Preparation and Identification of some new Pyrazolopyrin derivatives and their Polymerizations study

Redha I. H. Al-Bayati* Mahmoud A.Al-Issa**
Zaynab H. Fadel Al-Mosawy**

Received 20, December, 2012
Accepted 5, February, 2014

Abstract

: This work describes the synthesis and polymerization properties of some novel polysubstituted fused heterocyclic ring Systems namely; Pyrano [4, 3-C] Pyrazoles and pyrazolo [4, 3-C] Pyridines. Such targeted compounds where designed so as to hybridize the Pyrazole ring with the pyrone and/or pyridine moieties, respectively. The chemistry of the reactions employed in the synthesis of the target compounds together with their chemical behavior, are discussed and the structures of the newly synthesized compounds were confirmed by the IR and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral data. A series of copolymers 1-(3,6-dimethyl-4-oxo-1,4-dihydro-5H-pyrazolo [4,3-C] pyridin5 -yl)-1H-pyrrole-2,5-Dione S_{1}, 1-[2-(3,6-dimethyl-4-oxo-1-phenyl-1, 4-dihydro-5Hpyrazolo [4,3-C] pyridin-5-yl)ethyl]-1H-pyrrole-2,5-Dione S_{2} and 1-(3, 6-dimethyl-4-oxo-1-phenyl-1,4-dihydro-5H-pyrazolo[4,3-C]pyridin-5-yl)-1H-pyrrole 2,5-Dione S_{3} with Acrylic acid (AA) were prepared by free radical polymerization in absolute ethanol at $70 \mathrm{C}^{\circ}$ using Benzoyl peroxide as initiator. The reactivity ratios of the monomers were determined by Fineman- Ross and Kelen-Tudos methods. Mean Sequence lengths of copolymers are estimated from r_{1} and r_{2} values. It shows that the AA unit increases in a linear fashion in the polymer chain as the concentration of AA increases in the monomer feed.

Key words: Synthesis; Fused Pyrazoles,1-(3,6-dimethyl-4-oxo-1,4-dihydro-5Hpyrazolo [4,3-C] pyridin-5-yl)-1H-pyrrole-2,5-Dione \mathbf{S}_{1}, 1-[2-(3,6-dimethyl-4-oxo-1-phenyl-1,4-dihydro-5H-pyrazolo[4,3-C]pyridin-5-yl)ethyl]-1H-pyrrole-2,5DioneS $_{2}$ and 1-(3,6-dimethyl-4-oxo-1-phenyl-1,4-dihydro-5H-pyrazolo[4,3-C]pyridin-5-yl)-1H-pyrrole-2,5-Dione S_{3}, reactivity ratios, copolymer composition, Mean Sequence lengths.

Introduction:

Among the wide variety of heterocycles that have been explored for developing potential pharmacologically active compounds, pyrazoles fused with different heterocycles that are known to contribute to various chemotherapeutic effects have emerged as antimicrobial,[1,2] antifungal,[3] and antiviral agents.[4] In addition, some fused pyrazole derivatives were reported induce various antileukemic, [5] antitumor [6, 7] and
antiproliferative $[8,9]$ activities. Motivated by these facts, we were interested to synthesize and investigate the in vitro anticancer, antibacterial and antifungal activities of some novel polysubstituted fused heterocyclic ring systems namely; pyrano [4,3 C]pyrazoles and pyrazolo [4,3-cC] pyridines. Such targeted compounds where designed so as to hybridize the pyrazole ring with the pyrone and/or pyridine moieties, respectively, hoping to obtain synergistic anticancer and/or

[^0]antimicrobial activities. The structures of the newly synthesized compounds were confirmed with elementary microanalyses and substantiated with IR and $1 \mathrm{H}-\mathrm{NMR}$ data. The chemical structure of a copolymer depends not only on the two-monomer units forming the macromolecule, but also on how such units are distributed along macromolecular chains. This distribution is a direct consequence of each monomer's reactivity in the copolymer molecule [10-13]. The determination of copolymer composition and reactivity ratios of the monomers is important in evaluating the specific application of the copolymer [14]. The monomer reactivity ratios determined by conventional linearization methods. The copolymer composition was determined by Kjeldahl analysis for the copolymer. Knowledge of the copolymer composition is an important step in the evaluation of its utility. Copolymer composition and monomer distribution in the copolymer are dependent on the reactivity ratios. The most common mathematical model of copolymerization is based on finding the relationship between the composition of copolymers and the composition of the monomer feed in which the monomer reactivity ratios are the parameters to be determined [15-18]. The accurate estimation of copolymer composition and determination of monomer reactivity ratios are significant for tailor-made copolymers with required physical and chemical properties and in evaluating the specific end application of the copolymers. The present article reports the synthesis and characterization of series of copolymers S_{1}, S_{2} and S_{3} with Acrylic acid. The determination of monomer reactivity ratios of the monomers and mean sequence lengths of copolymers are also reported.

Materials and Methods:

Melting points were determined in open glass capillaries on a Gallenkamp Melting point apparatus. The infrared (IR) spectra were recorded on Shimadzu FT-IR 8400S infrared spectrophotometer using the KBr Plate technique. The $1 \mathrm{H}-\mathrm{NMR}$ spectra were recorded on a Varian EM 360 spectrometer using tetramethylsilane as the internal standard and DMSO-d6 as the solvent (Chemical shifts in δ, ppm). Splitting patterns were designated as follows: S : Singlet; D: Doublet; M: Multiplet. Kjeldahl analyses were performed at the Laboratory College of Science University of the Baghdad.

Pyrazoles, 1-(3, 6-dimethyl-4-oxo-1,4-dihydro-5H-pyrazolo [4,3-C] pyridin-5-yl)-1H-pyrrole-2,5-Dione S_{1} :

A solution of the appropriate 5-Amino-3, 6-Dimethyl-2H-Pyridine$4(5 \mathrm{H})$ one $(5 \mathrm{gm}, 0.0281 \mathrm{~mole})$ in Glacial acetic acid (25 ml) was refluxed with Maleic anhydride (5.51gm , 0.0562 mole) for 14 hr The reaction mixture was concentrated to half its volume and allowed to cool in ice bath. The solid product separated by filtration, washed thoroughly with water, dried and recrystallized from ethanol. Physicochemical and analytical data are recorded in Table 1. 1HNMR and IR spectra are shown in Table 2.

1-[2-(3, 6-dimethyl-4-oxo-1-phenyl-1,4-dihydro-5H-pyrazolo[4,3-
 C]pyridin-5-yl)ethyl]-1H-pyrrole-2,5-Dione S_{2} :

A solution of the appropriate 5-(2-aminoethyl)-3, $\quad 6$-dimethyl-1-phenyl-1, 5-dihydro-4H-pyrazolo [4, 3c] pyridine-4-one ($5 \mathrm{gm}, 0.0177 \mathrm{~mole}$) in Glacial acetic acid (25 ml) was refluxed with Maleic anhydride ($3.47 \mathrm{gm}, 0.0354 \mathrm{~mole}$) for 14 hr The
reaction mixture was concentrated to half its volume and allowed to cool ice bath. The solid product separated by filtration, washed thoroughly with water, dried and recrystallized from ethanol. Physicochemical and analytical data are recorded in Table 1. 1HNMR and IR spectra are shown in Table 2.

1-(3, 6-dimethyl-4-oxo-1-phenyl-1,4-dihydro-5H-pyrazolo[4,3-C]pyridin-5-yl)-1H-pyrrole-2,5-Dione S_{3} :

A solution of the appropriate 5-amino-3, 6-dimethyl-1-phenyl-1, 5-dihydro-4H-pyrazolo [4, 3-c] pyridine-4-one ($5 \mathrm{gm}, 0.0197 \mathrm{~mole}$) in Glacial acetic acid (25 ml) was refluxed with Maleic anhydride $\quad(3.86 \mathrm{gm}$, 0.0394 mole) for 14 hr The reaction mixture was concentrated to half its volume and allowed to cool ice bath. The solid product separated by filtration, washed thoroughly with water, dried and recrystallized from ethanol. Physicochemical and analytical data are recorded in Table 1. $1 H N M R$ and IR spectra are shown in Table 2.
Acrylic acid was washed with water and dried over anhydrous CaCl 2 . The Acrylic acid was then distilled in an atmosphere of Nitrogen under reduced pressure. The clean and dried Acrylic acid stored in bottle and kept in the refrigerator at $5 \circ \mathrm{C}$. Benzoyl proxide (BPO) was recrystallized from chloroform. Diethyl ether was dried with Megnesium Sulphate All the solvents were purified by distillation prior to their use. The Comonomers of series of S_{1}, S_{2}, S_{3} was purified by
washing successively with $5 \% \mathrm{NaOH}$ and distilled water, dried, and finally distilled at reduced pressure under nitrogen at $60^{\circ} \mathrm{C}$.

Copolymerization

A total feed of 5 gm of series monomers S_{1}, S_{2} and S_{3} with Acrylic acid and 0.1 gm of BPO initiator were dissolved in 8 ml of ethanol placed in a standard reaction tube to obtain a homogenous solution. The mixture was flushed with oxygen free dry nitrogen gas. The reaction tubes then immersed in a thermostatic water bath maintained at $70^{\circ} \mathrm{C}$. The copolymerization reaction was allowed to proceed for an appropriate duration that would give a conversion below 10%. Then cooled to R.T. The solution poured in petroleum ether to precipitate the copolymer. The copolymer washed with petroleum ether and dried in vacuum oven for 24 hours.

Instrumentation

The $1 \mathrm{H}-\mathrm{NMR}$ spectra of monomers were recorded on the Bruker DMX-500 NMR Spectrophotometer operating at 300600 MHz respectively DMSO-d6 as the solvent.

Results and Discussion:
 Copolymerization

A series of copolymers S_{1}, S_{2} and S_{3} with Acrylic acid were prepared by free radical polymerization in ethanol at $70{ }^{\circ} \mathrm{C}$ using BPO as initiator. The schematic representation of the copolymer is given bellow:

Fig. 1: Copolymerization of $S_{1}, S_{\mathbf{2}}$ and S_{3} with Acrylic acid

Determination of copolymer composition

The copolymer composition was determined by Kjeldahl analysis for the copolymer.

Reactivity ratios

The monomer feed ratios and the resultant copolymer compositions, the reactivity ratios of monomers $1\left(S_{1}, S_{2}\right.$, S_{3}) and monomer 2 (AA) were evaluated by the methods of FinemanRoss (F-R) and Kelen- Tudos (K-T). The significant parameters of F-R and $\mathrm{K}-\mathrm{T}$ and equation are presented in Table $3,7,11$ and Table 4,8,12 respectively. The reactivity ratios for $S_{1}, S_{2}, S_{3}\left(r_{1}\right)$ and AA (r_{2}) from the F-R plot (Figure 2) and K-T plot are given in Table $5,9,13$ and (Figure 3). The value(S) of r_{1} is less than 1 and r_{2} is greater than 1 . The r_{1} shows that S_{1}, S_{2}, S_{3} favors cross-propagation as opposed
to homopropagation and r_{2} shows that AA favors homopropagation over cross-propagation. The r_{1} and r_{2} together show that AA is generally more reactive than S_{1}, S_{2}, S_{3}, hence the copolymers contain a higher proportion of AA units.

Mean sequence length

The mean sequence length was determined using the pertinent equations:

[M_{1}] represent the concentration of S_{1}, S_{2} or S_{3} and $\left[\mathrm{M}_{2}\right.$] AA, in the monomer feed. The mean sequence lengths of copolymers are given in Table 6, 10, 14. It is significant to note that from the Table 6, 10, 14 the AA units'
increases in a linear fashion in the polymer chain as the concentration of AA increases in the monomer feed.

Table1. Physicochemical and analytical data for compounds 1-3.

Cpd No.	R	Yield $(\%)$	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	Mol. Form.
S_{1}	-	$\mathbf{9 3 . 5 6}$	$\mathbf{8 0 - 8 2}$	$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{3}$
$\mathrm{~S}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathbf{8 3 . 5 9}$	$76-78$	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$
$\mathrm{~S}_{3}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	85.7	$\mathbf{1 4 0 - 1 4 2}$	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}$

Table2. ${ }^{1} \mathbf{H}-N M R(\delta-p p m)$ and $\operatorname{IR}\left(\mathbf{C m}^{-1}\right)$ spectra of some1-3.

Cpd	CH_{3} $(\mathrm{~S}, \mathbf{3 H})$	$\mathrm{H}-6$ $(\mathrm{~S}, \mathbf{1 H})$	IR $\left(\mathrm{Cm}^{-1}\right)$
$\mathrm{S}_{\mathbf{1}}$	-	-	$1716.65(\mathrm{CO})$, $3414(\mathrm{NH})$
$\mathrm{S}_{\mathbf{2}}$	$1.789,2.657$	6.099	$1716.65(\mathrm{CO})$
$\mathrm{S}_{\mathbf{3}}$	$3.023,3.054$	5.552	$1716.65(\mathrm{CO})$

Table3: Fineman-Ross parameters for the Copolymerization of $\mathbf{S}_{1}-\mathbf{C o}-\mathbf{A A}$

Mole fraction of S_{1} in feed, M_{1}	Mole fraction of $\mathbf{A A}$ in feed, M_{2}	$\begin{gathered} \text { fraction of } \\ S_{1} \\ \text { in } \\ \text { copolymer, } \\ m_{1} \end{gathered}$	Mole fraction of AA in copolymer, m_{2}	$\mathrm{F}=\mathrm{M}_{1} / \mathrm{M}_{2}$	$\mathrm{F}=\mathrm{m}_{1} / \mathrm{m}_{2}$	(F-1) /f	$\mathrm{F} / \mathrm{f}^{\mathbf{2}}$
0.2	0.8	0.003824	0.015496	0.250	0.2468	-3.3666	2.8560
0.3	0.7	0.004391	0.010309	0.429	0.4259	-1.7283	1.4548
0.4	0.6	0.006016	0.009072	0.667	0.6631	-1.0131	0.7464
0.5	0.5	0.007552	0.007958	1.000	0.9489	-0.3764	0.7139
0.6	0.4	0.009063	0.006135	1.500	1.4771	-0.0822	0.4027
0.7	0.3	0.010578	0.004581	2.333	2.3091	0.2008	0.2745
0.8	0.2	0.012087	0.003082	4.000	3.9213	0.2024	0.1167

Table4: kelen-Tudos parameters for the Copolymerization of $\mathbf{S}_{1}-\mathbf{C o}-\mathrm{AA}$

$\begin{gathered} \mathbf{G}=\mathbf{F}(\mathbf{f}-\mathbf{1}) \\ \\ \hline \mathbf{f} \end{gathered}$	$\underset{f}{\mathbf{H}=\mathbf{F} 2 /}$	$\mathrm{N}=\mathbf{G} /(\boldsymbol{\alpha}+$ H)	$\begin{gathered} \mathbf{A}=\mathbf{H} /(\boldsymbol{\alpha} \\ +\mathbf{H}) \end{gathered}$
-1.1791	0.3501	-0.5662	0.1681
-1.1871	0.6874	-0.4906	0.2841
-1.3573	1.3397	-0.4418	0.4361
-0.5273	1.4007	-0.1683	0.4518
-0.2041	2.4833	-0.0484	0.5891
0.7315	3.6428	0.1361	0.6777
1.7351	8.5726	0.1684	0.831

$\alpha=1.7324$

Table5. Copolymerization parameter, for the Copolymerization of $S_{1}-\mathbf{C o}-A A$

Methods	\mathbf{r}_{1}	\mathbf{r}_{2}	$\mathbf{r}_{1} . \mathbf{r}_{2}$
Fineman-Ross (F-R)	$\mathbf{0 . 3 8}$	$\mathbf{1 . 3 5}$	$\mathbf{0 . 5 1 3}$
Kelen-Tudos (K-T)	$\mathbf{0 . 3 0}$	$\mathbf{1 . 4 2}$	$\mathbf{0 . 4 2 6}$

Table6. Mean Sequence Lengths in
Copolymerization of $\mathbf{S}_{\mathbf{1}}-\mathbf{C o}-\mathbf{A A}$

AA in feed, M_{2} (Mole \%)	$\mu^{\prime}{ }_{1}$	$\mu^{\prime}{ }_{2}$	$\begin{aligned} & \mu_{1}^{\prime}: \\ & \mu_{2}^{\prime} \end{aligned}$	Distribution
0.80	1.0587	9.0014	1:9	$\mathrm{SA}_{9} \mathrm{~S}$
0.70	1.0897	6.2292	1:6	$\mathrm{SA}_{6} \mathrm{~S}$
0.60	1.1116	5.2047	1:5	$\mathrm{SA}_{5} \mathrm{~S}$
0.50	1.2186	3.1467	1:3	SAAAS
0.40	1.2987	2.5706	1:2	SAAS
0.30	1.4977	1.9428	1:2	SAAS
0.20	1.6099	1.7694	2:2	SSAASS

$\mathrm{r}_{1}=0.38 ; \mathrm{r}_{2}=\mathbf{1 . 3 5}$
Only a few cases are illustrated ($\mathrm{S}=$ $\mathbf{S}_{1} ; \mathbf{A}=\mathbf{A A}$)

Fig.2: Fineman-Ross (F-R) plot

Fig. 3: kelen-Tudos (K-T) plot

Table7: Fineman-Ross parameters for the Copolymerization of $\mathbf{S}_{2}-\mathbf{C o}$ - AA

Mole fraction of S_{2} in feed, M_{1}	Mole fraction of AA in feed, \mathbf{M}_{2}	$\begin{gathered} \hline \text { Fraction of } \\ S_{2} \\ \text { in } \\ \text { copolymer, } \\ m_{1} \\ \hline \end{gathered}$	Mole fraction of AA in copolymer, m_{2}	$\mathbf{F}=\mathrm{M}_{1} / \mathrm{M}_{2}$	$\mathrm{F}=\mathrm{m}_{1} / \mathrm{m}_{2}$	(F-1) /f	F/f ${ }^{\mathbf{2}}$
0.2	0.8	0.002428	0.009735	0.250	0.2494	-3.4844	2.1061
0.3	0.7	0.003127	0.007306	0.429	0.4280	-1.7888	1.2795
0.4	0.6	0.004297	0.006450	0.667	0.6662	-1.1396	0.8131
0.5	0.5	0.005256	0.005279	1.000	0.9956	-0.5803	0.4261
0.6	0.4	0.006545	0.004367	1.500	1.4987	-0.1779	0.3264
0.7	0.3	0.007495	0.003216	2.333	2.3305	0.0195	0.1926
0.8	0.2	0.008285	0.002076	4.000	3.9908	0.1033	0.0887

Table8: kelen-Tudos parameters for the Copolymerization of $\mathbf{S}_{\mathbf{2}}-\mathbf{C o}$ - AA

$\mathbf{G}=\mathbf{F}(\mathbf{f}-1) / \mathbf{f}$	$\mathbf{H}=\mathbf{F} 2 / \mathbf{f}$	$\mathbf{N}=\mathbf{G} /(\alpha+\mathbf{H})$	$\mathbf{A}=\mathbf{H} /(\boldsymbol{\alpha}+\mathbf{H})$
-1.6544	0.4748	$-\mathbf{0 . 5 9 3 3}$	$\mathbf{0 . 1 7 0 3}$
-1.3979	$\mathbf{0 . 7 8 1 6}$	$\mathbf{- 0 . 4 5 1 6}$	$\mathbf{0 . 2 5 2 5}$
$-\mathbf{- 1 . 4 0 1 7}$	$\mathbf{1 . 2 3 0}$	$\mathbf{- 0 . 3 9 5 5}$	$\mathbf{0 . 3 4 7 1}$
-1.3620	2.3471	$\mathbf{- 0 . 2 9 2 2}$	$\mathbf{0 . 5 0 3 6}$
$-\mathbf{0 . 5 4 4 9}$	$\mathbf{3 . 0 6 3 8}$	$\mathbf{- 0 . 1 0 1 3}$	$\mathbf{0 . 5 6 9 7}$
$\mathbf{0 . 1 0 1 2}$	5.1931	0.0135	0.6918
1.1642	11.2749	0.0857	$\mathbf{0 . 8 2 9 7}$

$$
\alpha=2.3137
$$

Table9. Copolymerization parameter, for the Copolymerization of $\mathbf{S}_{\mathbf{2}}$ - $\mathbf{C o}$ - AA

Methods	\mathbf{r}_{1}	\mathbf{r}_{2}	$\mathbf{r}_{1} \cdot \mathbf{r}_{2}$
Fineman-Ross (F-R)	$\mathbf{0 . 3 1}$	$\mathbf{1 . 7 7}$	$\mathbf{0 . 5 4 7 8}$
Kelen-Tudos (K-T)	$\mathbf{0 . 3}$	$\mathbf{1 . 7 3 7 6}$	$\mathbf{0 . 5 2 1 3}$

Table10. Mean Sequence Lengths in Copolymerization of $\mathbf{S}_{\mathbf{2}}-\mathbf{C o}-\mathbf{A A}$

AA in feed, M_{2} (Mole \%)	$\mu_{1}{ }_{1}$	$\mu^{\prime}{ }_{2}$	$\mu^{\prime}{ }_{1}: \mu^{\prime}{ }_{2}$	Distribution
0.80	1.0310	14.3623	1:14	$\mathrm{SA}_{14} \mathrm{~S}$
0.70	1.0715	8.4653	1:8	$\mathrm{SA}_{8} \mathrm{~S}$
0.60	1.0926	6.7640	1:6	$\mathrm{SA}_{6} \mathrm{~S}$
0.50	1.1288	5.1442	1:5	$\mathrm{SA}_{5} \mathrm{~S}$
0.40	1.2237	3.3861	1:3	SAAAS
0.30	1.3188	2.6741	1:3	SAAAS
0.20	1.4307	2.2394	1:2	SAAS

$r_{1}=0.31 ; ~ r_{2}=1.77$
Only a few cases are illustrated ($\mathrm{S}=\mathrm{S}_{\mathbf{2}} ; \mathrm{A}=\mathrm{AA}$)

Fig.4: Fineman-Ross (F-R) plot

Fig. 3: kelen-Tudos (K-T) plot

Table11: Fineman-Ross parameters for the Copolymerization of $\mathbf{S}_{\mathbf{3}}-\mathbf{C o}$ - AA

Mole fraction of S_{3} in feed, M_{1}	Mole fraction of $A A$ in feed, M_{2}	fraction of S_{3} in copolymer, m_{1}	Mole fraction of AA in copolymer, m_{2}	$\mathrm{F}=\mathrm{M}_{1} / \mathrm{M}_{2}$	$\mathrm{F}=\mathrm{m}_{1} / \mathrm{m}_{2}$	(F-1) /f	F/f ${ }^{\mathbf{2}}$
0.2	0.8	0.002363	0.009517	0.250	0.2483	-3.3645	2.6677
0.3	0.7	0.003466	0.008101	0.429	0.4278	-1.7623	1.3448
0.4	0.6	0.004736	0.007118	0.667	0.6654	-1.0110	0.7262
0.5	0.5	0.005687	0.005734	1.000	0.9918	-0.5597	0.4521
0.6	0.4	0.006704	0.004493	1.500	1.4921	-0.1885	0.3229
0.7	0.3	0.008076	0.003479	2.333	2.3214	0.1588	0.2540
0.8	0.2	0.009019	0.002273	4.000	3.9679	0.2714	0.1319

Table12: kelen-Tudos parameters for the Copolymerization of $\mathbf{S}_{\mathbf{3}}-\mathbf{C o}$ - AA

$\mathbf{G}=\mathbf{F}(\mathbf{f}-1) / \mathbf{f}$	$\mathbf{H}=\mathbf{F} 2 / \mathbf{f}$	$\mathbf{N}=\mathbf{G} /(\boldsymbol{\alpha}+\mathbf{H})$	$\mathbf{A}=\mathbf{H} /(\boldsymbol{\alpha}+\mathbf{H})$
$\mathbf{- 1 . 2 6 0 2}$	$\mathbf{0 . 3 7 4 8}$	$\mathbf{- 0 . 6 1 1 7}$	$\mathbf{0 . 1 8 1 9}$
$-\mathbf{- 1 . 3 1 0 5}$	$\mathbf{0 . 7 4 3 6}$	$\mathbf{- 0 . 5 3 9 5}$	$\mathbf{0 . 3 0 6 1}$
-1.4047	$\mathbf{1 . 3 7 7 1}$	$\mathbf{- 0 . 4 5 8 7}$	$\mathbf{0 . 4 4 9 7}$
$-\mathbf{- 1 . 2 3 9 2}$	$\mathbf{2 . 2 1 2 1}$	$\mathbf{- 0 . 3 1 7 9}$	$\mathbf{0 . 5 6 7 6}$
$-\mathbf{- 0 . 5 8 3 6}$	$\mathbf{3 . 0 9 6 5}$	$\mathbf{- 0 . 1 2 2 0}$	$\mathbf{0 . 6 4 7 5}$
$\mathbf{0 . 6 2 5 0}$	$\mathbf{3 . 9 3 7 2}$	$\mathbf{0 . 1 2 6 6}$	$\mathbf{0 . 7 9 7 5}$
2.0573	$\mathbf{7 . 5 7 9 9}$	$\mathbf{0 . 2 2 2 0}$	$\mathbf{0 . 8 1 8 1}$

$\alpha=1.6855$
Table13. Copolymerization parameter, for the Copolymerization of $\mathbf{S}_{\mathbf{3}}-\mathbf{C o}$ - AA

Methods	\mathbf{r}_{1}	\mathbf{r}_{2}	$\mathbf{r}_{1} \cdot \mathbf{r}_{2}$
Fineman-Ross (F-R)	$\mathbf{0 . 2 7}$	$\mathbf{1 . 4 1}$	$\mathbf{0 . 3 8 0 7}$
Kelen-Tudos (K-T)	$\mathbf{0 . 2 4}$	$\mathbf{1 . 6 0 2 6}$	$\mathbf{0 . 3 8 4 6}$

Table14. Mean Sequence Lengths in Copolymerization of $\mathbf{S}_{\mathbf{3}}-\mathbf{C o}-\mathbf{A A}$

AA in feed, M_{2} (Mole \%)	$\mu_{1}{ }_{1}$	$\mu^{\prime}{ }_{2}$	$\mu_{1}^{\prime}: \mu^{\prime}{ }_{2}$	Distribution
0.80	1.0420	10.1460	1:10	$\mathrm{SA}_{10} \mathrm{~S}$
0.70	1.0628	7.1153	1:7	$\mathrm{SA}_{7} \mathrm{~S}$
0.60	1.0820	5.6836	1:6	$\mathrm{SA}_{6} \mathrm{~S}$
0.50	1.1134	4.3861	1:4	SAAAAS
0.40	1.1833	3.0938	1:3	SAAAS
0.30	1.3490	2.0997	1:2	SAAS
0.20	1.5296	1.7247	2:2	SSAASS

$r_{1}=0.27 ; r_{2}=1.41$
Only a few cases are illustrated ($\mathrm{S}=\mathrm{S}_{\mathbf{3}} ; \mathrm{A}=\mathrm{AA}$)

Fig. 4: Fineman-Ross (F-R) plot

References:

[1] Holla, B.S., Mahalinga, M., Karthikeyan, M.S., Akberali, P.M. and Shetty, N.S. 2006. Bioorg. Med. Chem. 14: 2040.
[2] Shamroukh, A.H., Zaki, M.E.A., Morsy, E.M.H., Abdel-Motti, F.M. and Abdel-Megeid,F.M.E. 2007. Arch. Pharm. Chem. Life Sci. 340: 345.
[3] Akbas, E. and Berber, I. 2005. Eur. J. Med. Chem. 40: 401.
[4] Yan, R.Z., Liu, X.Y., Xu, W.F., Pannecouque, C., Witvrouw, M. and De Clercq, E. 2006. Arch. Pharm. Res. 29: 957.
[5] Chou, L.C., Huang, L.J., Yang, J.S., Lee, F.Y., Teng, C.M. and Kuo, S.C. 2007. Bioorg. Med.Chem. 15: 1732.
[6] Li, J., Zhao, Y.F., Zhao, X.L., Yuan, X.Y. and Gong, P. 2006. Arch. Pharm. Chem. Life Sci. 339: 593.
[7] Krystof, V., Moravcova, D., Paprskarova, M., Barbier, P., Peyrot, V., Hlobilkova, A.,Havlicek, L. and Strnad, M. 2006. Eur. J. Med. Chem. 41: 1405.
[8] Schenone, S., Bruno, O., Ranise, A., Bondavalli, F., Brullo, C., Fossa, P., Mosti, L.,Menozzi, G., Carraro, F., Naldini, A., Bernini, C., Manettic, F. and Botta, M. 2004. Bioorg.Med. Chem. Lett. 14: 2511.
[9] Daidone, G., Raffa, D., Maggio, B., Raimondi, M. V., Plescia, F. and Schillaci, D. 2004. Eur. J. Med. Chem. 39: 219.

Fig. 3: kelen-Tudos (K-T) plot
[10] Gatica N., Natali F., Alejandra O., Deodato R. 2005. Synthesis and characterization of functionalized vinyl copolymers I: Structure-monomer reactivity relationship in copolymers containing $\quad \mathrm{N}$-vinyl-2-pyrrolidone moieties. Journal of the Chilean Chemical Society, 50,581-585.
[11] Leroux J., Roux E., Le Garrec D., Hong K., Drummond D. C. 2001. Nisopropylacrylamide copolymers for the preparation of pH -sensitive liposomes and polymeric micelles. Journal of Controlled Release, 72, 7184.
[12] Kurisawa M., Yokayama M., Okano T. 2000. Gene expression control by temperature with thermoresponsive polymeric gene carriers. Journal of Controlled Release, 69, 127-137.
[13] Kofukuta E. 1993. Novel application for stimulussensitive polymer gels in the preparation of functional immobilized biocatalysts. Advances in Polymer Science, 110, 157-176.
[14] Pitchumani S., Rami Reddy B. S ., Rajadurai C. 1982. Reactivity ratios of ethyl acrylate, n-butyl methacrylate copolymer system by 1H-NMR analysis. Journal of Polymer Science: Polymer Chemistry Edition, 20, 277282.
[15] Dube M., Sanayei R. A., Penlidis A., O’ Driscoll K. F., Reilly P. M. 1991. A micro computer program for
estimation of copolymerization reactivity ratios. Journal of Polymer Science, 29, 703-708.
[16] Polic A. L., Duever T. A., Penlidis A. 1998. Case studies and literature review on the estimation of copolymerization reactivity ratios. Journal of Polymer Science Part A: Polymer Chemistry, 36, 813-822.
[17] Hagiopol C., Frangu O., Dumitru L. 1989. A nonlinear method for
estimation of reactivity ratios incopolymerization processes. Journal of Macromolecular Science Chemistry Edition, 26, 1363-1379.
[18] Arshady R., Kenner, G. W., and Led with A. 1974. Phenolic resins for solid-phase peptide synthesis: Copolymerization of styrene and pacetoxystyrene, Journal of Polymer Science Polymer Chemistry Edition,12 (9), 2017-2025.

تحضير و تثخيص بـعض مشنقات البايرازولوبايرين الجديدة و بلمرتها

*الجامعة المستنصرية / كلية العلوم / فسم الكيمياء
**جامعة بغداد / كلية العلوم للبنات / قسم الكيمياء

Abstract

الخلاصة : هذا البحث يصف تحضير وتشخيص و بلمرة بعض المركبات الحققية غير المتجانسة المدمجة وهي؛ . Pyrazolo [4,3-C] Pyridines و مثل هذه المركبات تُعين لتهجين حلقة البيرازول مع البيرون و / أو أصناف بيريدين، على التوالي. الثنفاعلات الكيميائية المستخدمة في تحضير المركبات تصف جنبا إلى جنب السلوك الكيميائي، مناقشنة و تثخيص تركيب المركبات المحضرة 1-(3,6-dimethyl-4-oxo-1,4-1 المعلومات الطيفية. السلاسل البوليمرية H-NMR و IR dihydro-5H-pyrazolo [4,3-c] pyridin-5-yl)-1H-pyrrole-2,5-Dione S_{1}, 1-[2-(3,6-dimethyl-4-oxo-1-phenyl-1, 4-dihydro-5H-pyrazolo [4,3-C] pyridin-5-yl)ethyl]-1H-pyrrole-2,5-Dione $\quad \mathrm{S}_{2}$ and 1-(3,6-dimethyl-4-oxo-1-phenyl-1,4-dihydro-5H-pyrazolo[4,3-C]pyridin-5-yl)-1H-pyrrole2,5-DioneS 3 البلمرة بالجذور الحرة في أيثانول المطق في ${ }^{\circ}$ ف70C بأستخدام بيروكسبد البنزويل بوصفه كبادئ. نسب فعالية المونومرات تحدد بطريقة فاينمان- روس و كَالين- تودس. يُقترمعدل طول الوحدات التنكررة للمونومر الواحد في سلسلة البوليمر المشترك من خلال فيم البوليمر و زيادة تركيز المونومر AA في مزيج التغذية.

[^0]: *Chemistry Department, College of Science, AL-Mustansiriyah University
 **Chemistry Department, College of Science for Women, Baghdad University

