A Study of Some Physical Properties for Binary System of Cyclohexane with n-decane and 1-pentanol at Different Temperatures

Ahlam Mohammed Farhan * Eman Talib Kareem ** Ahmed Najim Abd***

> Received 3, September, 2009 Accepted 28, June, 2010

Abstract:

The experimental densities, ρ , refractive indices, n_D , and viscosities, η , of binary mixtures of cyclohexane + n-decane and cyclohexane + 1-pentanol have been measured at 298.15, 308.15, 318.15, and 328.15 K over the whole mole fraction range. From these results, excess molar volumes, V^E , have been calculated and fitted to the Flory equations. The V^E values are negative and positive over the whole mole fraction range and at all temperatures. The excess refractive indices n^E and excess viscosities η^E have been calculated from experimental refractive indices and viscosity measurements at different temperature and fitted to the mixing rules equations and Heric – Coursey equation respectively to predict theoretical refractive indices, we found good agreement between them for binary mixtures in this study.

The variation of these properties with composition and temperatures of the binary mixtures are discussed in terms of molecular interactions.

Key words: Binary system, Cyclohexane with n-decane, Cyclohexane 1-pentanol, phscial properties.

Introduction:

Multi component molar excess properties, necessary for process design, are normally estimated from binary mixing values. The important role played by solvents in chemistry has long been recognized. The model of thermo physical properties of mixed received solvent has increasing attention as unimportant tool both at molecular level and for practical applications[1].

The alkane (normal or cyclo) the simplest class of organic compounds, contain no functional group, and smaller alkanes play an important role as model molecules for the behavior of large compounds.

On the other hand, alcohols are most well, known solvents with protic and self-associated properties,

*College of Science for Women, University of Baghdad. ** College of Science, University of Karblla cyclohexane, and ether alkanol, shows physical chemical properties between protic and dipolar aprotic solvents [2].

Studies on excess functional of liquid are binary mixtures of considerable importance in understadying the nature of molecular interactions. To determine the extent and type of such interaction, the molar volume, refractive excess indices and viscosities of the binary mixtures of cyclohexane + n- decane and cyclohexane +1- pentanol have been measured.

Materials and Methods:

The chemical materials that were used in this research with their degree of purity and the name of the

^{***}College of Veterinary medicine , University of Diyala

supplying company as shown in Table(1).

Table (1): The chemical materialsused with their degree of purity andname of supplier.

Chemical material	Degree of purity	Name of supplier
Cyclohexane	99.9%	BDH
n-decane	99.9%	BDH
1-pentanol	99.5%	Fluka

The solvent was kept on activated molecular sieves type 4Ű for 24 hours then filtered before use. Doubly distilled water was used as the standard liquid with conductivity less than. 5×10^{-7} ohm.cm⁻¹.

The mixtures were prepared by mass using (sartorius) balance with an accuracy of $\pm 10^{-4}$ g covering the whole composition range and kept in air tight stoppered bottle to prevent any contamination. The possible error in mole fraction is estimated to be less than $\pm 1 \times 10^{-4}$.

The purities of the compound were checked by determining their densities, refractive indices and viscosities over a range temperature 298.15, 308.15, 318.15 and 328.15 K, which were reasonably in accordance with values found in the literature[3] as shown in table (2).

Table (2): Densities (ρ), Refractive indices (n_D) and viscosities (η) of pure liquids at 298.15, 308.15, 318.15 and 328.15K.

Chamical	ρ				n _D				η			
Chemical	298.15	308.15	318.15	328.15	298.15	308.15	318.15	328.15	298.15	308.15	318.15	328.15
material	K	K	K	K	K	K	K	K	Κ	K	Κ	K
Cyclohexane	0.76055	0.75610	0.72820	0.71620	1.4251	1.4210	1.4195	1.4110	0.8186	0.6514	0.5024	0.4270
n-decane	0.72510	0.70650	0.70194	0.68912	1.4043	1.4035	1.3960	1.3900	0.7748	0.6835	0.4891	0.4201
1-pentanol	0.95996	0.94450	0.92650	0.89830	1.4050	1.4030	1.3970	1.3910	3.5342	2.5147	1.7389	1.2579

Densities of pure liquids and their mixtures were determined using digital densimeter (Anton paur DMA 60/602), the density values were reproducible to within 1×10^{-5} g.cm⁻³. The experimental technique has been described previously.[4] The refractive indices were measured with an Abbe refractometer (Tafesa) with a precision of the reading of \pm 0.0002. Both apparatuses were connected to aschott-Gerate 1150, circulating water bath with proportional temperature control and an automatic drift correction system that kept the samples at the desired temperatures with an accuracy of ± 0.01 K.

On other, the viscosity of pure liquids and binary liquid mixtures were measured using cannon-ubbeloude semi Micro viscometer thermostated with digital water bath (Kotterm).

The flow times were determined electronically with an electric timer of precision ± 0.015 sec..

Results:

The experimental results for the pure components are reported in table (2).The experimental data of densities ρ , viscosities η , refractive indices n_D , and excess molar volumes V^{E} , of binary mixtures (cyclohexane + n-decane, cyclohexane + 1-pentanol, at 298.15, 308.15, 318.15, and 328.15 K over the whole mole fraction range are listed in table (3) and illustrated in figures(1-2). The excess molar volumes for binary mixtures were calculated from the following relation [5].

$$V_{12}^{E} /(cm^{3}.mol^{-1}) = [\frac{x_{1}M_{1} + x_{2}M_{2}}{\rho_{m}}] - [x_{1}\frac{M_{1}}{\rho_{1}} + x_{2}\frac{M_{2}}{\rho_{2}}].....(1)$$

where x_1 , M_1 and ρ_1 are the mole fraction, molar mass and density of component(1) respectively. X_2 , M_2 and ρ_2 are the mole fraction, molar mass and density of component (2) respectively. ρ_m is the density of mixture. The experimental V^E results of the binary mixtures over the four temperatures are presented in table (3).

			x ₁	Cyclohexan	e + x ₂ n- Decar	ne		
X ₂	ρ (g.cm ³) 298.15K	ρ (g.cm ³) 308.15K	ρ (g.cm ³) 318.15K	ρ (g.cm ³) 328.15K	V ₁₂ ^E (cm ³ .mol ⁻¹) 298.15K	V ₁₂ ^E (cm ³ .mol ⁻¹) 308.15K	V ₁₂ ^E (cm ³ .mol ⁻¹) 318.15K	V ₁₂ ^E (cm ³ .mol ⁻¹) 328.15K
0.0000	0.76055	0.73610	0.72820	0.71620	0.0000	0.0000	0.0000	0.0000
0.0922	0.75491	0.73146	0.72414	0.71204	0.0349	0.0291	0.0250	0.0217
0.0991	0.75451	0.73113	0.72385	0.71174	0.0395	0.0325	0.0287	0.0231
0.1506	0.75171	0.72880	0.71968	0.70962	0.0581	0.0480	0.4196	0.0374
0.2100	0.74877	0.72633	0.71960	0.70737	0.0722	0.0638	0.0561	0.0492
0.2989	0.74474	0.72297	0.71659	0.70426	0.0990	0.0877	0.0810	0.0768
0.3672	0.74200	0.72067	0.71455	0.70216	0.1077	0.0981	0.0916	0.0855
0.4476	0.73907	0.71823	0.71237	0.69991	0.1150	0.1021	0.0970	0.0912
0.4901	0.73756	0.71695	0.71125	0.69878	0.1336	0.1200	0.1092	0.0998
0.5216	0.73644	0.71598	0.71041	0.69838	0.1549	0.1470	0.1284	0.0110
0.5415	0.73603	0.71567	0.71009	0.69757	0.1121	0.1003	0.0961	0.0901
0.6106	0.73411	0.71405	0.70868	0.69611	0.0802	0.0749	0.0660	0.0597
0.6890	0.73210	0.71241	0.70722	0.69459	0.0431	0.0313	0.0257	0.0193
0.7396	0.73093	0.71142	0.70633	0.69365	0.0086	0.0028	0.0014	0.0002
0.7537	0.73060	0.71113	0.70611	0.69341	0.0025	0.0001	-0.0102	-0.0110
0.8060	0.72940	0.71015	0.70523	0.69252	-0.0175	-0.0236	-0.0296	-0.0371
0.8693	0.72798	0.70896	0.70414	0.69140	-0.0281	-0.0364	-0.0344	-0.0412
0.8850	0.72757	0.70926	0.70386	0.69111	-0.0149	-0.1966	-0.0289	-0.0353
1.0000	0.72510	0.70650	0.70194	0.68912	0.0000	0.0000	0.0000	0.0000
			x ₁ C	Cyclohexane	$+ x_2$ 1- Pentan	ol		
	ρ	ρ	ρ	ρ	V_{12}^{E}	V_{12}^{E}	V_{12}^{E}	V_{12}^{E}
X ₂	(g.cm ³) 298.15K	(g.cm ³) 308.15K	(g.cm ³) 318.15K	(g.cm ³) 328.15K	(cm ³ .mol ⁻¹)			
					298.15K	308.15K	318.15K	328.15K
0.0000	0.76055	0.73610	0.72820	0.71620	0.0000	0.0000	0.0000	0.0000
0.1050	0.77777	0.75426	0.92639	0.73237	0.0714	0.0086	0.0107	0.0138
0.1503	0.78543	0.76230	0.92632	0.73950	0.0834	0.0160	0.0173	0.0225
0.1781	0.79026	0.76728	0.92626	0.74389	0.0869	0.0211	0.0236	0.0333
0.2247	0.79852	0.77578	0.92616	0.75142	0.0878	0.0284	0.0333	0.0422
0.3223	0.81628	0.79412	0.92606	0.76758	0.0842	0.0351	0.0435	0.0563
0.3884	0.82868	0.80693	0.92598	0.7/883	0.0823	0.0420	0.0519	0.0672
0.4861	0.84/55	0.82652	0.92589	0.79599	0.0804	0.0494	0.0611	0.0791
0.5334	0.85696	0.83628	0.92587	0.80452	0.0753	0.0515	0.0638	0.0825
0.54/4	0.85981	0.83921	0.92586	0.80/0/	0.0695	0.0520	0.0643	0.0832
0.569/	0.86446	0.84391	0.92586	0.81118	0.0524	0.0524	0.0649	0.0840
0.5729	0.80332	0.84401	0.92585	0.811/8	0.0300	0.0525	0.0630	0.0841
0.0330	0.00780	0.85808	0.92586	0.82352	0.0034	0.0525	0.0048	0.0839
0.7725	0.90/89	0.000/0	0.92393	0.03012	-0.0232	0.0408	0.0582	0.0802
0.7920	0.91240	0.09334	0.92000	0.03431	-0.0239	0.0415	0.0313	0.0004
0.0333	0.92155	0.90319	0.92000	0.00200	-0.0295	0.0339	0.0444	0.0373
0.8774	0.93131	0.913//	0.92015	0.87621	-0.0300	0.0283	0.0333	0.0437
1.0000	0.93032	0.91093	0.92030	0.07031	-0.0280	0.0190	0.0200	0.0300
	0.73770	0.74430	0.92030	0.07030	0.0000	0.0000	0.0000	0.0000

Table (3) Experimental	values	of t	he densities	(p)	and	excess	molar	volumes
(V_{12}^{E}) for binary mixture	es at the	four	[•] temperatu	res.				

The values of V^E for each mixture were fitted to the Flory equation. [6-12]

Where the v* characteristic volume of component (1) , V^E Excess reduced volume . By using the

equation of state parameters of the pure liquids, the V_{12}^E of the binary mixtures were calculated at 298.15 K the results obtained were tabulated in table (4) and plotted as function of the mole fraction, x_2 with the compare experimental data in the figures (3-4)

	x ₁ Cyclohexane x ₂ n-Decane		x1 Cyclohexane + x2 1-Pentanol					
x ₂	$V^{\rm E}_{\rm exp.}$	$V^{\rm E}_{ m Thereo.}$	X ₂	$V^{E}_{exp.}$	$V^{\rm E}_{ m Thereo.}$			
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
0.0922	0.0349	0.0267	0.1050	0.0714	0.0019			
0.0991	0.0395	0.0297	0.1503	0.0834	0.0032			
0.1506	0.0581	0.0537	0.1781	0.0869	0.0040			
0.2100	0.0722	0.0819	0.2247	0.0878	0.0054			
0.2989	0.0990	0.1161	0.3223	0.0842	0.0081			
0.3672	0.1077	0.1304	0.3884	0.0823	0.0097			
0.4476	0.1150	0.1306	0.4861	0.0804	0.0114			
0.4901	0.1336	0.1235	0.5334	0.0753	0.0119			
0.5216	0.1549	0.1152	0.5474	0.0695	0.0120			
0.5415	0.1121	0.1087	0.5697	0.0524	0.0121			
0.6106	0.0802	0.0803	0.5729	0.0300	0.0121			
0.6890	0.0431	0.0411	0.6356	0.0034	0.0121			
0.7396	0.0086	0.0156	0.7723	-0.0232	0.0101			
0.7537	0.0025	0.0088	0.7926	-0.0259	0.0095			
0.8060	-0.0175	-0.0130	0.8335	-0.0295	0.0083			
0.8693	-0.0281	-0.0293	0.8774	-0.0300	0.0066			
0.8850	-0.0149	-0.0290	0.8983	-0.0286	0.0057			
1.0000	0.0000	0.0000	1.0000	0.0000	0.0000			

Table (4) Excess molar volumes $(V_{exp.}^{E})$ for experimental and $(V_{Thereo.}^{E})$ predicted by Flory theory for binary mixtures at 298.15K.

Excess refractive indices for binary mixtures at 298.15K, 308.15K, 318.15K, and 328.15K were calculated from measurements of the refractive indices of the mixture and the pure liquids using the following equation[13].

$$n^{E} = n_{D,m} - \Sigma^{m} x_{s} n_{D,S}$$
.....(3)

where $n_{D,m}$ is the refractive indices of the mixtures , $n_{D,S}$ is the refractive indices of the pure component and Xs mole fraction of pure component .

The experimental results of the excess refractive indices are listed in table (5) and plotted as a function of X_2 the mole fraction of the second component, figures (5-6). Excess refractive indices n^E are positive over the entire composition range for all

binary system studied here at the four temperatures.

Many equations that use computing mixing rules for the refractive indices of the pure component liquids were reported in the literature[6]. In order to check the validity and the relative merits of the results obtained, the equations average for mixing rules have been used to calculate the refractive indices of the mixtures. The calculated values of n_D for all binary mixtures studied in this work are presented in Table (6) with experimental values for comparison.

We found good agreement between the experimental values of the refractive indices for the two binary mixtures studied in this work and with predicted values using the equations of mixing rules at 298.15K, 308.15K, 318.15K, and 328.15K.

Table (5): Experimental values of the refractive indices (n _D) and excess refracti	ive
indices (n ^E) for binary mixtures at 298.15,308.15, 318.15, and 328.15K.	

x_1 Cyclohexane + x_2 n- Decane											
x ₂	n _D	n ^E	n _D	n ^E	n _D	nE	n _D	n ^E			
	298.	15K	308.	15K	318.	15K	328.	15K			
0.0000	1.4251	0.0000	1.4210	0.0000	1.4195	0.0000	1.4110	0.0000			
0.0922	1.4237	0.0064	1.4206	0.0009	1.4185	0.0012	1.4105	0.0015			
0.0991	1.4233	0.0097	1.4200	0.0015	1.4179	0.0017	1.4000	0.0020			
0.1506	1.4223	0.0012	1.4191	0.0016	1.4170	0.0019	1.4090	0.0021			
0.2100	1.4211	0.0014	1.4180	0.0018	1.4151	0.0020	1.4080	0.0022			
0.2989	1.4203	0.0015	1.4165	0.0019	1.4132	0.0021	1.4065	0.0023			
0.3672	1.4185	0.0016	1.4155	0.0018	1.4110	0.0023	1.4050	0.0024			
0.4476	1.4160	0.0013	1.4140	0.0016	1.4095	0.0019	1.4030	0.0022			
0.4901	1.4150	0.0011	1.4130	0.0014	1.4083	0.0016	1.4020	0.0019			
0.5216	1.4140	0.0009	1.4120	0.0012	1.4075	0.0014	1.4000	0.0017			
0.5415	1.4135	0.0008	1.4110	0.0011	1.4070	0.0013	1.3990	0.0016			
0.6106	1.4128	0.0007	1.4100	0.0008	1.4065	0.0011	1.3975	0.0015			
0.6890	1.4117	0.0006	1.4090	0.0007	1.4060	0.0008	1.3960	0.0010			
0.7396	1.4090	0.0005	1.4075	0.0006	1.4030	0.0007	1.3945	0.0008			
0.7537	1.4087	0.0004	1.4061	0.0005	1.4015	0.0006	1.3935	0.0007			
0.8060	1.4080	0.0003	1.4053	0.0004	1.4005	0.0005	1.3925	0.0006			
0.8693	1.4073	0.0002	1.4046	0.0003	1.3995	0.0003	1.3915	0.0004			
0.8850	1.4067	0.0001	1.4040	0.0002	1.3980	0.0002	1.3910	0.0003			
1.0000	1.4043	0.0000	1.4035	0.0000	1.3960	0.0000	1.3900	0.0000			
x_1 Cyclohexane + x_2 1- Pentanol											
		X	k ₁ Cyclohe	$xane + x_2$	l - Pentano	ol					
x ₂	n _D	n ^E	n _D	n^{E}	- Pentano n _D	l n ^E	n _D	n ^E			
x ₂	n _D 298.	n ^E 15K	n _D 308.	$\frac{\text{xane} + \text{x}_2}{\text{n}^{\text{E}}}$ 15K	I- Pentano n _D 318.	n ^E 15K	n _D 328.	n ^E 15K			
x ₂	n _D 298. 1.4251	n ^E 15K 0.0000	n_D 308. 1.4210		- Pentano n _D 318. 1.4159	l 15K 0.0000	n _D 328. 1.4110	n ^E 15K 0.0000			
x ₂ 0.0000 0.1050	n _D 298. 1.4251 1.4240	n ^E 15K 0.0000 0.0010	n _D 308. 1.4210 1.4205	$ xane + x_2 n^E 15K 0.0000 0.0013 $	- Pentano n _D 318. 1.4159 1.4188	n ^E 15K 0.0000 0.0028	n _D 328. 1.4110 1.4108	n ^E 15K 0.0000 0.0015			
x ₂ 0.0000 0.1050 0.1503	n _D 298. 1.4251 1.4240 1.4232	n ^E 15K 0.0000 0.0010 0.0011	np 308. 1.4210 1.4205 1.4198	xane + x2 1 nE 15K 0.0000 0.0013 0.0015 0.0015 0	- Pentano n _D 318. 1.4159 1.4188 1.4180	n ^E 15K 0.0000 0.0028 0.0038	n _D 328. 1.4110 1.4108 1.4100	n ^E 15K 0.0000 0.0015 0.0020			
x ₂ 0.0000 0.1050 0.1503 0.1781	n _D 298. 1.4251 1.4240 1.4232 1.4228	n ^E 15K 0.0000 0.0010 0.0011 0.0012	np 308. 1.4210 1.4205 1.4198 1.4195	xane + x2 1 nE 15K 0.0000 0.0013 0.0015 0.0017 0.0017	Pentano n _D 318. 1.4159 1.4188 1.4180 1.4175	n ^E 15K 0.0000 0.0028 0.0038 0.0045	n _D 328. 1.4110 1.4108 1.4100 1.4096	n ^E 15K 0.0000 0.0015 0.0020 0.0021			
x ₂ 0.0000 0.1050 0.1503 0.1781 0.2247	n _D 298. 1.4251 1.4240 1.4232 1.4228 1.4220	n ^E 15K 0.0000 0.0010 0.0011 0.0012 0.0014	np 308. 1.4210 1.4205 1.4198 1.4195 1.4188	$ xane + x2 nE 15K 0.0000 0.0013 0.0015 0.0017 0.0018 } $	- Pentano n _D 318. 1.4159 1.4188 1.4180 1.4175 1.4168	n ^E 15K 0.0000 0.0028 0.0038 0.0045 0.0051	n _D 328. 1.4110 1.4108 1.4100 1.4096 1.4090	n ^E 15K 0.0000 0.0015 0.0020 0.0021 0.0024			
x ₂ 0.0000 0.1050 0.1503 0.1781 0.2247 0.3223	n _D 298. 1.4251 1.4240 1.4232 1.4228 1.4220 1.4203	n ^E 15K 0.0000 0.0010 0.0011 0.0012 0.0014 0.0015	np 308. 1.4210 1.4205 1.4198 1.4195 1.4188 1.4172	xane + x_2 n ^E 15K 0.0000 0.0013 0.0015 0.0017 0.0018 0.0020 0	- Pentano n _D 318. 1.4159 1.4188 1.4180 1.4175 1.4168 1.4152	n ^E 15K 0.0000 0.0028 0.0038 0.0045 0.0051 0.0053	n _D 328. 1.4110 1.4108 1.4100 1.4096 1.4090 1.4080	n ^E 15K 0.0000 0.0015 0.0020 0.0021 0.0024 0.0034			
x ₂ 0.0000 0.1050 0.1503 0.1781 0.2247 0.3223 0.3884	n _D 298. 1.4251 1.4240 1.4232 1.4228 1.4220 1.4203 1.4190	n ^E 15K 0.0000 0.0010 0.0011 0.0012 0.0014 0.0015 0.0015	np 308. 1.4210 1.4205 1.4198 1.4195 1.4188 1.4172 1.4160	xane + x ₂ 1 n ^E 15K 0.0000 0.0013 0.0015 0.0017 0.0018 0.0020 0.0019	- Pentano n _D 318. 1.4159 1.4188 1.4180 1.4175 1.4168 1.4152 1.4135	n ^E 15K 0.0000 0.0028 0.0038 0.0045 0.0051 0.0053 0.0049	n _D 328. 1.4110 1.4108 1.4100 1.4096 1.4090 1.4080 1.4065	n ^E 15K 0.0000 0.0015 0.0020 0.0021 0.0024 0.0034 0.0032			
x ₂ 0.0000 0.1050 0.1503 0.1781 0.2247 0.3223 0.3884 0.4861	n _D 298. 1.4251 1.4240 1.4232 1.4228 1.4220 1.4203 1.4190 1.4170	n ^E 15K 0.0000 0.0010 0.0011 0.0012 0.0014 0.0015 0.0016	np 308. 1.4210 1.4205 1.4198 1.4195 1.4188 1.4172 1.4160 1.4145	$\begin{array}{c} \textbf{xane} + \textbf{x}_2 \\ \textbf{n}^E \\ 15K \\ 0.0000 \\ 0.0013 \\ 0.0015 \\ 0.0017 \\ 0.0018 \\ 0.0020 \\ 0.0019 \\ 0.0022 \end{array}$	- Pentano n _D 318. 1.4159 1.4188 1.4180 1.4175 1.4168 1.4175 1.4168 1.4152 1.4115	n ^E 15K 0.0000 0.0028 0.0038 0.0045 0.0051 0.0053 0.0049 0.0047	n _D 328. 1.4110 1.4108 1.4100 1.4096 1.4090 1.4080 1.4065 1.4045	n ^E 15K 0.0000 0.0015 0.0020 0.0021 0.0024 0.0034 0.0032 0.0032			
x ₂ 0.0000 0.1050 0.1503 0.1781 0.2247 0.3223 0.3884 0.4861 0.5334	n _D 298. 1.4251 1.4240 1.4232 1.4228 1.4220 1.4203 1.4190 1.4170 1.4157	n ^E 15K 0.0000 0.0010 0.0011 0.0012 0.0014 0.0015 0.0015 0.0015 0.0016	np 308. 1.4210 1.4205 1.4198 1.4195 1.4188 1.4172 1.4160 1.4135	$\begin{array}{c} \textbf{xane} + \textbf{x}_2 \\ \textbf{n}^E \\ 15K \\ 0.0000 \\ 0.0013 \\ 0.0015 \\ 0.0017 \\ 0.0018 \\ 0.0020 \\ 0.0019 \\ 0.0022 \\ 0.0021 \end{array}$	- Pentano n _D 318. 1.4159 1.4188 1.4180 1.4175 1.4168 1.4175 1.4168 1.4152 1.4135 1.4115 1.4100	n ^E 15K 0.0000 0.0028 0.0038 0.0045 0.0051 0.0053 0.0049 0.0047 0.0041	n _D 328. 1.4110 1.4108 1.4100 1.4096 1.4090 1.4090 1.4080 1.4065 1.4045 1.4045	n ^E 15K 0.0000 0.0015 0.0020 0.0021 0.0024 0.0034 0.0032 0.0032 0.0026			
x ₂ 0.0000 0.1050 0.1503 0.1781 0.2247 0.3223 0.3884 0.4861 0.5334 0.5474	n _D 298. 1.4251 1.4240 1.4232 1.4228 1.4220 1.4203 1.4190 1.4170 1.4157 1.4150	n ^E 15K 0.0000 0.0010 0.0011 0.0012 0.0015 0.0015 0.0016 0.0013	np 308. 1.4210 1.4205 1.4198 1.4195 1.4188 1.4172 1.4160 1.4135 1.4130	$\begin{array}{c} \textbf{xane} + \textbf{x}_2 \\ \textbf{n}^E \\ 15K \\ 0.0000 \\ 0.0013 \\ 0.0015 \\ 0.0017 \\ 0.0018 \\ 0.0020 \\ 0.0019 \\ 0.0022 \\ 0.0021 \\ 0.0018 \end{array}$	- Pentano n _D 318. 1.4159 1.4188 1.4180 1.4175 1.4168 1.4152 1.4152 1.4135 1.4115 1.4100 1.4095	n ^E 15K 0.0000 0.0028 0.0038 0.0045 0.0051 0.0053 0.0047 0.0041	n _D 328. 1.4110 1.4108 1.4100 1.4096 1.4090 1.4080 1.4065 1.4045 1.4045 1.4045	n ^E 15K 0.0000 0.0015 0.0020 0.0021 0.0024 0.0034 0.0032 0.0032 0.0032 0.0026			
x ₂ 0.0000 0.1050 0.1503 0.1781 0.2247 0.3223 0.3884 0.4861 0.5334 0.5474 0.5697	n _D 298. 1.4251 1.4240 1.4232 1.4228 1.4220 1.4203 1.4190 1.4170 1.4157 1.4150 1.4145	n ^E 15K 0.0000 0.0010 0.0011 0.0012 0.0014 0.0015 0.0015 0.0016 0.0003 0.0009 0.0008	np 308. 1.4210 1.4205 1.4198 1.4195 1.4188 1.4172 1.4160 1.4135 1.4135 1.4130 1.4125	$\begin{array}{c} \textbf{xane} + \textbf{x}_2 \\ \textbf{n}^E \\ 15K \\ 0.0000 \\ 0.0013 \\ 0.0015 \\ 0.0017 \\ 0.0018 \\ 0.0020 \\ 0.0019 \\ 0.0022 \\ 0.0021 \\ 0.0011 \\ 0.0018 \\ 0.0017 \end{array}$	- Pentano np 318. 1.4159 1.4188 1.4180 1.4175 1.4168 1.4152 1.4135 1.4115 1.4100 1.4095 1.4086	n ^E 15K 0.0000 0.0028 0.0038 0.0045 0.0045 0.0047 0.0047 0.0039 0.0034	n _D 328. 1.4110 1.4108 1.4100 1.4096 1.4090 1.4080 1.4065 1.4045 1.4030 1.4025 1.4020	n ^E 15K 0.0000 0.0015 0.0020 0.0021 0.0024 0.0032 0.0032 0.0032 0.0026 0.0024			
x ₂ 0.0000 0.1050 0.1503 0.1781 0.2247 0.3223 0.3884 0.4861 0.5334 0.5474 0.5474 0.5697 0.5729	n _D 298. 1.4251 1.4240 1.4232 1.4228 1.4220 1.4203 1.4190 1.4170 1.4157 1.4150 1.4145	x n ^E 15K 0.0000 0.0011 0.0012 0.0014 0.0015 0.0015 0.0015 0.0016 0.0003 0.0009 0.0008 0.0004	rg Cyclohe ng 308. 1.4210 1.4205 1.4105 1.4198 1.4195 1.4188 1.4172 1.4160 1.4145 1.4135 1.4125 1.4135 1.4125 1.4125	$\begin{array}{c} xane + x_2 \\ \hline n^E \\ 15K \\ 0.0001 \\ 0.0013 \\ 0.0015 \\ 0.0017 \\ 0.0018 \\ 0.0020 \\ 0.0019 \\ 0.0022 \\ 0.0019 \\ 0.0021 \\ 0.0021 \\ 0.0013 \\ \end{array}$	- Pentano np 318. 1.4159 1.4184 1.4185 1.4186 1.4175 1.4168 1.4152 1.4152 1.4151 1.4152 1.4152 1.4152 1.4152 1.4152 1.4105 1.4095 1.4086 1.4080	n ^E 15K 0.0002 0.0028 0.0028 0.0045 0.0051 0.0045 0.0049 0.0047 0.0041 0.0034 0.0034	np 328. 1.4110 1.4108 1.4109 1.4096 1.4096 1.4080 1.4085 1.4055 1.4055 1.4025 1.4025 1.4020 1.4021	n ^E 15K 0.0000 0.0015 0.0020 0.0021 0.0024 0.0032 0.0032 0.0022 0.0022 0.0022 0.0024 0.0023 0.0024			
x ₂ 0.0000 0.1050 0.1503 0.3223 0.3284 0.4861 0.5334 0.5474 0.5697 0.5729 0.6356	np 298. 1.4251 1.4240 1.4232 1.4203 1.4203 1.4203 1.4100 1.4150 1.4150 1.4145 1.4127	n n 15K 0.0000 0.0011 0.0012 0.0015 0.0015 0.0016 0.0013 0.0009 0.0004 0.0004	np 308. 1.4210 1.4205 1.4198 1.4195 1.4195 1.418 1.4172 1.4160 1.4135 1.4130 1.4120 1.4130 1.4120 1.4130 1.4120	$\begin{array}{c} xane + x_2 \\ n^E \\ 15K \\ 0.0000 \\ 0.0013 \\ 0.0015 \\ 0.0017 \\ 0.0018 \\ 0.0020 \\ 0.0021 \\ 0.0021 \\ 0.0018 \\ 0.0017 \\ 0.0013 \\ 0.0017 \\ 0.0012 \end{array}$	- Pentano np 318. 1.4159 1.4189 1.4188 1.4188 1.4180 1.4181 1.4182 1.4153 1.4151 1.4100 1.4095 1.4006 1.4063	n ^E 15K 0.0000 0.0028 0.0038 0.0045 0.0051 0.0053 0.0047 0.0049 0.0041 0.0039 0.0029 0.0024	np 328. 1.4110 1.4108 1.4100 1.4096 1.4096 1.4096 1.408 1.408 1.408 1.408 1.408 1.408 1.405 1.4030 1.4025 1.4025 1.4015 1.4000	n ^E 15K 0.0000 0.0015 0.0020 0.0021 0.0024 0.0032 0.0032 0.0026 0.0024 0.0024 0.0022 0.0024 0.0022 0.0024 0.0020 0.0026 0.0020 0.0026 0.0020 0.0021 0.0020 0.0021 0.0020 0.0021 0.0020 0.0021 0.0020 0.0021 0.0020 0.0021 0.0020 0.0021 0.0020 0.0021 0.0020 0.0021 0.0020 0.0022 0.0024 0.0017 0.0			
x ₂ 0.0000 0.1050 0.1503 0.3223 0.3884 0.4861 0.5334 0.5474 0.5697 0.6356 0.6356 0.7723	np 298. 1.4251 1.4240 1.4232 1.4220 1.4201 1.4201 1.4201 1.4201 1.4201 1.4201 1.4190 1.4190 1.4150 1.4151 1.4145 1.4142 1.4120 1.4127 1.4098	n n 15K 0.0010 0.0011 0.0012 0.0014 0.0015 0.0016 0.0013 0.0009 0.0003 0.0003	np 308. 1.4210 1.4205 1.4198 1.4195 1.4195 1.4160 1.4160 1.4135 1.4130 1.4130 1.4130 1.4130 1.4130 1.4130 1.4130 1.4130 1.4108	xane + x ₂ 1 n ^E 15K 0.0000 0.0013 0.0015 0.0017 0.0018 0.0022 0.0021 0.0021 0.0018 0.0017 0.0018 0.0017 0.0013 0.0012 0.00012	- Pentano np 318. 1.4159 1.4188 1.4188 1.4180 1.4175 1.4168 1.4135 1.4135 1.4135 1.4135 1.4100 1.4095 1.4086 1.4083 1.4032	nE 15K 0.0000 0.0028 0.0038 0.0045 0.0051 0.0054 0.0045 0.0047 0.0041 0.0039 0.0024 0.0024 0.0024	np 328. 1.4110 1.4108 1.4109 1.4096 1.4096 1.4095 1.4065 1.405 1.4025 1.4025 1.4025 1.4020 1.4020 1.4020 1.4020	n ^E 15K 0.0000 0.0015 0.0020 0.0021 0.0024 0.0032 0.0032 0.0032 0.0024 0.0024 0.0023 0.0024 0.0023 0.0021 0.0021 0.0024 0.0026 0.0024 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0027 0.0026 0.0027 0.0026 0.0027 0.0027 0.0026 0.0027 0.0026 0.0027 0.0026 0.0027 0.0026 0.0027 0.0026 0.0027 0.0026 0.0026 0.0027 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0027 0.0026 0.0026 0.0026 0.0026 0.0027 0.0026 0.0026 0.0026 0.0027 0.0026 0.0027 0.0026 0.0027 0.0026 0.0027 0.0027 0.0026 0.0027 0.0026 0.0027 0.0027 0.0026 0.0027 0.0017 0.0014 0.0017 0.0			
x ₂ 0.0000 0.1050 0.1503 0.1781 0.32247 0.32247 0.3884 0.4861 0.5334 0.5474 0.5697 0.5729 0.6356 0.7723 0.7723	np 298. 1.4251 1.4240 1.4232 1.4220 1.4200 1.4100 1.4157 1.4150 1.4145 1.4145 1.4190 1.4190 1.4190 1.4190 1.4190 1.4190 1.4190 1.4190	nE 15K 0.0000 0.0011 0.0012 0.0015 0.0015 0.0016 0.0013 0.0008 0.0004 0.0003 0.0002	np 308: 1.4210 1.4205 1.4198 1.4195 1.4195 1.4195 1.4160 1.415 1.415 1.4125 1.4130 1.4125 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120	$\begin{array}{c} xane + x_2 \\ n^E \\ 15K \\ 0.0000 \\ 0.0013 \\ 0.0015 \\ 0.0015 \\ 0.0017 \\ 0.0018 \\ 0.0020 \\ 0.0019 \\ 0.0022 \\ 0.0021 \\ 0.0018 \\ 0.0017 \\ 0.0013 \\ 0.0017 \\ 0.0013 \\ 0.0012 \\ 0.0019 \\ 0.0007 \end{array}$	- Pentano np 318. 318. 1.4159 1.4188 1.4180 1.4175 1.4181 1.4175 1.4152 1.4155 1.4100 1.4095 1.4086 1.4086 1.4082 1.4082 1.4082	n ^E 15K 0.0000 0.0028 0.0038 0.0045 0.0051 0.0053 0.0047 0.0041 0.0039 0.0034 0.0029 0.0024 0.0024 0.0015	np 328. 1.4110 1.4108 1.4100 1.4096 1.4096 1.4095 1.4080 1.405 1.405 1.4025 1.4025 1.4025 1.4025 1.4020 1.4015 1.4000 1.3970 1.3965	n ^E 15K 0.0000 0.0015 0.0020 0.0021 0.0024 0.0032 0.0032 0.0032 0.0026 0.0024 0.0023 0.0019 0.0017 0.0014 0.0014 0.0013			
x ₂ 0.0000 0.1050 0.1503 0.1781 0.3224 0.3223 0.3884 0.4861 0.5334 0.5474 0.5697 0.5729 0.6356 0.7723 0.7726 0.7926 0.8335	np 298. 1.4251 1.4240 1.4232 1.4203 1.4203 1.4200 1.4170 1.4157 1.4150 1.4145 1.4145 1.4127 1.4094 1.4094	nE 15K 0.0000 0.0010 0.0011 0.0012 0.0014 0.0015 0.0016 0.0013 0.0009 0.0004 0.0003 0.0002 0.0001	np 308 308 1.4210 1.4205 1.4198 1.4195 1.418 1.4172 1.4145 1.4145 1.4145 1.4145 1.4145 1.4145 1.4145 1.4145 1.4120 1.4125 1.4108 1.4005	$\begin{array}{c} xane + x_2 \\ n^E \\ 15K \\ 0.0000 \\ 0.0013 \\ 0.0015 \\ 0.0015 \\ 0.0017 \\ 0.0018 \\ 0.0020 \\ 0.0018 \\ 0.0022 \\ 0.0021 \\ 0.0022 \\ 0.0021 \\ 0.0018 \\ 0.0017 \\ 0.0013 \\ 0.0017 \\ 0.0012 \\ 0.0007 \\ 0.0007 \\ 0.0005 \end{array}$	- Pentano np 318. 318. 1.4159 1.4188 1.4180 1.4175 1.4168 1.4152 1.4151 1.4100 1.4095 1.4086 1.4086 1.4083 1.4025 1.4025	n ^E 15K 0.0000 0.0028 0.0038 0.0045 0.0051 0.0045 0.0047 0.0041 0.0039 0.0029 0.0024 0.0024 0.0015 0.0015	np 328. 1.4110 1.4108 1.4096 1.4096 1.4096 1.4096 1.4096 1.4096 1.4096 1.4096 1.4025 1.4030 1.4025 1.4020 1.3955	n ^E 15K 0.0000 0.0015 0.0020 0.0021 0.0024 0.0032 0.0032 0.0026 0.0022 0.0026 0.0024 0.0023 0.0019 0.0017 0.0011 0.0011			
x ₂ 0.0000 0.1050 0.1503 0.1781 0.2247 0.3223 0.3884 0.4861 0.5334 0.5474 0.5697 0.5729 0.6356 0.7723 0.7226 0.8335 0.8774	np 298. 1.4251 1.4240 1.4232 1.4203 1.4203 1.4100 1.4157 1.4150 1.4145 1.4127 1.4094 1.4094 1.4095 1.4076	x n ^E 15K 0.0000 0.011 0.0012 0.011 0.0015 0.0015 0.0016 0.0013 0.0004 0.0003 0.0002 0.0001	np 308; 308; 1.4210 1.4205 1.4198 1.4195 1.4184 1.415 1.4145 1.415 1.4165 1.4188 1.4125 1.4145 1.4125 1.4120 1.4125 1.4108 1.4085 1.4085 1.4055	$\begin{array}{c} xane + x_2 \\ n^E \\ 15K \\ 0.0000 \\ 0.0013 \\ 0.0015 \\ 0.0017 \\ 0.0018 \\ 0.0020 \\ 0.0019 \\ 0.0022 \\ 0.0021 \\ 0.0021 \\ 0.0018 \\ 0.0017 \\ 0.0013 \\ 0.0017 \\ 0.0013 \\ 0.0012 \\ 0.0009 \\ 0.0007 \\ 0.0005 \\ 0.0003 \end{array}$	- Pentano np 318. 1.4159 1.4188 1.4180 1.4175 1.4168 1.4152 1.4152 1.4152 1.4152 1.4152 1.4152 1.4100 1.4095 1.4086 1.4080 1.4083 1.4063 1.4025	n ^E 15K 0.0000 0.0028 0.0038 0.0045 0.0051 0.0041 0.0041 0.0039 0.0041 0.0029 0.0024 0.0013 0.0013	np 328. 1.4110 1.4108 1.4096 1.4096 1.4096 1.4096 1.4096 1.4096 1.4091 1.4080 1.4025 1.4030 1.4025 1.4020 1.4015 1.4000 1.3976 1.3955 1.3945	n ^E 15K 0.0000 0.0015 0.0021 0.0024 0.0032 0.0032 0.0032 0.0026 0.0024 0.0023 0.0026 0.0024 0.0023 0.0019 0.0017 0.0011 0.0011 0.0010			
x ₂ 0.0000 0.1050 0.1503 0.1781 0.2247 0.3223 0.3884 0.4861 0.5474 0.5697 0.5729 0.6356 0.7723 0.7926 0.8335 0.8774 0.8983	np 298. 1.4251 1.4240 1.4232 1.4203 1.4203 1.4203 1.4170 1.4157 1.4145 1.4140 1.4127 1.4098 1.4094 1.4095 1.4076	x n ^E 15K 0.0010 0.0011 0.0012 0.0015 0.0015 0.0016 0.0013 0.0009 0.0004 0.0003 0.0002 0.0002 0.0001 0.0001	np 308. 1.4210 1.4205 1.4198 1.4195 1.4195 1.4195 1.4172 1.4160 1.4135 1.4130 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4108 1.4080 1.4055 1.4056 1.4050	$\begin{array}{c} xane + x_2 \\ n^E \\ 15K \\ 0.0000 \\ 0.0013 \\ 0.0015 \\ 0.0017 \\ 0.0018 \\ 0.0020 \\ 0.0019 \\ 0.0022 \\ 0.0021 \\ 0.0012 \\ 0.0013 \\ 0.0013 \\ 0.0012 \\ 0.0007 \\ 0.0005 \\ 0.0005 \\ 0.0003 \\ 0.0001 \end{array}$	- Pentano np 318. 1.4159 1.4159 1.4188 1.4188 1.4182 1.4152 1.4152 1.4152 1.4152 1.4152 1.4100 1.4095 1.4080 1.4083 1.4082 1.4025 1.402 1.4002	nE 0.000 0.0008 0.0028 0.0038 0.0045 0.0051 0.0045 0.0045 0.0045 0.0045 0.0045 0.0047 0.0041 0.0029 0.0024 0.0015 0.0013 0.0005	np 328. 1.4110 1.4108 1.4100 1.4086 1.4096 1.4096 1.408 1.4000 1.403 1.405 1.403 1.405 1.403 1.4045 1.4030 1.4025 1.4025 1.4025 1.4025 1.4015 1.4000 1.3970 1.3945 1.3935	n ^E 15K 0.0000 0.0015 0.0020 0.0021 0.0024 0.0032 0.0026 0.0023 0.0023 0.0023 0.0023 0.0024 0.0024 0.0024 0.0021 0.0024 0.0021 0.0024 0.0021 0.0024 0.0021 0.0026 0.0021 0.0026 0.0026 0.0026 0.0021 0.0026 0.0026 0.0021 0.0026 0.0021 0.0026 0.0021 0.0026 0.0021 0.0026 0.0021 0.0026 0.0021 0.0026 0.0021 0.0026 0.0021 0.0026 0.0021 0.0026 0.0021 0.0026 0.0021 0.0026 0.0021 0.0026 0.0021 0.0026 0.0021 0.0026 0.0021 0.0026 0.0021 0.0026 0.0021 0.0026 0.00017 0.0011 0.0011 0.0010 0.0010 0.0011 0.00014 0.00014 0.00010 0.0004 0.00010 0.00000 0.000000 0.0000000000			

Table (6) Experimental and the predicted refractive indices (n_D) for binary mixtures at 298.15,308.15, 318.15, and 328.15K.

	x ₁ Cyclohexane + x ₂ n- Decane												
X ₂	n _{D exp.}	n _{D Thereo.}	n _{D exp.}	n _{D Thereo.}	n _{D exp.}	n _{D Thereo.}	n _{D exp.}	n _{D Thereo.}					
	298	.15K	308	.15K	318.15K		328.15K						
0.0000	1.4251	1.4255	1.4210	1.4207	1.4195	1.4199	1.4110	1.4111					
0.0922	1.4237	1.4239	1.4206	1.4204	1.4185	1.4183	1.4105	1.4107					
0.0991	1.4233	1.4237	1.2400	1.4201	1.4179	1.4177	1.4000	1.4006					
0.1506	1.4223	1.4222	1.4191	1.4197	1.4170	1.4165	1.4090	1.4093					
0.2100	1.4211	1.4214	1.4180	1.4183	1.4151	1.4153	1.4080	1.4085					
0.2989	1.4203	1.4208	1.4165	1.4166	1.4132	1.4131	1.4065	1.4062					
0.3672	1.4185	1.4183	1.4155	1.4158	1.4110	1.4107	1.4050	1.4054					
0.4476	1.4160	1.4162	1.4140	1.4151	1.4095	1.4090	1.4030	1.4033					
0.4901	1.4150	1.4145	1.4130	1.4140	1.4083	1.4082	1.4020	1.4021					
0.5216	1.4140	1.4141	1.4120	1.4133	1.4075	1.4077	1.4000	1.4009					
0.5415	1.4135	1.4133	1.4110	1.4112	1.4070	1.4071	1.3990	1.3998					
0.6106	1.4128	1.4127	1.4100	1.4099	1.4065	1.4063	1.3975	1.3972					
0.6890	1.4117	1.4116	1.4090	1.4091	1.4060	1.4055	1.3960	1.3966					
0.7396	1.4090	1.4091	1.4075	1.4077	1.4030	1.4038	1.3945	1.3947					
0.7537	1.4087	1.4084	1.4061	1.4068	1.4015	1.4019	1.3935	1.3938					
0.8060	1.4080	1.4074	1.4053	1.4055	1.4005	1.4008	1.3925	1.3925					
0.8693	1.4073	1.407	1.4046	1.4043	1.3995	1.3999	1.3915	1.3919					
0.8850	1.4067	1.4069	1.4040	1.4041	1.3980	1.3985	1.3910	1.3913					
1.0000	1.4043	1.4042	1.4035	1.4033	1.3960	1.3964	1.3900	1.3905					

	x ₁ Cyclohexane + x ₂ 1- Pentanol												
X ₂	n _{D exp.}	n _{D Thereo.}	n _{D exp.}	n _{D Thereo.}	n _{D exp.}	n _{D Thereo.}	n _{D exp.}	n _{D Thereo.}					
	298	.15K	308	8.15K 3		.15K	328.15K						
0.0000	1.4251	1.4253	1.4210	1.4216	1.4159	1.4155	1.4110	1.4113					
0.1050	1.4240	1.4241	1.4205	1.4208	1.4188	1.4184	1.4108	1.4106					
0.1503	1.4232	1.4233	1.4198	1.4199	1.4180	1.4181	1.4100	1.4101					
0.1781	1.4228	1.4226	1.4195	1.4193	1.4175	1.4173	1.4096	1.4092					
0.2247	1.4220	1.4225	1.4188	1.4185	1.4168	1.4162	1.4090	1.4089					
0.3223	1.4203	1.4209	1.4172	1.4171	1.4152	1.4156	1.4080	1.4084					
0.3884	1.4190	1.4192	1.4160	1.4166	1.4135	1.4133	1.4065	1.4066					
0.4861	1.4170	1.4174	1.4145	1.4147	1.4115	1.4111	1.4045	1.4047					
0.5334	1.4157	1.4158	1.4135	1.4133	1.4100	1.411	1.4030	1.4033					
0.5474	1.4150	1.4157	1.4130	1.4131	1.4095	1.4093	1.4025	1.4028					
0.5697	1.4145	1.4144	1.4125	1.4127	1.4086	1.4085	1.4020	1.4021					
0.5729	1.4140	1.4141	1.4120	1.4122	1.408	1.4082	1.4015	1.4015					
0.6356	1.4127	1.4125	1.4108	1.4109	1.4063	1.4064	1.4000	1.4007					
0.7723	1.4098	1.4096	1.4080	1.4085	1.4032	1.4039	1.3970	1.3978					
0.7926	1.4094	1.4092	1.4075	1.4073	1.4025	1.4022	1.3965	1.3964					
0.8335	1.4085	1.4088	1.4065	1.4067	1.4015	1.4017	1.3955	1.3959					
0.8774	1.4076	1.4073	1.4056	1.4055	1.4002	1.4009	1.3945	1.3942					
0.8983	1.4071	1.4069	1.4050	1.4051	1.3995	1.3998	1.3935	1.3938					
1.0000	1.4050	1.4054	1.4030	1.4032	1.3970	1.3973	1.3910	1.3915					

Viscosity for binary system mixtures at 298.15, 308.15, 318.15 and 328.15 K were calculated from measurement of viscosity of the mixture of pure liquids using the following equation[14].

 $\eta_{12}^{E} = \eta_{mix} - X_{1}\eta_{1} - X_{2}\eta_{2}$(4)

Where X_1, X_2 , η_1 and η_2 are the mole fraction and the viscosities of pure components respectivily . η_{mix} is the viscosity of the mixture[15].

The experimental results for the viscosity (η) are presented in table (7), figures (7-8) showed the variation of viscosity as a function of the mole fraction of cyclohexane.

Several empirical equations have been proposed to calculate excess viscosity of multi component systems based on the available experimental results of mixture and pure components. The equation of Heric and Coursey[16] was used :

where $\eta_{mix.}$ is the viscosity of the mixture, x_i and η_i are mole fraction and viscosity for pure component respectively. Table(8) shows the predicted values with the experimental values of excess viscosity for comparison for binary mixtures studied here at 298.15,308.15,318.15 and328.15 K.

Table (7) : Experiment values of the viscosity η and excess viscosity η_{12}^{E} for binary mixtures at 298.15,308.15, 318.15,and 328.15K.

	x ₁ Cyclohexane + x ₂ n- Decane												
x ₂	η	$\eta^{\rm E}_{12}$	η	$\eta^{\rm E}_{12}$	η	$\eta^{\rm E}_{12}$	η	$\eta^{\rm E}_{12}$					
	298	.15K	308	.15K	318	.15K	328	.15K					
0.0000	0.8186	0.0000	0.6514	0.0000	0.5025	0.0000	0.4271	0.0000					
0.0922	0.7713	-0.0432	0.6254	-0.0290	0.4896	-0.1047	0.4150	-0.0114					
0.0991	0.7533	-0.0610	0.6196	-0.0350	0.4794	-0.0981	0.4101	-0.0163					
0.1506	0.7387	-0.0732	0.6067	-0.0495	0.4667	-0.0671	0.3946	-0.0314					
0.2100	0.7300	-0.0794	0.5937	-0.0644	0.4518	-0.0335	0.3838	-0.0417					
0.2989	0.7145	-0.0910	0.5747	-0.0863	0.4301	-0.0177	0.3680	-0.0569					
0.3672	0.7003	-0.1022	0.5513	-0.1119	0.4190	-0.0552	0.3622	-0.0623					
0.4476	0.6860	-0.1130	0.5332	-0.1325	0.4030	-0.1002	0.3423	-0.0816					
0.4901	0.7133	-0.0838	0.5592	-0.1079	0.4073	-0.1202	0.3511	-0.0725					
0.5216	0.7237	-0.0720	0.5745	-0.0936	0.4166	-0.1332	0.3602	-0.0631					
0.5415	0.7291	-0.0658	0.5904	-0.0784	0.4213	-0.1417	0.3645	-0.0587					
0.6100	0.7329	-0.0589	0.6105	-0.0605	0.4303	-0.1735	0.3684	-0.0544					
0.6890	0.7423	-0.0461	0.6198	-0.0537	0.4391	-0.2099	0.3769	-0.0453					
0.7396	0.7468	-0.0393	0.6349	-0.0402	0.4483	-0.2324	0.3857	-0.0362					
0.7537	0.7579	-0.0277	0.6506	-0.0249	0.4579	-0.2366	0.3902	-0.0316					
0.8060	0.7623	-0.0209	0.6551	-0.0222	0.4622	-0.2614	0.3990	-0.0224					
0.8693	0.7665	-0.0140	0.6646	-0.0146	0.4712	-0.2903	0.4030	-0.0180					
0.8850	0.7718	-0.0080	0.6755	-0.0042	0.4808	-0.2954	0.4121	-0.0088					
1.0000	0.7748	0.0000	0.6835	0.0000	0.4891	0.0000	0.4201	0.0000					

x ₁ Cyclohexane + x ₂ 1- Pentanol											
x ₂	η	$\eta^{\rm E}_{12}$									
	298	.15K	308	.15K	318	.15K	328	.15K			
0.0000	0.8186	0.0000	0.6514	0.0000	0.5025	0.0000	0.4247	0.0000			
0.1050	0.8554	-0.2485	0.7467	-0.3571	0.6321	-0.0003	0.4858	-0.0264			
0.1504	0.8761	-0.3508	0.7890	-0.4379	0.6762	-0.0121	0.5118	-0.0382			
0.1781	0.8999	-0.4024	0.8056	-0.4967	0.6966	-0.0260	0.5301	-0.0430			
0.2248	0.9592	-0.4698	0.8495	-0.5795	0.7274	-0.0530	0.5522	-0.0598			
0.3223	1.0506	-0.6433	0.9232	-0.7707	0.7409	-0.1600	0.6260	-0.0673			
0.3884	1.0924	-0.7810	0.9683	-0.9051	0.8108	-0.1719	0.6650	-0.0833			
0.4862	1.1966	-0.9423	1.0538	-1.0850	0.9123	-0.1913	0.7376	-0.0922			
0.5334	1.2967	-0.9704	1.1290	-1.1381	0.9314	-0.2005	0.7686	-0.1006			
0.5474	1.4084	-0.8967	1.2273	-1.0778	1.0166	-0.1627	0.7980	-0.0828			
0.5697	1.5643	-0.8013	1.3165	-1.0492	1.0711	-0.1357	0.8319	-0.0674			
0.5730	1.6199	-0.7047	1.3503	-1.0034	1.1096	-0.1013	0.8462	-0.0559			
0.6356	1.7130	-0.6518	1.5231	-0.9916	1.2038	-0.0846	0.9206	-0.0337			
0.7723	2.0864	-0.6248	1.8975	-0.8584	1.3818	-0.0756	1.0480	-0.0201			
0.7927	2.1441	-0.5970	1.9569	-0.8042	1.4489	-0.0336	1.0749	-0.0102			
0.8335	2.5302	-0.5518	2.0773	-0.7000	1.5056	-0.0274	1.1106	-0.0086			
0.8774	2.6738	-0.5275	2.2443	-0.5969	1.5620	-0.0253	1.1492	-0.0065			
0.8984	3.0455	-0.2127	2.3472	-0.4402	1.5933	-0.0199	1.1686	-0.0047			
1.0000	3.5342	0.0000	2.5147	0.0000	1.7389	0.0000	1.2579	0.0000			

Table (8) Experimental and the predicted excess viscosities (η^E) for binary mixtures at 298.15, 308.15, 318.15, and 328.15 K.

x_1 Cyclohexane + x_2 n- Decane										
X ₂	$\eta^{E}_{exp.}$	ηE Thereo.	$\eta^{E}_{exp.}$	ηE Thereo.	$\eta^{E}_{exp.}$	ηE Thereo.	$\eta^{E}_{exp.}$	ηE Thereo.		
	298	.15K	308	.15K	318	.15K	328.	15K		
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
0.0922	-0.0432	-0.0430	-0.0290	-0.0289	-0.1047	-0.1045	-0.0114	-0.0110		
0.0991	-0.0610	-0.0609	-0.0350	-0.0351	-0.0981	-0.0989	-0.0163	-0.0160		
0.1506	-0.0732	-0.0729	-0.0495	-0.0495	-0.0671	-0.0670	-0.0314	-0.0314		
0.2100	-0.0794	-0.0795	-0.0644	-0.0643	-0.0335	-0.0335	-0.0417	-0.0416		
0.2989	-0.0910	-0.0912	-0.0863	-0.0861	-0.0177	-0.0179	-0.0569	-0.0570		
0.3672	-0.1022	-0.1025	-0.1119	-0.1120	-0.0552	-0.0553	-0.0623	-0.0622		
0.4476	-0.1130	-0.1133	-0.1325	-0.1322	-0.1002	-0.1002	-0.0816	-0.0810		
0.4901	-0.0838	-0.0835	-0.1079	-0.1080	-0.1202	-0.10211	-0.0725	-0.0725		
0.5216	-0.0720	-0.0718	-0.0936	-0.0935	-0.1332	-0.1327	-0.0631	-0.0630		
0.5415	-0.0658	-0.0658	-0.0784	-0.0785	-0.1417	-0.1420	-0.0587	-0.0585		
0.6100	-0.0589	-0.0592	-0.0605	-0.0610	-0.1735	-0.1733	-0.0544	-0.0545		
0.6890	-0.0461	-0.0460	-0.0537	-0.0540	-0.2099	-0.2089	-0.0453	-0.0455		
0.7396	-0.0393	-0.0392	-0.0402	-0.0409	-0.2324	-0.2325	-0.0362	-0.0362		
0.7537	-0.0277	-0.0279	-0.0249	-0.0250	-0.2366	-0.2345	-0.0316	-0.0317		
0.8060	-0.0209	-0.0213	-0.0222	-0.0219	-0.2614	-0.2610	-0.0224	-0.0222		
0.8693	-0.0140	-0.0141	-0.0146	-0.0145	-0.2903	-0.2900	-0.0180	-0.0181		
0.8850	-0.0080	-0.0060	-0.0042	-0.0040	-0.2954	-0.955	-0.0088	-0.0089		
1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
			x ₁ Cycloh	exane + x ₂ 1	- Pentanol					
X2	$\eta^{E}_{exp.}$	ηE Thereo.	$\eta^{E}_{exp.}$	ηE Thereo.	$\eta^{E}_{exp.}$	ηE Thereo.	$\eta^{E}_{exp.}$	ηE Thereo.		
	298	.15K	308	308.15K		318.15K		15K		
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
0.1050	-0.2485	-0.2483	-0.3571	-0.3570	-0.0003	-0.0006	-0.0264	-0.0260		
0.1504	-0.3508	-0.3511	-0.4379	-0.4380	-0.0121	-0.0125	-0.0382	-0.0385		
0.1781	-0.4024	-0.4025	-0.4967	-0.4966	-0.0260	-0.0262	-0.0430	-0.0433		
0.2248	-0.4698	-0.4690	-0.5795	-0.5799	-0.0530	-0.0526	-0.0598	-0.0599		
0.3223	-0.6433	-0.6430	-0.7707	-0.7709	-0.1600	-0.1602	-0.0673	-0.0675		
0.3884	-0.7810	-0.7809	-0.9051	-0.9055	-0.1719	-0.1721	-0.0833	-0.0829		
0.4862	-0.9423	-0.9423	-1.0850	-1.0848	-0.1913	-0.1915	-0.0922	-0.0923		
0.5334	-0.9704	-0.9710	-1.1381	-1.1385	-0.2005	-0.2009	-0.1006	-0.1010		
0.5474	-0.8967	-0.8970	-1.0778	-1.0770	-0.1627	-0.1630	-0.0828	-0.0822		
0.5697	-0.8013	-0.8004	-1.0492	-1.0498	-0.1357	-0.1355	-0.0674	-0.0674		
0.5730	-0.7047	-0.7051	-1.0034	-1.0030	-0.1013	-0.1019	-0.0559	-0.0560		
0.6356	-0.6518	-0.6518	-0.9916	-0.9910	-0.0846	-0.0850	-0.0337	-0.0335		
0.7723	-0.6248	-0.6244	-0.8584	-0.8584	-0.0756	-0.0755	-0.0201	-0.0209		
0.7927	-0.5970	-0.5965	-0.8042	-0.8040	-0.0336	-0.0332	-0.0102	-0.0108		
0.8335	-0.5518	-0.05510	-0.7000	-0.7008	-0.0274	-0.0277	-0.0086	-0.0091		
0.8774	-0.5275	-0.5269	-0.5969	-0.5970	-0.0253	-0.0250	-0.0065	-0.0066		
0.8984	-0.2127	-0.2125	-0.4402	-0.4400	-0.0199	-0.0192	-0.0047	-0.0041		
1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		

Discussion:

Figures (1-2) explain that the experimental excess molar volumes

 V_{12}^{E} , for cyclohexane + 1- pentanol system are positive over the whole mole fraction range at 308.15, 318.15, and 328.15 K .But at 298.15 K the system exhibite positive deviation from ideality at low mole fraction of 1pentanol $0 < X_2 < 0.7$ and the deviation become negative at high mole fraction of 1-pentanol $0.7 < X_2 < 1.0$ for figure(2). The other system(cyclohexane +n-decane) shows, positive deviation from ideality at low mole fraction of n-decane 0 < $X_2 < 0.75$ and the deviation become negative at high mole fractions 0.75 <X₂ < 1.0 at 298.15, 308.15, 318.15 and 328.15 K fig.(1).

 V_{12}^{E} become more and more positive with increasing the chain length of n- alkanes and alkanols and with decreasing the temperature. This suggests that the globular molecule disturbing cyclohexane the orientational order in n-alkanes and bonding interaction hydrogen in alkanols and result less packed structure. It seems that in addition to discussed the above molecular interactions, the size and the molar volume of n- alkanes and alkanols could increase the deviation from ideality with increasing the molar volumes of n- alkane and alkanols.

For all binary mixtures studied here, the researcher planned to predict the excess molar volumes at 298.15k of those mixtures from Flory theory[6-12]. Pure component liquid parameters table (2) and equations (1-2) and V_{12}^{E} were predicted and the results listed in table (4) with the experimental data and plotted as a function of mole fraction X₂ with experimental values for comparison, figures (3-4). The researcher observed poor agreement between the experimental values and the predicted ones for mixtures molecule containing globular cyclohexane. This explains that Flory theory did not take in account the of the molecules shape of hydrocarbons.

Excess refractive indices n^E, are positive over the entire composition range for all binary mixtures studied here at a four temperatures and the deviation from ideality positive increase when increasing the chain length of n- alkanes and alkanols and when increasing the temperature. In this study the researcher has attempted to test the validity of different refractive indices mixing rules. Good agreement was found between the experimental values of the refractive indices for all binary mixtures studied in this work and with predicted values using the equations of mixing rules, table(6).

Excess viscosities η_{12}^E are negative over the entire composition range for all binary mixtures studied at 298.15K, 308.15K, and 318.15K. The negative deviation from ideality decreases when increasing the chain length of n- alkanes and alkanols and increasing the temperature when figures (7-8). In 328.15K for cyclohexane + 1- pentanol η_{12}^E are positive from ideality at low mole fraction x_2 for 1- pentanol 0 < x_2 < 0.05 becomes negative at high mole fractions x_2 figures (8).

Heric Coursey and equation[13] was used for prediction excess viscosities from experimental results of viscosities of mixture and pure components for all binary mixtures studied here at four temperatures. Table (8) shows the predicted values of excess viscosity from equation(4) with experimental values for comparison. The researcher observed good agreement between the experimental values and the predicted ones.

Fig.(1): Excess molar volumes V^E versus X_1 for cyclohexane + X_2 n-decane_at $\Box 298.15K$, $\Delta 308.15K$, $\circ 318.15K$, and $\diamond 328.15K$.

Fig.(2): Excess molar volumes V^E versus X_1 for cyclohexane + X_2 1-pentanol_at $\diamond 298.15K$, $\Box 308.15K$, $\Delta 318.15K$, and $\times 328.15K$.

Fig.(3): Excess molar volumes v ^E versus X₁ for cyclohexane.+ X₂ n-decane at 298.15K.

Fig. (4): Excess molar volumes v^E versus X₁ for cyclohexane.+ X₂ 1-pentanol at 298.15K.

Fig.(5): Excess refractive indices n^E versus x_2 for x_1 cyclohexane + x_2 n-decane at $\diamond 298.15K$, $\Box 308.15K$, $\Delta 318.15K$, and $\times 328.15K$.

Fig. (6): Excess refractive indices n^E versus x_2 for x_1 cyclohexane + x_2 1-pentanol at $\diamond 298.15K$, $\Box 308.15K$, $\Delta 318.15K$, and $\times 328.15K$.

Fig.(7): Excess viscosities η_{12} versus x_2 for x_1 cyclohexane + x_2 n-decane at $\diamond 298.15K$, $\Box 308.15K$, $\Delta 318.15K$, and $\times 328.15K$.

References:

- 1. Salman H.F.,2001."Density, refractive dielectric index, constant, and excess property of containing binary mixtures sulfolane N-methyl and morpholine" Saddam University PhD.
- **2.** Wei I . C . and R . L. Rowley,1994 J . Chem . Eng .Data , 49 , 332.
- 3. Tamura K., N. Morishita and T. Yamada, 2000 J. Chem .Eng .Data, 45, 555.
- **4.** Battino, R. 1971. Volume changes on mixing for binary mixtures of liquids chem.. Rev., 71., 5-45.
- **5.** Scatchard, G. and W. J.Hamer, 1935. The Application of Equations for the chemical

potentials to partially miscible solutions. J. Chem. Soc., 57,1805.

- 6. Kareem, E.T. 2003 Volumetric Behavior of Binary, Ternary and Quaternary mixtures of some normal alkenes and cyclohexane comparison with theory Baghdad University phD thesis.
- Flory,P.J., R.A. Orwoll and A. Vrij, 1964. Statistical Thermodynamic of chain molecule liquids -1- An Equation of state for normal paraffin hydrocarbons J.Am. Chem. Soc., 86., 3507-3514.
- 8. Flory, P.J. and A. Abe, 1964. Thermodynamic properties of Nonpolar Mixtures of small molecules. J.Am. Chem. Soc., 86.,3563-3565.
- **9.** Orwoll, R.A. and P.J. Flory, 1967. Equation of state parameters for normal alkanes correlation with chain length. J.Am. Chem. Soc., 89.,6814-6822.
- Orwoll,R.A. and P.J. Flory, 1967. Thermodynamic properties of binary mixtures of n-alkanes.J. Am. Chem. Soc.,89., 6822-6829.
- Abe, A. and P.J. Flory., 1965. Thermodynamic properties of mixtures of small, Non polar molecules J.Am. Chem. Soc., 87., 1838-1846.
- Flory, P.Y., 1965. statistical thermodynamic of liquid mixtures. J. Am. Chem. Soc. 87., 1833-1838.
- 13. Ritzoulis,G., D. Misso polinon, S. Doulami, and C.Panayioton, 2000. Relative permittivities Densities, Refractive indices and ultra sound velocities of the Binary systems of γ -Butrolactone with methanol, Ethanol, 1-Butanol and 1-octanol, J.Chem. Eng. Data., 45.,638.
- 14. Tu, C.H., S.L. Lee, and I.H.Peng. 2001. Excess volumes and viscosities of Binary Mixtures of Aliphatic alcohols (c1 –c4) with Nitro methane. J. Chem. Eng. Data., 46.,151.

- 15. Sarhan S.T., M.Sc.thesis, 2007. " Study of some physical prof some Amio acids in (N,N Dimethyl formoperties amide) water mixture over the temperature range (298.15 - 313.15k)". Baghdad university,.
- **16.** Heric, E.L. and B.M. coursey, 1972. Properties of binary systems of hexane and normal chloro alkanes. J. Chem. Eng. Data, 17., 41-44.

n-decane دراسة بعض الخواص الفيزيائية للنظام الثنائي للسايكلو هكسان مع و 1-pentanol عند درجات حرارية مختلفة

أحمد نجم عبد ***

إيمان طالب كريم **

أحلام محمد فرحان*

*كلية العلوم للبنات جامعة بغداد
**كلية العلوم جامعة كربلاء
***كلية الطب البيطري جامعة ديالي

الخلاصة:

تم قياس الكثافة ومعامل الانكسار واللزوجة للمخاليط الثنائية والتي تتضمن cyclohexane + n-decane وcyclohexane + 1-pentanol على مدى اربع درجات حرارية هي oyclohexane + n-decane و308.15 (308.15 638.15 و308.15 638.15 638.15 (308.15 638.15 638.15 638.15 638.15 و308.15 638.15 638.15 638.15 و308.15 638.15 638.15 و308.15 638.15 و308.15 638.1

م مسبب معلق ترسيس مسبور مس على التوالي وقد وجد تطابقاً جيداً بين القيم النظرية والعملية للمخاليط المدروسة . تم مناقشة الاختلاف في هذه الصفات التركيبية للمخاليط الثنائية مع درجات الحرارة من خلال

التداخلات الجزيئية .