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Abstract

Density Functional Theory (DFT) calculations were carried out to study the
thermal cracking for acenaphthylene molecule to estimate the bond energies for
breaking C8b-C5a , C5a-C5 , C5-C4 , and C5-H5 bonds as well as the activation
energies. It was found that for C8b-Cba , C5-C4 , and C5-H5 reactions it is often
possible to identify one pathway for bond breakage through the singlet or triplet
states. The atomic charges , dipole moment and nuclear — nuclear repulsion energy
supported the breakage bond .Also, it was found that the activation energy value for
C5-H5 bond breakage is lower than that required for C8b-C5a , C5a-C5 , C5-C4
bonds which refer to C5-H5 bond in acenaphthylene molecule are weaker than C8b-
Cbha, C5a-C5, C5-C4 bonds .1t is reasonable to presume that C5-H5 bonds are broken
first when a acenaphthylene molecule is exposed to thermal cracking. It seems that the
characteristic planarity for the polyaromatic hydrocarbons is an important factor to
acquire the molecule structure of the required stability along the reaction path . The
trends in the bond energies and the configuration structures are discussed .

Keywords: C-H rupture and C-C rupture , DFT calculations, thermal cracking ,
acenaphthylene

Introduction:

Aromatic compounds are present of highly accurate bond energies®. For
in high concentrations in crude oil and this purpose the present study is
composited about 3-4% of the heavy devoted to determinate the bond
crude oil® . The term cracking applies energies of some important bonds in
to the decomposition of petroleum acenaphthylene molecule such as the
whereby the higher molecular weight C8b-C5a , C5a-C5, C5-C4 ,and C5-
constituents  of  petroleum  are H5 as well as estimate the values of
converted to low molecular weight the atomic charges , dipole moment ,
products® . Cracking reactions involve and nuclear-nuclear repulsion energy
carbon-carbon and carbon-hydrogen by Density Functional Theory .
bonds rupture® . Bond dissociation
energy is recognized as a measure of Materials and Methods:
bond strength and it is WIdE'y utilized Quantum chemical calculations
for estimating the heats of formation in employing DFT® are carried out to
organic chemistry®® . It is not easy to investigate the energies of breakage the
determine the carbon - carbon and C8b-C5a , C5a-C5 , C5-C4 , and C5-H5
carbon - hydrogen bonds dissociation bo.nds . All ca_lcuélgations are conducted
energies of polyaromatic hydrocarbon using the Gaussian®® 2009 suite programs
experimentally. Thus, the in the workstation that have high

performance in the CPU process and
memory size . DFT allows to compute all
properties of systems by the electron
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computational chemistry has made
impressive advances in the calculation
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density , p(r) which is a function of three
variables , p(r) =f(x,y, z) . The hybrid
DFT method included a mixture of Hartree
- Fock exchange with DFT exchange —
correlation. Also , this meted is known as
hyper - GGA functional® . The most
popular hybrid functional is known
B3LYB and was suggested by Stephenes.
In B3LYP , the PWal correlation
functional is replaced by the LYP
functional . B3 ( Becke three parameter
hybrid functionals, these functionals have
the form devised by Becke , LYP is the
Lee - Yang - Parr correlation
functional®® . Recent work has
suggested that B3LYP approach is the best
functional for the calculation of
hydrocarbon ~ bond  energies®*®

Significant improvement in the agreement
between electronic structure calculations
and experiment can be achieved by
increasing the number of basis set
functions . Thus , the triple - zeta (TZ)
basis set such as 6-311G ' used in the
present work are in conformity with
UHF® _Initially , the optimization energy
procedure  has been carried out to
calculate the energy bond for the original
state " equilibrium state ". Thereafter,
changed the distance between the atoms
that under study C8b-C5a , C5a-C5 , C5-
C4 , and C5-H5 bonds and calculate the
values of the atomic charges, dipole

-1.586
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moment, and nuclear-nuclear
energy.

repulsion

Results and Discussion :

The energies required to break
C5-H5 and C8b-Cba , C5a-C5 , and
C5-C4 bonds have been calculated by
virtue of the singlet and triplet states .
By examining the potential energy
curves, one can deduce whether a
particular reaction pathway for bond
breakage is favoured in comparison
with other pathways. However, for the
C5-H5 and C8b-Cha , and C5-C4
reactions, it is often possible to identify
one pathway for bond breakage
through the singlet or triplet states by
using density functional theory (DFT).
The carbon and hydrogen atoms of the

acenaphthylene molecule  are
numbered in conformity with the
convention laid down by the

International Union of Pure and
Applied Chemistry (IUPAC)®® for the
regular naming of  chemical
compounds (scheme 1). Furthermore,
Scheme 1 displays the

atomic charges for each of the atoms
by means of various colours denoting -
0.586 C to 0.586 C.

Scheme (2):
compatibility of atomic charges .
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From the results presented in Table (1)
and Figure (1), it is notable that the
values of the activation energy
(236.2514kCal/mole) and the reaction
energy (192.7554kcal/mol) in the
singlet state at the bond lengths 3.6A
and 3.7A respectively. The pictorial
representation (2) depicts the transition
state and the product of the cleavage of
the C8b-Cba bond and the atomic
charges for each the atoms are
indicated by means of a coloured key .
The transition state clearly forms the
allene fragments and in which all the
atoms reach a stable octet™ (the atom
C8a is central to one allene and the

atom Cba is central to the other),
causing the molecular structure to
pucker and in turn lose planarity.
Additionally at a bond length of 3.7A |
the same changes occur (in one pure
allene fragment) albeit in a transition
state that is more distorted ; thus, the
two configurations may be unstable.
Table (1) and Figures (2-4) confirm the
cleavage of the C8b-Cbha bond at a
bond length of 3.7A. Table (1) and
Figure (2) illustrate the discernible
change in the atomic charges in
comparison with ground state (scheme
1).

Table (1): Shows the bonds lengths for acenaphthylene molecule in Angstrom
units and the bond energies in kilocalories per mole as well the values of the
nuclear-nuclear repulsion energy , atomic charges and dipole moment for C8b-
Cba bond breakage of acenaphthylene molecule .

Bond Dipole En.n (Hartree Atomic Atomic
lengthA E (au) AE (kCal/mol) momenE[)(Debye) >510+2 : charge C8b | charge C5a
1.16 -462.0043783 43.13422 0.2017 6.173292584785 -0.720116 0.325878
1.36 org. | -462.0731170 0.000000 0.3787 6.110724998616 -0.613214 0.289163
1.6 -462.0510408 13.85304 0.5167 6.038283407198 -0.422749 0.225062
1.8 -462.0062141 41.98224 0.5742 5.982035672295 -0.276473 0.157775

2 -461.9569060 72.92356 0.5998 5.929470450631 -0.176033 0.090398
2.2 -461.9089440 103.0202 0.6101 5.881783156769 -0.124183 0.031885
2.4 -461.8642531 131.0642 0.6079 5.839246670431 -0.108800 -0.012496
2.6 -461.8352348 149.2735 2.1559 5.859330048654 -0.072022 -0.065198
2.8 -461.8140607 162.5604 1.6577 5.882769160226 -0.020047 -0.082308
2.9 -461.8080144 166.3546 15311 5.876765458025 -0.000734 -0.052324
3 -461.8023077 169.9355 1.5225 5.867451914201 0.014289 -0.032521
3.2 -461.7459833 205.2797 2.1761 5.745140326481 -0.224555 -0.020380
3.4 -461.7225141 220.0068 0.5964 5.727134353308 -0.114848 0.034182

36T.S. -461.6966268 236.2514 1.0730 5.694984494939 -0.104368 0.047518
3.7 -461.7659419 192.7554 1.8396 5.925183527237 0.093743 0.008031
3.8 -461.7611465 195.7646 1.8421 5.928462892786 0.091720 0.018111
4 -461.7499731 202.7760 1.8585 5.931965043623 0.087208 0.037093
4.2 -461.7363883 211.3006 1.8836 5.931480286944 0.084515 0.051213
4.4 -461.7199075 221.6425 1.9075 5.928640834872 0.083144 0.058612
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| TRANSITION STATE,B.L.=3.6A° SINGLET BRAKAGE .BL.=3.7A°

Scheme (2): exhibits the transition state , the product of the cleavage of the C8b-
Cba bond, and the atomic charges for each the atoms (distinguished by means of
colour) .
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Fig (1): Shows the potential energy curve for Fig (2): shows the dipole moment for C8b and Cbha to
acenaphthylene molecule for C8b-C5a bond breakage . acenaphthylene molecule .
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C5a to acenaphthylene molecule .
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The C5a-C5 bond ruptures at a bond
length of 3.9A in both triplet and
singlet states, and the latest state is
more stable because of the E,; for the
pathway of reaction energy is lower
(Figure 5). Scheme (3) represents the
mechanism of bond breakage C5a-C5
at a bond length of 3.9A in singlet and
triplet states, in addition to the spatial
geometrical structure of transition state
at a bond length of 3.8A and the
atomic charges for all atoms in the
molecule . In the transition state, the
configuration of the open hydrocarbon

without loss of the planarity. The
configuration of the allene fragments
(the atom Cba is central to one allene
and the atom C5 is central of the other)
retains the electronic spin, while the
hydrogen atom (H4) is transferred to
the carbon atom (C5). In doing so, all
the atoms in the molecule reach a
stable electronic octet ¥ and
accomplish the required stability. This
modification in geometrical structure is
unnoticeable in the triplet state.
Furthermore, the data presented in
Figures(6-9) support the cleavage of

chain contains both double and single the  C5a-C5a bond at the
bonds as well as the allene fragment, aforementioned bond  length
Color Range: 0.265 o 02%5
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Scheme (3): exhibits the transition state , the product of the cleavage of the C5a-
C5 bond, and the atomic charges for each the atoms (distinguished by means of

colour) .
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Fig (5): Shows the potential energy curve for acenaphthylene
molecule for C5a-C5 bond breakage .
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Fig( 7): shows the atomic charges for C5a and C5 to
acenaphthylene molecule at singlet state .
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Fig (6): shows the dipole moment for C5a and C5
for acenaphthylene molecule .

Fig (8): shows the atomic charges for C5a and C5 to
acenaphthylene molecule at triplet state .
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Fig (9): shows the Ey.y ( Hartree) for C5a and C5 for acenaphthylene molecule .
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Figure (10) illustrates the potential
energy curve along with values for the
activation energy and reaction energy
for the cleavage of the C5-C4 bond in
the triplet state. The pictorial
representation  (4)  exhibits  the
transition state and the bond breaking
product of Cb5-C4and the atomic
charges for each of the atoms by means
of a coloured kev . In the transition

CokeRange: 0300 | to/0300

TRANSITION STATE,BL.=36A°

colour) .

50.00

0.00

| »
reaction energy , Singlet

Cobor Range:

state, the benzene ring is opened
without the loss of the planarity. The
change in electronic spin and the
occurrence of rotation around the C5-
C4 bond axis is necessary to acquire
the required stability for the molecular
structure. Moreover , Figures(11-13)
confirm the cleavage of the C5-C4
bond at the bond length 3.7A .
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Scheme (4): exhibits the transition state , the product of the cleavage of the C5-
C4 bond, and the atomic charges for each the atoms (distinguished by means of
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200 250

Bond length (A)

Fig (10): Shows the potential energy curve for
acenaphthylene molecule for C5-C4 bond breakage .
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Fig (11): shows the dipole moment for C5 and C4
acenaphthylene molecule .
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Fig(12): shows the atomic charges for C5 and
C4 for acenaphthylene molecule

Figure (14) exhibits the values of
the activation energy and the reaction
energy by virtue of a triplet state
pathway (147.764kCal/mol)
and(117.808kCal/mol),  respectively.
The mechanism of the reaction that
includes the transition state structure
and the cleavage of the C3-H3 bond is
best described by means of Scheme (5)
. Firstly, in the transition state, the
hydrogen atom (H5) is moved away
from the molecule with deviation from
the plane in the sense that the
interaction is experienced unequally
between the hydrogen atoms (H5) and
(H6, H7),i.e., there is a difference in
the atomic charges. However, at a
bond length of 3.5A, the hydrogen
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D
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Fig (13): shows the Ey.n (Hartree) for C5 and
C4 for acenaphthylene molecule .

atom H5 is removed from the molecule
as a free radical and moved far from
the planar molecule. Both the
structures preserve the planarity
characteristic of aromatic compounds.
The conversion of the atomic charges
occurs for the carbon atom C5 and the
hydrogen atom H5 from positive
values into negative values and
approaches zero that refers to the
release of the hydrogen atom H5 as a
free radical without any interactions
with other atoms that have been
exhibited in Figure (16) . Moreover,
Figures (15-17) confirm the cleavage
of the C3-H3 bond at the bond length
mentioned earlier.

© 6 @D TD 0¢

TRIPLET BRAKAGE .BL.=354i

Scheme (5): exhibits the transition state, the product of the cleavage of the C3-H3
bond, and the atomic charges for each the atoms
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Fig(14): Shows the potential energy curve for
acenaphthylene molecule for C3-H3 bond
breakage .
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Fig (16): shows the atomic charges for C5 and
H5 for acenaphthylene molecule .
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Fig(15): shows the dipole moment for C3
and H3 for acenaphthylene molecule
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Fig (17): shows the Ey.y ( Hartree) for C5 and
H5 for acenaphthylene molecule .

Table (2):Summary to values of energies as function to bond length

Activation Energy Reaction Energy
Bond Type Values Bond Length A Values Bond Length A
(kCal/mol) (kCal/mol)
C8b-Cba 236.2514 3.6 192.7554 3.7
120.1272 singlet
C5a-C5 164.2410 3.8 130.2414 triplet 3.9
C5-C4 182.4142 3.6 152.3400 3.7
C5-H5 147.7642 3.4 117.8083 3.5
Table (2) exhibits the data of the compared with the C5-H5 bonds

present study for comparison purposes.
The acenaphthylene  molecule an
appreciable  dramatic change in
geometry occurs when C8b-C5a , C5a-
C5 , C5-C4 bonds are cleavage as
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which is a slightly change occurs in
geometry owing to the aryl radicals
have a nominally singly occupied
carbon sp? orbital orthogonal to the -
electron system of the aromatic ring.
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Thus , the general tendency of such an

orbital to acquire the maximum degree

of m-character by the quasi-linear
(18)

geometry about the carbon atom

overcomes the ensuring increase in

ring strain . Thus , the activation
energies values are arranged in the
following sequences :

C8b—C5a > C5—C4 > C5a—C5 > C5— H5.
The low activation energy value for
C5a-C5 bond due to the transition state
is completely planar and reach full
octet! and thus stabilizes the
molecular  structure The low
activation energy value for C5-H5
owing to the transitions state is
coplanar and has the good variation for
atomic charges via a bond length as the
reaction proceeds. There are different
mechanisms to describe the cleavage
of the C8b—C5a=(C5—-C4 =C5a—C5
bonds as a result to different end
products .
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