | Assignments                                                                          | Total minimisation<br>Energy; kcal/mol |
|--------------------------------------------------------------------------------------------------|----------------------------|---------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------|
| $H_2L^1$                                                                                         | -                          | 293                       | 1978                                                             | $\begin{array}{c} \pi \rightarrow \pi^{*} \\ n \rightarrow \pi^{*} \end{array}$      | 18.0999                                |
| [Co <sup>III</sup> (H <sub>2</sub> L <sup>1</sup> )(gly)] (IO <sub>4</sub> ) <sub>2</sub>        |                            | 227<br>291<br>348         | 1631<br>693<br>400                                               | $\pi \rightarrow \pi^{*}$<br>ligand field<br>${}^{1}A_{1}g \rightarrow {}^{1}T_{2}g$ | 159.9147                               |
| $[Co^{III}(H_2L^1)(ser)] (IO_4)_2$                                                               | 0                          | 236<br>291<br>345         | 2014<br>558<br>375                                               | $\pi \to \pi^*$<br>ligand field<br>${}^{1}A_1g \to {}^{1}T_2g$                       | 195.8127                               |
| $H_2L^2$                                                                                         | -                          | 273<br>304                | 1125<br>2310                                                     | $\begin{array}{c} \pi \to \pi^* \\ n \to \pi^* \end{array}$                          | 40.0806                                |
| $[\mathrm{Co}^{\mathrm{III}}(\mathrm{H}_{2}\mathrm{L}^{2})(\mathrm{gly})] (\mathrm{IO}_{4})_{2}$ | 0.5                        | 229<br>298<br>348         | 2100<br>1570<br>734                                              | $\pi \rightarrow \pi^*$<br>ligand field<br>${}^{1}A_1g \rightarrow {}^{1}T_2g$       | 160.9463                               |
| $[\mathbf{Co^{III}(H_2L^2)(ser)}] (\mathbf{IO}_4)_2$                                             | 0                          | 224<br>295<br>345         | 2110<br>962<br>450                                               | $\pi \rightarrow \pi^*$<br>ligand field<br>${}^{1}A_1g \rightarrow {}^{1}T_2g$       | 275.0271                               |

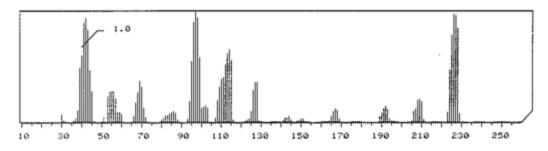

Table (3): Magnetic moment, u.v-vis spectral data in  $H_2O$  solutions and total minimisation energy.

**Table (4):** Proposed bond lengths and bond angles of  $[Co^{III}(H_2L^1)(gly)]^{2+}$ .

| Type of bond | Bond lengths(Å) | Type of bond    | Bond angles(°) |
|--------------|-----------------|-----------------|----------------|
| O(2)-H       | 0.9383          | O(1)-Co(1)-N(5) | 88.7212        |
| O(3)-H       | 0.9410          | O(1)-Co(1)-N(4) | 87.6116        |
| Co (1)- O(1) | 1.8081          | O(1)-Co(1)-N(1) | 93.1164        |
| Co(1)-N(5)   | 1.8440          | O(1)-Co(1)-N(2) | 88.7133        |
| Co(1)- N(1)  | 1.8501          | O(1)-Co(1)-N(3) | 171.8279       |
| Co(1) - N(2) | 1.8485          | N(5)-Co(1)-N(4) | 89.1369        |
| Co(1)- N(3)  | 1.8481          | N(5)-Co(1)-N(1) | 91.8125        |
| Co(1)- N(4)  | 1.8497          | N(5)-Co(1)-N(3) | 174.3354       |
| N(1)-O(2)    | 1.3212          | N(5)-Co(1)-N(3) | 91.5633        |
| N(4)-O(3)    | 1.333           | N(4)-Co(1)-N(1) | 178.8156       |
|              |                 | N(4)-Co(1)-N(2) | 95.8009        |
|              |                 | N(4)-Co(1)-N(3) | 84.2267        |
|              |                 | N(1)-Co(1)-N(2) | 83.2855        |
|              |                 | N(1)-Co(1)-N(3) | 95.0374        |
|              |                 | N(2)-Co(1)-N(3) | 91.6940        |


| O(3)-N(3)-Co(1)  | 115.4792 |
|------------------|----------|
| O(2)-N(71)-Co(1) | 119.0420 |

(Å) = Angstrom (°) = Degree




$$X = -CH_2CH_2 - = H_2L^1; X = Phenyl = H_2L^2.$$
  
R = H = glycine; R = CH<sub>3</sub> = serine.

**Scheme 1:** Chemical structures of Schiff-base oxime ligands and the proposed Co(III) imine-oxime complexes.



**Fig( 1):** <sup>1</sup>H NMR spectrum analysis of  $H_2L^2$ .



**Fig(2):** EI (+) Mass spectrum analysis of  $H_2L^1$ .



**Fig( 3):** 3D molecular modelling of complex  $[Co^{III}(H_2L^1)(gly)]^{2+}$ .

References

- 1. Smith, A.G., Tasker, P.A., White, D.J., Coord. Chem. Rev2003 241 61-85.
- Kumar, S., Dhar, D. N., Saxena, P. N., J. Scien.& Indus. Res., 2009 68 181-187.
- Lehn JM Supramolecular chemistry concepts and perspectives, 1st edn. 1995 Wiley-VCH, Weinheim
- 4. 2. Belghoul B, Welterlich W, Maier A, Toutianoush A, Rabindranath AR, Tieke B, Langmuir20007 23 5062.
- 5. Eddie L. Chang, Christa Simmers and D. Andrew Knight, Pharmaceuticals, *3* 2010 1711-1728.
- Pallavi, P., Nagababu, P., Satyanarayana, S., Helve. Chim. Acta, 2007 90 (3) 627–639.
- Tahara, K., Chen, Y., Pan, L., Masuko, T., Shimakoshi, H., Hisaeda, Y., Chem. Lett 2011 40 177179.
- Weakley, T. J. R., Marks, J., Finke, R. G., Acta Cryst., 1994 C50 1690-1692
- Jacques, P-A., Artero, V., Pe'caut, J., Fontecave, M., PNAS, 2009 106 (49) 20627– 20632.
- 10. , Issa O. I., Al-Jeboori, M .J., Al-Dulaimi, J. S., *J. Ibn Al-Haitham for Pure and Appl. Scie.*, 2011 22 (2) 142-153.
- Al-Jeboori, M. J., Abdul Rahman, A. A., Atia, S., J.Ibn Al-Haitham for Pure and Appl. Scie., 2005 18 (2) 51.
- 12.CS Chem 3D Ultra Molecular Modeling and Analysis, Cambridge, www. cambridgesoft.com.
- 13. Maurya, R.C., Rajput, S., J. Molec. Stru., 2006 794 24.34.
- 14.Geary W.J., Coord. Chem. Rev., 1971 7 81.

- Nakomoto, K., Infrared Spectra of Inorganic and Coordination Compounds, 1996 4<sup>th</sup> ed., J. Wiely and Sons, New York.
- 16. Al-Jeboori, M.J., Al-Dujaili, A.H. and Al-Janabi, A.E., Trans. Met. Chem., 2009 34 109.
- Livingston, S.E., Mayfield, J.H., Moorse, D.S., Aust. J. Chem., 1975 28 2531.
- El-Sonbati, A.Z., El-bindary A.A., Al-Sarawy, A.A., Spectrochim Acta Part A, 58 2002 2771.
- 19. Hadzi, D., J. Chem. Soc2004 15 2725.
- 20. A. Adkhis, S. Djbbar, O. Benali-Baitich, A. Kadri, M. A. Khan, and G. Bouet, Synth.React.Inorg.Met.Orga Chem., 33 2003 35-50.
- 21. Nakamoto, K., and Ohkaku, N., Inorg. Chem., 10 1971 798.
- 22. Silverstein, R. M., "Spectrometric Identification of Organic Compounds", Wiley; 7<sup>th</sup> Edition, 2005
- 23. Arumugham, M. N., Santhakumar, K., Arunachalam, S., *Asian. J. Chem.*, 200315 191-196.
- 24. Al-Jeboori, M.J., Abdelkareem, E.I., Al-Dulaimi, J.S., *Nat. J. Chem.*, 2007 26 331.
- 25. Kolawole, G. A., Ndahi, N. P., Syn. and Reac. Inorg. and Met.Orga. Chem 2004 ., 34 (9) 1563–1580.
- 26. Lever, A.B.P., 1984 Inorganic Electronic Spectroscopy, 2nd edn., Elsevier publishing, New York.
- 27. Mishra, A. P., Mishra, R.K., Shrivastava, S.P., J. Serb. Chem. Soc., 2009 74 523.535.
- Colak, A. T., Irez, G., Mutlu, H., Hökelek, T., Caylak, N., J. Coord. Chem. 2009 62 (6) 1005–1014.

# نحضير وتشخيص معقدات الكوبلت الثلاثية مع ليكاند نوع ايمين – اوكسيم وبعض الحضير وتشخيص معقدات الكوبلت الأمينية

محمد جابر الجبوري\* ، حسن احمد حسن \* ، الاء محمد عذيب \*

\*قسم الكيمياء كلية التربيه ابن الهيثم /جامعة بغداد

الخلاصة:

تم في هذا البحث تحضير ست معقدات للكوبلت الثلاثي ودلك بمفاعلة 2.3-butanedione monoxime ولي دي المولية 2.3-butanedione monoxime ولي ودلك بمفاعلة 2.3-butanedione اوكسيم o-phenylenediamine وبالنسبة المولية 2:1 لتعطي ليكاندين نوع ايمين – اوكسيم رباعية السن -o-phenylenediamine المولية 2:1 لتعطي ليكاندين نوع ايمين – اوكسيم رباعية السن -o-phenylenediamine المولية 2:1 لتعطي ليكاندين نوع ايمين – اوكسيم رباعية السن -o-phenylenediamine المولية 2:1 لتعطي ليكاندين نوع ايمين – اوكسيم رباعية السن -o-phenylenediamine المولية 2:1 لتعطي ليكاندين نوع ايمين – اوكسيم رباعية السن -o-phenylenediamine المدين المحالي المعاقب وعند مفاعلة رباعية السن -o-phenyleidine-3-onedioxime) H<sub>2</sub>L<sup>2</sup>, الليكاندين مع نترات الكوبلت والاحماض الامينية (الكلايسين والسيرين) بنتج لدينا المعقدات الست المشار اليها. سلوك الليكاند هنا رباعي الس ومتعادل بينما الاحماض الامينية احادية القاعدية. تم تعيين الشكل الهندسي ونوع التوصر في المعقدات من خلال الدراسات اللطيفية حيث اقترح الشكل الثماني السطوح للمعقدات بحيث يتناسق الحامض الاميني والكاربوكسيل والمالي المعني ولي المعقدات المعقدات المعقدات المعقدات المعتريني ونوع التوصر في المعقدات من خلال الدراسات اللطيفية حيث اقترح الشكل الثماني السطوح للمعقدات بحيث يتناسق الحامض الاميني مع الفلز من خلال مجموعتي الامين والكاربوكسيل . وكدلك تم استنتاج الالشكل المالي المعقدات باستخدام برنامج CS Chem 3D Ultra Molecular Modelling الشكل الثماني السطوح للمعقدات.