DOI: http://dx.doi.org/10.21123/bsj.2016.13.2.2NCC.0426

Development of Green Method for Trace Determination of Bendiocarb in Real Samples Using Emerson Reaction

Suher S. Ahmad*

Zuhair A-A Khammas*

* Department of Chemistry, College of Science for Women, University of Baghdad.

E-mail:saifkhammas@gmail.com

Received 21/9/2015 Accepted 20/12/2015

<u>©089</u>

EX NO IND This work is licensed under a <u>Creative Commons Attribution-NonCommercial-</u> <u>NoDerivatives 4.0 International Licens</u>

Abstract:

In this study, cloud point extraction combined with molecular spectrometry as an eco-friendly method is used for extraction, enrichment and determination of bendiocarb (BC) insecticide in different complex matrices. The method involved an alkaline hydrolysis of BC followed Emerson reaction in which the resultant phenol is reacted with 4-aminoantipyrene(4-AAP) in the presence of an alkaline oxidant of potassium ferric cyanide to form red colored product which then extracted into micelles of Triton X-114 as a mediated extractant at room temperature. The extracted product in cloud point layer is separated from the aqueous layer by centrifugation for 20 min and dissolved in a minimum amount of a mixture ethanol: water (1:1) followed the determination of BC by using spectrophotometry at a wavelength maximum of 470 nm. The most important parameters affecting the extraction and determination of BC are conducted via a classical optimization. Under the optimum conditions established, Beer's law is obeyed in the range of 0.1-4 μ g mL⁻¹ while the optimum concentration ranges estimated by Ringbom's plot was of 0.4-2.12 μ g mL⁻¹. The enrichment factor was of 59.87 fold leading to achieve the limit of detection of $0.076 \ \mu g \ mL^{-1}$. The proposed method gives superior sensitivity in terms of the molar absorptivity of 1.99×10^5 L mol⁻¹ cm⁻¹ and extraction efficiency of 98.0%. The established method is applied in the analysis of the spiked vegetables, orange, soil and water samples with appropriate concentration with BC standard.

Key words: Cloud point extraction, UV-Vis Spectrophotometry, Bendiocarb Pesticide, Emerson reaction

Introduction:

Bendiocarb classified as Nmethylcarbamate and its IUAPAC named as (2, 2Dimethyl-1, 3benzodioxol-4-yl) N-methylcarbamate, is a white to light brown powder with water solubility of 280 mg L^{-1} at 20°C and pH=7. Its chemical structure is displayed in Figure 1[1].

Bendiocarb as an insecticide is widely used in agricultural or residential

purposes because of its importance in boosting crop production

Fig. (1): The chemical structure of Bendiocarb $(C_{11}H_{13}NO_4, 223.23)$ g/mol).

yields, and effective in controlling most diseases caused by harmful insects to humans and animals. As a result of increased use of this insecticide, it inevitably may have undesirable effects which can be up to be toxic ultimately to humans. In the light of this information, risk evaluation of any pesticide requires the toxicological information on properties and environmental toxicity of these compounds as well as their levels in food and environmental components [2]. There is therefore a need for analytical methods to implement reliable monitoring of pesticide residues in those samples. The determination of pesticides in food and environmental matrices is challenge task due to their presence in too low concentrations, which requires the use of efficient method to extract the active ingredient from bulk sample before final assay.

Several methods have been reported for the determination of bendiocarb including gas high chromatography (GC) [3-4] performance liquid chromatography (HPLC) [5-6], gas chromatographymass spectrometry(GC-MS) [7], liquid chromatographymass spectrometry Capillary (LC-MS) [8], Zone Electrophoresis (CZE) [9] flow spectrofluorimetry [10], flow injection analysis [11]. Despite the fact that these sophisticated techniques have a high detection power and sensitivity, but they expensive are relatively and not available in all laboratories. On the other hand, the use of cloud point extraction method in conjunction with molecular spectrophotometric method became an acceptable alternative in pesticide residue analysis due to the numerous advantages, including cheap. easv operated and offers acceptable analytical figures of merit, an integral tool available in most laboratories for the researchers and fulfil the requirement of the green method (i.e. no toxic organic solvent used) [12]. In this regard, a limited number of publications have been appeared in chemical literature using CPE-spectrophotometric method for the determination of pesticides. It is first used by Melchert and Rocha [13] for the determination of carbaryl in natural waters, Santalad et al. [14] described a method for the determination of carbaryl based on acidinduced anionic surfactant micellemediated extraction (acid-induced-CPE), and Karnsa-ard et al [15] established CPE combined with visible spectrophotometric method for the determination of carbaryl residue in vegetables.

CPE-Visible In this work. spectrophotometric method is described for the determination of bendiocarb in various samples for the first time. The method is based on an alkaline hydrolysis of BC to phenolic compound which then reacted with 4aminoantipyrene(4-AAP) in the presence of potassium ferric cyanide as an oxidizing agent to form red colored product according to Emerson reaction, which then extracted into micelles of Triton x-114 as an extracting medium at The room temperature. extracted product in cloud point layer is separated from the aqueous layer by centrifugation for 20 min and dissolved in a minimum amount of a mixture of ethanol: water (1:1) followed the determination of BC

by using spectrophotometry at a wavelength maximum of 470 nm. The new method has been applied for the determination of BC in water, soil, vegetables and orange samples with QuECHERS method was chosen as a sample preparation method.

Materials and Methods: Apparatus

A recording of absorption spectra and all absorbance measure-ments of target analyte were performed by using Shimadzu double-beam **UV-Vis** Spectrophotometer model UV-1800 (Kyoto, Japan) working at a wavelength of 190-1100 nm and equipped with 5mm optical path cell. A portable pHmeter micro-processor (HANNA, Germany) was used for solution pH checking. Water bath (WNB7-45) Experts BASIC English (D10329) was employed during the course of CPE experiments.

Materials and Regents

Bendiocarb (BC) insecticide (99.0% purity, mol wt. 223.23 g mol⁻¹) was purchased from Accustandard® (Connecticut, USA). A standard stock solution 1000 µg mL⁻¹ of bendiocarb was prepared by dissolving 50 mg of insecticide in a mixture of 3 mL ethanol: water (1:1) in a 50 mL volumetric flask and diluted to mark with distilled water and kept in an amber bottle in refrigerator. 4-amino-antipyrene (98% purity, mol. wt. 203.24 g mol⁻¹) was supplied from Himedia Laboratories 1×10^{-3} (India). А Μ of 4was prepared aminoantipyrene by dissolving 0.02030 g in 5 mL water and diluted to mark in 100 mL volumetric flask. Potassium ferric cyanide (99% purity, mol. wt. 329.27 g mol⁻¹) was obtained from Sigma-Aldrich (Germany). A 1×10^{-3} M of K_3 Fe(CN) ₆ was prepared by dissolving 0.03290 g in 5 mL water and diluted to mark in 100 mL volumetric flask. Potassium chloride from GCC Laboratory Reagent (Gainland Chemical Co., UK). A 0.005 M KCl was prepared by dissolving 0.0372 g in 5 mL water, complete to mark with water in100 mL volumetric flask. Triton X-114 (purity >99.9%), was purchased from Amresco LLC (Solon, USA). A 10% (v/v) of Triton X-114 was prepared by diluting 10 mL in 100 mL water. The distilled water was used in the preparation of all solutions and for final rinsing of glass wares.

General CPE Procedure

To an aliquot of 10 mL of a solution containing known amount of bendiocarb standard $(0.1-4 \text{ ng mL}^{-1})$ or in sample solution were taken into 10 mL graduated centrifugal tubes ; 1.5 mL of 2 M Na₂CO₃ solution was added and kept for 15 min at room temperature for complete BC hydrolysis to phenol. Then, 1.5 mL of 2M HCl was added to neutralize the Na₂CO₃ followed by adding 1 mL of sodium borate/sodium hydroxide buffer solution (pH=9). After that, 0.04 mL of 1×10^{-3} M 4-AAP solution . 0.3 mL of 1×10^{-3} M potassium ferric cyanide, 0.7 mL of 5x10⁻³ M KCl and 0.8 mL of 10%(v/v) Triton X-114 were added and diluted to mark with water. The separation of the phases was accelerated by centrifuging at 3500 rpm for 20 min. After decantation of aqueous phase, the surfactant-rich phase that remained adhered to the tube was dissolved with a 1 mL of ethanol: water (1:1) and the absorbance of each solution containing bendiocarb was measured spectrophotometrically in 5mm quartz cell at λ_{max} of 470 nm. **Samples Preparation**

Water: About one liter of drinking and river water samples was randomly collected from the campus of University of Baghdad / Iraq. The river water was first filtered off to remove any suspended materials and all samples were kept in refrigerator until analyzed. Each sample was spiked with different concentration of bendiocarb standard solution and subjected to general CPE procedure and BC was determined by spectrophotometry at λ_{max} of 470 nm.

The Soil: soil sample was randomly collected from home garden and the soil sample solution was prepared according to the procedure adopted by Pourreza et al [16] with little modification. . The sample was air-dried at room temperature, grinded in agate mortar into small particle size of about 250 µm sieve and stored in closed vessel. A 20 g of sample was weighted in 100 mL conical flasks and 40 mL of 0.1 M HCl was added. The content was shaken in a mechanical shaker for one hr., then filtered and the pH of the filtered was adjusted to 7.0 by diluted NaOH. Three potions of the resultant solution was directly spiked with different concentrations of bendiocarb standard and subjected to general CPE procedure and target analyte was determined by spectrophotometry at λ_{max} of 470 nm.

Vegetable and orange samples: The vegetables (Cucumber and Tomato) and orange were purchased from local markets in Baghdad, Iraq. The (quick, QuEChERS easy, cheap, effective, rugged, and safe) method used for pesticide residue analysis was adopted with little modification [17] for sample preparation of vegetables and orange. A 0.5 kg of each sample was selected and the edible part was cut into 1-cm pieces and blended using a commercial food mixer for homogenization the sample. A 15 g sample portion was placed in 100 mL conical flask and 20 mL of solvent mixture containing 1:5 acetic acid and acetonitrile was added and the content was shaken vigorously in an electrical shaker for one hr. After shaking, the extract was withdrawn and transferred into 50 mL centrifugal tube and mixed with 10 g sodium sulphate, 4 g magnesium sulphate and 1 g of sodium

acetate and centrifuged for 10 min at 250 rpm to separate the phases. The upper layer was taken and mixed with 0.3 mL weak anion exchanger and 0.6 g carbon black in another centrifugal tube and immediately shaked and filtered. The filtrate solution was evaporated at 50 °C on water bath to remove the solvent. The residue was dissolved with water then diluted to 10 mL in standard volumetric flask. Each sample solution was spiked with different concentration of bendiocarb standard and subjected to general CPE procedure and target analyte was determined by spectrophotometry at λ_{max} of 470 nm.

Statistical Analysis:

Excel 2007 (Microsoft Office®) and Minitab version 14(Minitab Inc., State College, PA, USA) were employed to carry out all statistical calculations such as regression and correlation analysis, ANOVA and significance tests.

Results and Discussion: Absorption Spectra

Several published reports have confirmed that the reaction between phenols with 4-aminoantipyrene (4-AAP) in the presence of mild oxidizing agent forms colored dye [18-20]. Thus preliminary tests were made without using CPE to ensure the formation of the colored product between alkaline hydrolyzed bendiocarb and 4-AAP in presence of potassium ferric cyanide at concentrations of 1×10^{-3} M, and indeed a red water soluble product was formed. shows that the visible Figure 2 absorption spectrum (d) of the coupled product in the surfactant-rich phase at optimum conditions exhibits a maximum absorption at 470 nm against the blank solution, and therefore all absorbance measurements were performed at this wavelength throughout this study. Whilst other individual reaction constituents such as bendiocarb. 4-AAP and potassium ferric cyanide solutions have shown different absorption maxima of (a) 273 nm , (b) 372 nm , and (c) 260,302 and 420 nm respectively as displayed in Figure 2.

(2): Absorption Fig. spectra Absorption spectra (a) 4.47x10⁻⁶ M Bendiocarb solution (b) 5x10⁻⁵ M 4aminoantipyrene solution and (c) 5x10⁻⁵ M potassium ferric cyanide Bendiocarb-4-aminosolution **(d)** antipyrene coupling product bv general CPE procedure

Alkaline hydrolysis of Bendiocarb

It was reported that all carbamate pesticides are easily hydrolyzed in alkaline medium to form phenols [21-22]. Consequently, different alkaline media were preliminary examined at different concentrations (0.05-0.6 M) such as NaOH, KOH, NH₃ and Na₂CO₃ to choose the best one that give the phenolic product of 0.1 $\mu g m L^{-1}$ bendiocarb at λ_{max} of 279 nm. It can be seen (Figure not shown) that Na₂CO₃ at concentration of 0.3 M gave the best sensitivity compared with other alkaline media at 5 min hydrolysis. Also, the effect of hydrolysis time was studied by varying time between 0 and 45 min. It was found (results not shown) that 15 min was good enough for complete hvdrolvsis of insecticide [23]. Therefore, 0.3 M Na₂CO₃ and 15 min were selected for subsequent CPE experiments.

Optimization of CPE Conditions

preliminary observation А indicated that the coupling dye product is hydrophobic and can be easily extracted in non-ionic surfactant. Hence, investigation of the reaction product was based on of Triton X-114 as an extracting medium at room temperature. Therefore, the studies were directed towards optimizing the experimental CPE conditions in order to maximize the sensitivity of the method and the extraction efficiency of the target analyte. The parameters such as pH, 4-AAP concentration, oxidizing reagent concentration, KCl concentration, Triton X-144 amount, and order of additions were conducted using a classical optimization strategy followed the general CPE procedure.

The effect of pH

The pH is an important variable for quantitative reaction between BC and 4-AAP in the presence of potassium ferric cyanide keep of the colour derivative product in alkaline solution to prevent its decomposition [18, 24], and subsequent extraction in the micellemediating solvent. The effect of pH was performed by taking 10 mL solution containing 1.0 μ g mL⁻¹ of bendiocarb in a series of 10 mL centrifugal tubes, 1.5 mL of 2 M Na₂CO₃ was added and kept the solution stand with occasional shaking for 15 min. After the counteract the alkalinity with dilute HCl, 1 mL of 1x10⁻³ M of 4-AAP, 1 mL of 1x10⁻³ M K_3 Fe(CN)₆, 1 ml of $5x10^{-3}$ M KCl and 1 mL of 10% TX-114 were added with varving pH from 7-11 using sodium borate-NaOH buffer solution and followed the general CPE procedure. The absorbance of each solution was measured at λ_{max} of 470 nm as displayed in Figure 3.

Fig.(3) :The effect of pH on the absorbance of derivative product. CPE conditions: equilibration 25 °C

It can be seen that the absorbance increased gradually up to pH=9 and then suddenly decreased after pH=10. Thus, pH of 9 was chosen as optimal for subsequent experiments.

The effect of 4-AAP Concentration

effect The of different concentrations of 4-AAP on the absorption signals of 10 mL solution containing 1.0 µg mL⁻¹ of BC at pH=9 was studied according to the general CPE procedure by adding successive increase of 1×10^{-3} M of 4-AAP with varying volume in the range of 0.01-0.1 mL, while keeping other parameters mentioned in the above section constant. It was shown (Figure 4) that the maximum absorbance measured at λ_{max} of 470 nm was optimum at 4×10^{-6} M of 4-AAP. Beyond this concentration, any excessive amount of reagent was not necessary. Therefore, 0.04 mL of 1×10^{-3} M was used for further experiments.

Fig.(4): The effect of 4-AAP on the absorbance of derivative product by CPE

The effect of K₃Fe(CN)₆ concentration

The impact of K_3 Fe (CN) ₆ as an oxidizing agent plays an important role in the stage of coupling reaction between the hydrolyzed BC and 4-AAP. Therefore. the effect of various concentration of $K_3Fe(CN)_6$ was studied on the absorbance of 10 mL solution containing 1 µg mL⁻¹ of bendiocarb according to the recommended CPE procedure by varying the volume in the range of 0.1-1.0 mL of 1×10^{-3} M $K_3Fe(CN)_6$ and keeping the previous optimum parameters constant. The results are shown in Figure 5. It was noticed (Figure 5) that the absorbance signals increased with increasing the concentration of K₃Fe (CN)₆ solution up to $3x10^{-5}$ M and after this concentration the coupling reaction was not significantly influenced. Consequently, a 0.3 mL of 1x10⁻³ M of reagent was selected as optimal.

Fig.(5): The effect of $K_3Fe(CN)_6$ on the absorbance of derivative product by CPE

The effect of KCl Amount

The addition of some inorganic salts (i.e. an electrolyte) can facilitate phase separation and improve extraction efficiency due to the salting out of cations that are present in the aqueous micellar solution due to altering the density of the bulk aqueous solution thus leading to lower the cloud point temperature of the surfactants [**25-26**]. In this regard, the effect of KCl amount was studied on the extraction of 10 mL solution containing 1 μ g mL⁻¹ of BC according to the recommended CPE procedure by varying the volume in the range of 0.1-1.0 mL of 5x10⁻³ M KCl and keeping the previous optimum parameters constant. The results are shown in Figure 6. The findings revealed that KCl at concentration of 3.5x10⁻⁴ M provided a high absorbance and therefore chosen as optimal.

Fig. (6): The effect of KCl the absorbance of derivative product by CPE.

The effect of TX-114

The amount of surfactant as an extracting medium is very important in order to achieve maximum extraction efficiency by minimizing the phase volume ratio (Vs/Va) and therefore improving the preconcentration factor of the method [27]. The variation of absorption signal on the formation of coupling product with Triton X-114 amount was tested within the surfactant volume range of 0.1 - 1.0 mL of 10% (v/v) Triton X-114, keeping other optimized parameters constant. As can be seen from in Figure7, the absorbance of the colored product increased with increases Triton X-114 amount up to 0.8 mL of 10% (v/v) and then slowly decreased at higher amounts. Therefore, a 0.8 mL of 10% (v/v) Triton X-114 was used as the optimum amount to obtain a high pre-concentration factor in the following experiments.

The effect of Order of Additions

The effect of order of addition on the absorption signal of the Red derivative product was also examined. Table 1 reveals that the best order of addition is number 2 due to give a highest absorption signal among the others.

Table (1):The effect of order ofaddition

No.	Order of addition	Abs.
1	BC +KCl+ K ₃ Fe(CN) ₆ +4-AAP +TX-114	0.354
2	$BC + 4-AAP + K_3Fe(CN)_6 + KCl + TX-114$	0.497
3	$BC + KCl + 4 - AAP + K_3Fe(CN)_6 + TX - 114$	0.219
4	BC + K ₃ Fe(CN) ₆ + 4-AAP+ KCl+TX-114	0.185

Stiochoimetry of the Extracted Colored Product

The slope analysis method was used for the determination of the stiochoimetric amount between the reaction of bendiocarb and 4-AAP reagent via the analysis of the dependence $\log D = f (\log C_{Reagent})$ measured under the optimum conditions [28] and using the order of addition No. 2. Figure 8 shows the slope for log D as a function of log [4-AAP] is equal to 1.2846, indicating the reaction between the BC insecticide and 4-AAP in the coupling reaction to form the colored product with ratio of 1:1 is extracted into the surfactant-rich phase. Thus the most probable reaction is preceded into two steps to form the red product as shown in the Figure 9. The observations were revealed that colored product was stable for 20 min in surfactant-rich phase as shown in Figure 10.

Fig.(8): Slope analysis method for the determination the composition of coupling product

Fig. (9): The most probable coupling reaction path

Analytical figures of merit

A linear calibration curve for the spectrophotometric detection of BC

Fig. (10): Variation of absorbance with time for the colored product

was constructed in the range of 0.1-4 μ g mL⁻¹ standard solution at optimum conditions as shown in Figure 11.

Above > 4 $\mu g m L^{-1}$ (not shown in Figure), the Beer's law was not obeyed giving a negative curvature toward the concentration axis. This may be due to insufficient reagents to comply with the stiochiomteric amount to produce the colored product that absorbs at λ_{max} of 470 nm or most probably the formation of other species which compete with coupling product. Also, Ringbom plot was constructed between log [BC] and (1-T), where T is transmittance, in order to know the effective optimum concentration range as showed in Figure 12. The plot has sigmoid shape with a linear segment at intermediate absorbance values (0.182- 0.954) and concentration values (0.4-2.12. ng mL⁻ ¹). This range achieves the greatest photometric accuracy because the measurements should be within 15%-65% T or 0.19-0.82 A. However, the best fit was obtained for a first order equation (Table 2 and Figure 11) with correlation coefficient of 0.9998 and coefficient of determination (R^2) was which suggests statistically 99.96% valid fit. This was supported by ANOVA analysis (Table 3) giving that $MS_{reg}/MS_{error} = 18695.43$ of the target analyte for 1 and 6 dof, larger than critical value ($F_6^1 = 5.99$ at 95% CI). We use this fitted linear calibration model to estimate the Bendiocarb concentration in all analyzed samples which appears justified, on statistical basis.

Fig.(11): Calibration curve for BC by the proposed method

Fig.(12): Ringbom plot of the product by the proposed method

As can be seen that a good enrichment factor of 59.87 fold was obtained (Table 2). This allows achieving limit of detection (LOD) of $0.076 \ \mu g \ mL^{-1}$ and limit of quantitation (LOQ) of 0.252 μ g mL⁻¹ for bendiocarb by developed CPE-Spectrophotometry. This in turn led to obtain a high sensitivity in terms of molar absorptivity which found to be of 1.99x10⁵ L.mol⁻ ¹.cm⁻¹. Regarding the detection limit, our finding was better than that obtained by other workers such as Dhahir et al [29] who used diazotized coupling of bendiocarb with p-amino phenol, Alvarez-Rodríguez et al [30] used a coupling with diazotized trimethylaniline (TMA) in a sodium dodecyl sulphate and Kumar and Rekha [31] used three different azo dves coupling reagents, by spectrophotomtic detection without CPE, which were of $0.265 \ \mu g \ mL^{-1}$, $0.2-2.0 \ \mu g \ mL^{-1}$ and $0.285-0.564 \ \mu g \ mL^{-1}$ respectively. But, it was about much worse than that obtained by Faber and Scholer [4] whom employed a gas chromatography after flash heater methylation with trimethylsulfonium hydroxide, and by Lin et al [9] who used CZE with precolumn hydrolysis and amperometric detection However, the LOD of the method was also calculated and found to be 0.051 mg kg^{-1} for bendiocarb, by considering a limit of detection of 0.076 mg L^{-1} in aqueous solution and 15 g of vegetable and fruit samples in 10 mL solution. This finding has encouraged us to apply the proposed method in the estimation of bendiocarb in real samples such as vegetables. fruits and environmental samples to test its applicability and reliability. In fact, the developed method in this work may achieve the requirements of the international standards in terms of the maximum residue limits (MRL) of bendiocarb insecticide in different types of foods set by FAO/WHO that is in the range of 0.1-0.05 mg kg⁻¹ [32].

Accuracy Test

Since certified the reference materials (CRM's) that specify the exact quantity of bendiocarb are unavailable. the accuracy of the proposed method was accomplished by assessing the recovery percentage by the spiking river and soil samples with 0.4, 0.8 and 2.0 µg mL⁻¹ standard bendiocarb followed the recommended CPE procedure. The results are presented in Table 4. It can be seen that a good accuracy in terms of recovery percentage can be achieved between 97.25% and 100.2%. This confirmed that the systematic errors are almost absent, concluding the presence of matrix constituents of these sample have no effect on the determination of

Table (2):The statistical data andanalytical figures of merits for BCusing by CPE- Spectrophotometry

Parameter	Value	
Product colour	Red	
λ_{\max} (nm)	470	
Regression equation (11 points)	y = 0.4730x + 0.0049	
Standard deviation of regession line (Sy/x)	0.011913	
Correlation coefficient(r)	0.9998	
Coefficient of determination (R ²)	99.96	
C.L. for the slope ($b \pm ts_b$) at 95%	0.4730±0.00299	
C.L. for the intercept $(a \pm ts_a)$ at 95%	0.0049 ± 0.00498	
Beer's law range (µg mL ⁻¹)	0.1-4	
Ringbom plot (µg mL ⁻¹)	0.4-2.12	
Limit of Detection (µg mL ⁻¹)	0.076	
Limit of Quantitation (µg mL ⁻¹)	0.252	
Sandell's sensitivity (µg cm ⁻²) x10 ⁻³	0.00212	
Molar absorptivity (L.mol ⁻¹ .cm ⁻¹)	1.99x10 ⁵	
Compsition of complex*	1:1	
RSD% (n=5) at 0.4 μ g mL ⁻¹	1.18	
RSD% (n=5) at 2 μ g mL ⁻¹	0.17	
Preconcentration factor	50	
Enrichment factor	59.87	
Distribution ratio(D)	49	
Extraction efficiency(%E)	98	

Table (3):	AN	OVA	Table	e for	the
regression	line	by	the	propo	osed
method					

	d f	SS	MS	F	Significanc e F
Regressio n	1	2.65329 5	2.65329 5	18695.4 3	1.03E-11
Residual	6	0.00085 2	0.00014 2		
Total	7	2.65414 7			

bendiocarb Meanwhile, each spiked sample was repeated five times for precision testing in term of %RSD and found to be in the range of 0.11-1.31, indicative a good precision.

Table (4):The accuracy andprecision of the proposed method forthe determination of Bendiocarb

sample	Amount Bendiocarb taken (ng mL ⁻¹)	Amount Bendiocarb found (ng mL ⁻¹)	Recovery (%)	Erel (%)	RSD (%) (n=5)
River water	0.4	0.391	97.75	-2.25	1.31
	0.8	0.793	99.12	-0.87	1.26
	2.0	1.966	98.30	-1.80	1.06
Soil	0.4	0.389	97.25	-2.75	1.08
	0.8	0.786	98.25	-2.12	0.51
	2.0	2.004	100.2	0.10	0.11

Interferences study

In order to study the selectivity of the proposed method on the determination of bendiocarb, the effect of several foreign species expected being in the selected analyzed samples was studied by addition of 10, 25, 100 µg of each interfering species to the standard solution containing 1 ug mL⁻¹ of BC followed the recommended CPE procedure. The results are presented in Table 5. It is agreed that an extraneous species deemed to interfere seriously when it gives a relative error percent more than $\pm 10\%$ [33]. It can be seen that there is no appreciable effect of most foreign species in the determination of bendiocarb (% E_{rel} less than $\pm 5\%$), except of vitamin C which caused some interferences thus giving low percent the recovery of colored product. interfering Therefore. this species should be removed or masked before determination of bendiocarb, or added to standard bendiocarb solutions before the construction of the calibration curve.

Table(5): The effect of divers species on the percent recovery of BC by the proposed method

Foreign gracies	Recovery %			Mean Rec %± Sd	
r oreign species	10 µg	25 μg	100 µg		
Ca^{2+}	96.5	98.8	100.2	98.5±1.86	
Mg^{2+}	98.6	100.8	101.4	100.2±1.47	
Fe ²⁺	100.1	101.8	99.7	100.5±1.11	
Co^{2+}	99.5	102.6	100.4	100.8±1.59	
Vitamin B	101.4	100.8	104.1	102.1±1.75	
Vitamin C	85.3	90.5	93.7	89.8±4.23	
Glucose	98.7	99.4	101.9	100.0±1.68	
Fructose	95.8	98.1	100.8	98.2±2.50	
Protein	96.3	100.5	102.4	99.7±3.12	

ApplicationIn an attempt by the initial tests, it shows that all selected samples in this study do not have any residue of BC pesticide. Consequently, all the selected samples in this study were spiked with BC standard at concentration of 0.4, 0.6 and 3 μ g mL⁻¹ of BC standard solution and subjected to the general CPE procedure for five

replicates measurements and BC concentration in each spiked sample was measured spectrophotometrically at λ_{max} of 470 nm. The results are summarized in Table 6. It was observed that the average recoveries of the spiked BC standard were of 95.8-105.0 % with average RSDs of 0.14- 2.86 %.

 Table(6): Analytical results of bendiocarb in different samples by proposed method

sample	Bendiocarb added (µg mL ⁻¹)	Bendiocarb found (μg mL ⁻¹ ±SD)	Recovery% (mean±SD)	RSD% n=5
River water	0.2	0.198±0.05	99.0±0.95	2.53
	0.6	0.60±0.15	100.2±0.61	2.14
	3.0	3.10±0.03	103.3±0.38	1.86
Tap water	0.2	0.194±0.21	97.0±1.29	1.94
	0.6	0.58±0.11	96.6±0.88	1.51
	3.0	2.88±0.18	96.0±0.77	0.81
Soil	0.2	0.20±0.17	100.0±0.59	1.84
	0.6	0.58±0.08	967±0.17	1.62
	3.0	2.87±0.05	95.8±0.13	0.14
Cucumber	0.2	0.197±0.14	98.5±2.26	2.22
	0.6	0.591±0.23	98.5±1.79	1.71
	3.0	3.01±0.28	100.3±1.28	1.28
Tomato	0.2	0.196±0.04	98.0±2.09	1.62
	0.6	0.594±0.21	99.0±1.83	1.39
	3.0	2.89±0.07	96.3±1.11	1.16
Orange	0.2 0.6 3.0	$\begin{array}{c} 0.21 \pm 0.19 \\ 0.59 \pm 0.24 \\ 3.05 \pm 0.09 \end{array}$	105.0±3.00 98.3±2.50 101.7±1.90	2.86 2.55 1.87

Conclusions:

Emerson Reaction has been exploited in the development of environmentally-friendly method based CPE combined with on visible spectrophtometry for the determination of bendiocarb insecticide in various samples. The established method provides the substantial analytical figures of merits which were better than that obtained with those reported methods published in chemical literatures. The solubilization of the resultant colored product in micelle occurs at room temperature, thereby the steps of equilibration temperature and incubation time has been ruled out from CPE procedure and this is in itself a great benefit in terms of economy of time and effort. The proposed method can be considered as an alternative to

the other sophisticated techniques such as LC-MS, GC-MS and electrophoresis.

References:

- Technical Pesticides Fact Sheet.
 2008. Bendiocarb. National Pesticide Information Center (NPIC), Environmental Protection Agency (EPA) USA.
- [2] Tadeo, J.L. (edited).2008. Analysis of Pesticides in Food and Environmental Samples. CRC Press Taylor and Francis Group ,LLC, London, pp.59
- [3] Szeto, S.Y.; Wilkinson, A.T.S. and Brown, M.J. 1984. A gas chromatographic method for the determination of bendiocarb in soil and corn: application to the analysis of residues in corn. J Agri Food Chem., 32(1): 78-80.

- [4] Farber, H. and Scholer, F. 1993. Gas chromatographic determination of carbamate pesticides after flashheater methylation with trimethylsulfonium hydroxide. J Agri Food Chem.41(2): 217-220.
- [5] Menezes, M.L. and Fèlix, G. 1998. On line extraction and separation of bendiocarb, methomyl, methylparathion, and pentachlorophenol pesticides from raw milk. J Liq.Chromatogr and Related Technologies. 21(18): pp. 28632871.
- [6] Carter, P.L. and Overton, K.C.1986. Liquid chromatographic determination of bendiocarb in technical materials and wettable powder formulations: collaborative study. J Assoc off Anal Chem., 69(5): 908-911.
- [7] Suzuki, O.; Harrori, H.; Liu, J., Seno, H. and Kumazawa, T.1990. Positive and negative-ion mass spectrometry and rapid clean-up of some carbamate pesticides. Forensic Sci., 46(3): 169-180.
- [8] Takino, M.; Yamaguchi, K. and Nakahara, T. 2004. Determination of carbamate pesticide residues in vegetables and fruits by liquid chromatography-atomspheric pressure chemical ionization-mass spectrometry. J. Agri Food Sci., 52(4): 727-735.
- [9] Lin, X.; Hong, Q.; Wu, X.; Guo, L. and Xie, Z.2008. Analysis of phenoxyltype n-methylcarbamate pesticide residues in vegetables by capillary zone electrophoresis with pre-column hydrolysis and amperometric detection. J Chromatogr. Sci., 46(7): 615-621.
- [10] Pacioni, N.L. and Veglia, A.V. 2007. Determination of poorly fluorescent carbamate pesticides in water, bendiocarb and promecarb, using cyclodextrin nanocavities and related media. Anal Chim Acta., 583(1):63–71.

- [11] Alvarez-Rodriguez, L.; Esteve-Romero, J.; Escrig-Tena, I. and Garcia Alvarez-Coque, M.C. 1999. Flow-Injection spectrophotometric determination of phenolic drugs and carbamate pesticides by coupling with diazotized 2. 4. 6-J AOAC trimethylaniline. Int.. 82(4): 937-947.
- [12] Stoytcheva, M. (edited). 2011. Agricultural and **Biological** Sciences. Pesticides in the Modern World - Trends in Pesticides Analysis", chapter 11, Filik H. and Sema Demirci Çekiç, S.D. Cloud Point Extraction of Pesticide Residues. 247.
- [13] Melchert, W. R. and Rocha, F. R. P. 2009. Cloud point extraction and concentration of carbaryl from natural waters. Int. J.Environ. Anal. Chem., 89 (13) : 969–979.
- [14] Santalad, A.; Srijaranai, S.; Burakham, R.; Sakai, T. and Deming, R. L. 2008. Acid-induced cloud-point extraction coupled to spectrophotometry for the determination of carbaryl residues in waters and vegetables. Microchem. J., 90(1): 50–55.
- [15] Karnsa-ard, S.; Santaladchaiyakit, Y.; Srijaranai, S. and Srijaranai, S. 2013. Modified QuEChERS and Cloud-point Extraction Combined with Visible Spectrophotometric Detection for Carbaryl Residue Analysis in Vegetables. Current Anal. Chem., 9(1):150-156.
- [16] Pourreza, N.; Rastegarzadeh, S. and Larki, A. 2015. Determination of fungicide carbendazim in water and soil samples using dispersive liquidliquid micerextraction and micerovolum UV-Vis spectrophotometry. Talanta, 134: 24-29.
- [17] Schenck, F.J.and Hobbs, J.E.2004. Evaluation of the quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach to pesticide

residue analysis. Bull.Environ. Contam. and Toxico. , 73(1): 24–30.

- [18] Fiamegos, Y.C.; Stalikas, C.D and Pilidis. G.A.2002. 4-Aminoantipyrine spectrophotometric method phenol of analysis: Study of the reaction products via liquid chromatography diode-array with and mass spectrometric detection. Anal. Chim. Acta, 467(1): pp. 105-114.
- [19] Fiamegos, Y.C.; Stalikas, C.D.;
 Pilidis, G.A. and M.I. Karayannis,
 M.I. 2000. Synthesis and analytical applications of 4-aminopyrazolone derivatives as chromogenic agents for the spectrophotometric determination of phenols. Anal. Chim. Acta, 403(1-2): 315–323.
- [20] Zarei, A.R.; Gholamian, F. and Chalavi, S. 2011. Micelle-mediated extraction and cloud point preconcentration for the spectrophotometric determina-tion of phenol in water samples. S. Afr. J. Chem., 64: 158–162.
- [21] Rao, T.N.; Loo, B.H.; Sarada, B.V.; Terashima, C. and Fujishima, A.2002. Electrochemical detection of carbamate pesticides at conductive diamond electrodes. Anal. Chem., 74(7): 1578-1583.
- [22] Santalad, A.; Burakham, R.; Srijaranai, S.; Srijaranai, S.and Deming, R.L. 2012. Role of different salts on cloud-point isoprocarb extraction of and promecarb insecticides followed by high-performance liquid chromatography. J Chromatogr Sci., 50(6):523-530.
- [23] Khammas, Z.A-A. and Ahmad, S. S. 2016. Micelle-mediating extraction combined with visible spectrophotometry for the determination of ultra trace amounts of bendiocarb insecticide in various matrices after oxidative coupling with O-Toluidine. International

Research Journal of Pure and Applied Chemistry, 10(2):1-16

- [24] Zhou, Z.M.; Chen, J.B.; Zhao, D.Y. and Yang, M.M. 2009. Determination of four carbamate pesticides in corn by cloud point extraction and high performance liquid chromatography in visible region base on their derivatization reaction. J Agric Food Chem. 57(19): 8722-8727.
- [25] Zhu, H.-Z.; Liu, W.; Mao, J.-W. and Yang, M.-M.2008. Cloud point extraction and determination of trace trichlorfon by high performance liquid chromatography with ultraviolet-detection based on its catalvtic effect on benzidine oxidizing. Anal. Chim. Acta. 614(1):58-62.
- [26] Pino, V., Ayala, J.H., Afonso, A.M. Gonzalez, V.2002. and Determination of polycyclic aromatic hydrocarbons in seawater high-performance liquid bv chromatography with fluorescence detection following micellepreconcentration. mediated J. Chromatogr. A, 949(1-2): 291-299.
- [27] Khammas ZA-A. and Mubdir N.S. 2014. An eco-friendly method for extraction and determination of ciprofloxacin in blood serum and pharmaceuticals. Sci. J. Anal. Chem. 2(5): 47-54.
- [28] Doroschuk, V.O.; Lelyushok, S.O.; Ishchenko, V.B. and Kulichenko, S.A.2004. Flame atomic absorption determination of manganese (II) in natural water after cloud point extraction. Talanta, 64:853-856.
- [29] Dhahir, S. A.; Hussein, J. S. and Khalaf, K. D. 2015. Spectrophotometric determina-tion of bendiocarb after synthesis a new colored compound with a paraamino phenol in environmental water samples. Int. J. Chem. Sci.,13(1) 13(1): pp. 415-431.

- [30] Alvarez-Rodríguez, L.; Monferrer-Pons, L.; Esteve-Romero, J. S.; García Alvarez-Coque, M. C. and Ramis-Ramos, G. 1997. Spectrophotometric determination of carbamate pesticides with diazotized trimethylaniline in a micellar medium of sodium dodecyl Sulfate. Analyst, 122(5): 459-463.
- [31] Kumar, K. S.; Suvardhan, K.; Rekha,
 D.; Kiran, K.; Jayaraj, B.;
 Janardhanam, K. and Chiranjeevi, P.
 2007. Development of simple and
 sensitive spectrophotometric method
 for the determination of bendiocarb
 in its formulations and

environmental samples. Environ Monit Assess., 127(1-3): 67–72.

- [32] Codex Alimentarius Commission.
 1993. Pesticides residue in food.
 Joint FAO/ WHO Food Standard
 Programme of United Nations. Vol.
 2, 2nd ed. Rome. pp.127
- [33] Khammas, Z. A-A.; Jawad, S. K. and Ali, I. R. 2013. A new spectrophotometric determina-tion of chromium (VI) as $Cr_2O_7^{2-}$ after cloud-point extraction using a laboratory-made organic reagent. Global J. Sci. Frontier Res. Chem., 13(8) Versions 1.0: 9-19.

تطوير طريقة صديقة للبيئة لتقدير الاثر لمبيد البينديوكارب في عينات حقيقية باستعمال تفاعل ايمرسون

ز هير عبدالامير خماس*

سهير صلاح احمد*

*قسم الكيمياء- كلية العلوم للبنات- جامعة بغداد

الخلاصة:

في هذه الدراسة، تم استعمال تقنية الاستخلاص بنقطة الغيمة مع المطيافية الجزيئية بوصفها طريقة صديقة للبيئة لاستخلاص واغناء وتقدير مبيد البينديوكارب في مناشئ معقدة مختلفة . اعتمدت هذه الطريقة في بادئ الامر على التحلل القلوي للمبيد ثم اعقب ذلك تطبيق تفاعل ايمرسون الذي يتفاعل الفنيول الناتج مع 4- مينوانتيبارين بوجود بوتاسيوم سيانيد الحديديك كعامل مؤكسد قلوي لتكوين ناتج احمر اللون الذي يستخلص في مايسيلات التريتون × -114 كوسيط استخلاص عند درجة حرارة الغرفة. بعدها يفصل الناتج المستخلص من المبيد ثم اعقب ذلك تطبيق تفاعل ايمرسون الذي يتفاعل الفنيول الناتج مع 4- مايسيلات التريتون × -114 كوسيط استخلاص عند درجة حرارة الغرفة. بعدها يفصل الناتج المستخلص من طبقة نقطة الغيمة بالطرد العمركزي لمدة 20 دق ومن ثم يذاب في كمية قليلة من مزيج الايتانول: الماء (1:1) لغرض تقدير المبيد طيفيا عند الطول الموجي الاقصى 400 نانوميتر . كما تم دراسة المتغيرات المهمة التي تؤثر على استخلاص وتعبين المبيد باستعمال اسلوب الامثلية التقليدية ، فضلا عن دراسة المتغيرات المهمة التي تؤثر على استخلاص وتعبين المبيد باستعمال الملوجي الاقصى 400 نانوميتر . كما تم دراسة المتغيرات المهمة التي تؤثر ألغرض تقدير المبيد طيفيا عند الطول الموجي الاقصى 400 نانوميتر . كما تم دراسة المتغيرات المهمة التي تؤثر على استخلاص وتعبين المبيد باستعمال اسلوب الامثلية التقليدية ، فضلا عن دراسة المتغيرات المهمة التي تؤثر في حين اعطى الرسم البياني لرنكبوم المدى 400 لماعيرة وكان مدى تركيز 0.0-4 مايكرو غرام مل⁻¹ . كما اظروف الفضلى المنعاء كان بمقدار 47.58 مرة مما دى لي الحصول على حد كشف بمقدار في حين اعطى الرسم البياني لرنكبوم المدى 47.58 مرة مما دى الى الحصول على حد كشف مدار في حين اعلي ولرام مل⁻¹ . كما اظهرت النتائج ان عامل الاغناء كان بمقدار 75.78 مرة مما ادى الى الحسول على حد كشف بمقدار في حين اعطى المرو والم المدى المدى المثل لمنحني المعايرة وكان بحدود 40.5 مايكرو غرام مل⁻¹ . كما اظهرت النتائج ان عامل الاغناء كان بمقدار 75.78 مرة مما دى الى الحصول على حد كشف معدار في حين اعطى الرسم البياني الرغناء كان بمقدار 75.78 مرة مما دى الى الحصول على حد كشف بمقدار 75.00 مايكرو غرام مل⁻¹ وامتصاصية مولارية مالمتحدثة في تعيين البييديوكران 40.78 . معنات الخضرروات الخضروات مامل وليسم الويي

الكلمات المفتاحية : الاستخلاص بنقطة الغيمة ، المطيافية الجزيئية ، مبيد البينديوكارب، تفاعل ايمرسون