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Abstract

Let Hbe an infinite dimensional separable complex Hilbert space and let
I e B(H), where B(H) is the Banach algebra of all bounded linear operators on H .

In this paper we prove the following results.

If 7€ B(H)is a @—operator, then
I. 7" is a hypercyclic operator if and only if oI, )ND=¢ and
a(T'|,)N(C\D )= ¢ for every hyperinvariant subspace M of T .

2. If T is a pure, then 7" is a countably hypercyclic operator if and only if
a(T,)MNC\D)=¢ and o(T)ND =¢ for every hyperinvariant subspace M of
T.

3. 7" has a bounded set with dense orbit if and only if for every hyperinvariant
subspace M of T, J(T|”)ﬂ(('\5):t¢.

Keywords: & —operator, hypercyclic, countably hypercyclic, single valued
extension property (SVEP), Bishop's property (£), decomposition property (5).

1. Introduction

Let H be an infinite dimensional called normaloid if r(I')=|| T||, where

separable complex Hilbert space, and r(T)y=sup{| A|: Aeoa(D)}, [3].

B(H) be the set of all bounded linear

operators on H , we denote as usual It is well known [4] that

the spectrum, the point spectrum and @ —operator = normaloid

the approximate point spectrum of 7

by o(f), o,7) and o,(T). An operator 7 € B(H) is called

Following [1], the Lai(T), where hyponormal if || T'x||<|| Tx|| for all

T € B(H), denoted the collection of all xe H  Campbell and Gellar [5] gave

T — invariant closed linear subspaces an example of a & —operator which is

of H If TeB(H) and M < Lat(T), not hyponormal, also Al-Sultan [6]

then 7|,,& B(M) is the restriction of gave an example of an operator which

T to M. is  hyponormal but it is not
& — operator.

An operator 7" € B(H) is called

@—operator if T'T commutes with
7+1", [2]. Recall that 7' B(H) is

If TeB(H) and xe H , then
the orbit of x under 7T is
Orb(T,x)={x,Tx,T*x,...}, [7]. If
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E < H , then the orbit of £ under T
18
Orb(T,EY=U{E. T(E),T*(E),...} =
U0 )» (18], 19])-

An operator 7 e B(H) is called
hypercyclic if there is a vector xe H
with dense orbit {x,7x,7"x,...}, [7].

Following ([8], [9]), we say
that an operator " € B(H) is countably
hypercyclic if there exists a bounded,
countable, separated set E with dense
orbit. Recall that a set Ec H is
separated if there exists an £ >0 such
that ||x—v|=¢& for all x,y<E with
Rt

In [7], Feldman, Miller, and
Miller proved that the cohyponormal
operators (the adjoint of hyponormal
operators) are hypercyclic if and only
if a(l| )ND=¢ and
a(T [ )HMNC\D Y=g for every
hyperinvariant subspace AM of T,
Recently Feldman [8] showed that
there are countably hypercyclic
operators which are not hypercyclic.
Furthermore, Feldman showed that the
pure cohyponormal operators are
countably hypercyclic if and only if
a(T,)H)MNC\D)=¢ and
o(TYND =¢ for every hyperinvariant
subspace A of 7. In this paper we
give an example of a & —operator
which is not hypercyclic and prove that

the adjoint of @—operator is
hypercyclic  if  and only if
a(T |, )ND=¢ and
O'(T|M)ﬂ(('\ﬁ)i¢ for  every

hyperinvariant subspace A of 7. We
also give an example of a @ — operator
which is not countably hypercyclic and
prove that the adjoint of pure
@ —operator is countably hypercyclic if
and only if o(7'|,,)NN(C\D)=¢ and
a(IND=¢ for every hyperinvariant
subspace M of 7. Finally we prove

the adjoint of @ —operator has bounded
set with dense orbit if and only if for
every hyperinvariant subspace M of

T, o, )NC\D)z¢.

2. Preliminaries

An operator 7 € B(H) is said to have
single  valued
(SVEP)ar A, if
for every open set / < containing
A, the analytic  solution
f:U — H ofthe equation

extension  property

only

(T=2)f (=0 (A4el)

is the zero function [1]. An operator
is said to have SVEP if 7' has SVEP
atevery Ae( .

Given T eB(H), the local
resolvent set p.(x) of T at the point
xe H is defined as the union of all
open subsets {/ < (" for which there is
an analytic function f:U — H such
that
(I'-A)f(A)=x (Ael)

The local spectrum o, (x) of T" at x
is then defined as o, (x) =C\ p (1)

For T € B(H), we define the
local  ( resp. glocal ) spectral
subspaces of T as follows. Given a set
FcC (resp.aclosedset G ().
H,(F)={xeH g, (x)c F}

( resp.

H,(F)={xeH: there exists an
analytic function f:C\G — H such
that (I'-A)f(A)=x for all

AeC\G}).

Note that 7" has SVEP if and
only if A, (f)y=H,(F) for all closed
sets /< (', [1, Proposition (3.3.2)].
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If U< is an open set, then
define H (IHN=UIH,(F):FclU is
compact}. H,(U/) contains all
eigenvectors for 7' whose eigenvalues
belong to U/ and that H.(U) is a

hyperinvariant  subspace for T,
althought it is not necessarily closed,

8]
An operator 7 eB(H) has

Dunford's property (C) if the local
spectral subspace H,(F) is closed for
every closed set /' — (. An operator
TeB(H) is said to has Bishop's
property () if for every sequence
fooU—>H that
(I'-A)f.(41)—>0 uniformly on
compact subsets in [/, it follows that
£, — 0 uniformly on compact subsets

such

in I/ . It 1s well known [1] that
Bishop's property (£#) = Dunford's
property (C) = SVEP

Moreover, an operator
I"e B(H) has decomposition property
(8) if H=H,(U)+H,(I) for every
open cover {{/,}7} of (",

As shown in [1], an operator
T € B(H) has property (&) iff it is the
quotient of a decomposable operator.
Moreover properties (f) and (&) are
dual to each other, in the sense that an
operator "€ B(H) has property (f3)
iff its adjoint has property (&), and
conversely, 7' has property (0) iff its
adjoint has property (£).

Proposition 2.1. [1] Suppose that the
operator T €B(H) on the Hilbert
space H has SVEP, and that - C
is a closed set for which the space
H_(F) is closed. Then
o(r |u,:1~w) c FNo(x)

The following result from
Feldman, Miller and Miller [7], gives
the relation between parts of the

spectrum and the local spectra of an
operator with Dunford's property (C).

Proposition 2.2. |[7] If T € B(H) has
Dunford’s  property  (C),  then
o (x)=0(T |y, r) whenever
F =o.(x) for some nonzero x e H .

The following result from
Feldman, Miller and Miller [7], gives
sufficient condition for an operator to
be hypercyclic, we denote the interior
and exterior of the unit circle by
D,C\D respectively.

Corollary 2.3. [7] Let H be a complex
Hilbert  space and  suppose  ithat
T'eB(H) has the decomposition
property (8). If ., (x)ND=¢ and
o AX)N(CAD) =g for  everv
nonzero  xeH . Then T s
hvpercyclic.

The following result from
Feldman [8], gives sufficient condition
for an operator to be countable
hypercyclic.

Theorem 2.4. [8] (The Countably
Hypercyclic Criterion) Suppose that
T'eB(H). If there wo
subspaces ¥ and Z in H, where Y is
infinite dimensional and Z is dense in
H such that
1. T"x—0 forevery xe¥ , and
2. There exists Jfunctions
B .Z—H that
"B =1\, and Bx—0 for
every xe Z
Then T is countably hypereyclic.

exists

such

Theorem 2.5, [8] Suppose ihat
I'eB(H) If H.(D) is infinite
dimensional and H_(C\D) is dense,
then T is countably hypercuclic.
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Proposition 2.6. [8]
a If TeB(H) and there is a Definition 3.1. [11] An operator

hounded set F with Orb(T E)
dense, then sup || T" ||= .

b. If there is a set E that is
bounded away from zero and
Orb(T,E) is dense, then T
cannot he expensive, that is
there exists an x € H such that
| 2 [|<]| x ]I

In what follows, B(a,r) will denote
the open ball at a with radius r,
where for ac H and 7 > 0.

Remark 2.7.
a. Notice that

hypercuclic

if T
and
bounded separated sequence with
dense orbit, then one may assume
that x, =0 for all n, thus it

follows that £ is both bounded and
bounded away from zero, [8].

is countably
E={x} a

b. If an operator 7" has a set with
dense orbit, then any non-zero
multiple of that set also has dense
orbit. Thus 7 has a bounded set
with dense orbit if and only if the
unit ball has dense orbit if and only
if B(a,r) has dense orbit for any

r=>0,[8].

3. Hypercyclicity

It is well known that the
restriction of &—operator 7|, is a
@ —operator for every M e Lat(T),
if 7" is a & -operator
invertiable, then 7' is a @—operator,
[7]. Recall that an operator 7 € B(H)
is dominant if (IT-A)H c(I'-A)H
for all scalars A, Y. kato show that
every @ —operator is dominant, [10].

and and

Before  proving one of
important results in this paper, we need

the following.

194

I'e B(H) is said to have the property
(l) if for every A, ue o, (1) and
every bounded sequences of vectors x,
and y such that A=ux and
(T =A)x, =0, [(T-4)y, =0,
the sequence (x,.v,) converges to 0 as
n— o,

Theorem 3.2. [11] [f T has property
(1), then T also has property ().

It is well known that dominant
operator has Bishop's property (/) but
couldn't find the proof, so we prove it.

Theorem 3.3. Fvery  dominanit
operator has Bishop's property ().

(7y (A# ) and
bounded

Proof. Let A, ucao

ap

sequences {x },{v } of

vectors in A satisfy ||[(I'=A)x, |0,
I(T=A)y,||>0 (as #—0). Since T’

is dominant. then [[(7'—A)"y ||=0 as
n— o . Hence

(2= 1520} = (A =Ty (%, (T = 1Y 3,) > 0
as (n—0)

This implies that (x,,,y

n

)= 0. Then
7" has the property (/) Therefore T
has property (S) by Theorem (3.2).
u

Remark 3.4. Every @—operator has
Bishop's property (f3).

Now we give an example of
@ —operator which is not hypercyclic,
We begin with the following result.

Corollary 3.5. [12] [f T €B(H) and
I T|[<1, then T is not hypercyclic.
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Example 3.6. Let [/ be the unilateral
shift operator defined on ¢*(N).

U(x,x,,%, ) =(0,x,%,,%5,...)
One can  easily cheek  that
(WU + U (x,, %, x50 ) =

06, % 25, 5 4%, ,.0)
(U +U WU U X, Xy, %y, ) =
(0. %) +X5.% +X,...0)
Which implies [/ is a &—operator.
Since U is not hypercyclic by
Corollary (3.5). m]

Now we give our Theorem.
Theorem 3.7. If I is a 6—operator
on a separable Hilbert space H | then

T is hypercvclic if and only if

o, (ND=¢ and
o, (x)NN(C\D) = ¢ for every nonzero

xeH.

Proof. If 7 is a @—operator on H,
then 7 has property (£) by Remark
(3.4). Thus 7" has property (C), and so
T" has property (5). If the local
spectra o ()ND =g
O'T(x)ﬂ(('\ﬁ):t ¢ for every nonzero

xeH, then T
Corollary (2.3).

and

is hypercyclic by

Conversely, suppose that 7" is
hypercyclic. First we prove that every
part of the spectrum of 7 meets both

D and C\D, ie, o(T|,)ND=¢
and o(7 |, )N(C\D )= ¢.

Let §=7)|, for some
M e Lat(T)\{0}. If x is a hypercyclic
vector for 7", then by the definition of
hypercyclic vector
Orb(T",x)=4{x, T x, (" Vx,...} is
dence in H .

We claim the projection P, x is
hypercyclic for §" = P, T"|,. Since
M e Lar(T)\{0}, then by Corollary
of Theorem 2, [3. P.39],
P,TP, = TP,, .Consequently

195

P\IT*P.\I = P\IT*’ and
SQ(P,UX) = (P\[T? |,\f WL x) = P\JT*(PUX)
=(P, TP, Nx)y=P,T"(x)=P,(I"x)

New a little bit calculation
show that

OrKS", P, (x))=1{P (x),5 (B ) (S )V (P,x).... }

=[P (0,2 (T75%):8 (B, T %))

{P(x), BT (x), P (T (x),...}

=P A, Tx,(T")x,..}=P,

ie., the projection P x is
hypercyclic for §* =P, T"|,, . Since §
is a 6 — operator, then
KOS IS 1[I S s,
then S§" is not hypercyclic this is
impossible].
We prove o(S)N(C\D)=g.
r(S)=sup{| Al ilca(S)}>1,
means that o(S) contains a
complex number A such that |A|>1
C\D =12 Al>1}.
Consequently o(S)NW(C\D)=¢.
Now to show that
c($)ND=¢. If o(S)c(C\D). ie,
a(SYND=¢, then for all A in o(9)
is nonzero and hence 0 € p(S5), thus §

|

Since
this

and since

is an invertiable and therefore $~' is a
& — operator.
Since o(§) contains a complex

number A such that | A|>1, then by
[3, P.171], o(S™") contains a complex
number A' such that |A|<1. Thus
MSy=inf{| A A ea(S)i <1,

IS<1. But
§" hypercyclic and invertiable, which
implies that (S°)"' is hypercyclic and
thus || (S")'|l=1 by Corollary (3.5).

Consequently
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Notice that
STEIS™ =S |+ 1, this is a
contradiction  since Sttt

follows that a(S)ND=¢.

Since 7" is a & - operator, then
T has property (£) by Remark (3.4)
and hence 7' has property (C). Thus by
Proposition (2.2), o,(x)=c(T'|; )
F=0,(x)
nonzero x and as in the previous
paragraph, it follows that

whenever for  every

o (x)ND =g and
o (X)NV(C\D) = ¢

for every nonzero xeH.
m}

view of Proposition (2.2), an
equivalent way to state Theorem (3.1)
is as follows.

Theorem 3.8. [f T is a @—operator
on a separable Hilbert space H, then

T is hwpercvclic if and only if

a(T | )ND=¢ and

(T, )C\D )= ¢ Jor
hyperinvariant subspace M of 1.

every

4. Countably Hypercyclicity

It was shown in [6] that if 7" is
a @—operator, then for fixed scalar,
ker(7’—A) reduces I" and 7|, , 1S
normal. Recall that an operator
T'eB(H) is called pure if there is no
reducing subspace A such that 7|,
is normal.

Proposition 4.1. [If T s
@ —operator,  then T
eigenvalues.

Proof. If Aco (7)), then T'| ., ,, is
normal, it is a
definition  of

o, (T=¢.

a pure
has  no

contradiction to
pure. Therefore

196

Now we give an example of
& —operator which is not countably
hypercyclic.

Example 4.2. Let [/ be the unilateral
shift operator defined on ¢*(N)
Ulx,x,,x, )=(0,%,x,,x,,...)

U/ is a € —operator by Example (3.6).
since ||U]=1, then || U" ||<|U|I"=1
and hence sup || (/" ||< . Thus can not
exists a bounded set £  with
Orb(U/,E) dence by part (a) of
Proposition (2.6). Therefore [/ is not
countably hypercyclic. o

Lemma 4.3.

a. If T is a @-operator on a
Hilbert space H , then for any
open set UcC, we have
H_.(U)' = H (C\U).

b. If T is a pure @—operator for
which — H_.(D) is finite
dimensional,
H_(D)=1{0}.

then

Proof.

a. Since 7 is &—operator, then T
has property (f) by Remark (3.4),
and hence 7" has property (J).
Therefore by [1, Proposition
(2.5.14)]. for any open set {/ (7,

we have HT.(U)' =H, (C\U/).

H.(D) is a
nonzero and finite dimensional.
Since HT.(D) is finite dimensional

b.  Suppose that

subspace for 77, it
follows that 7" has eigenvectors
with eigenvalues in . Let A be
such an eigenvalue, then since

ker(I"-~A)c H,.(D), it follows
that ker(7" = A4) is finite
dimensional. Thus by [1, Lemma
(3.1.2)], (I'=4) has closed range.
by
Proposition (4.1), 7 — 1 is one to

invariant

Since 7 is pure, then
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one with closed hence

Aele(M)\o, (D).

ap

range,

However,
[o(I\o,,(T)] is an open set and
AeDN[e(M\a, (1], it
follows that Dﬂ[cr(]')\aw,(k")] is

a non-empty open set. Hence for
each pueDN[o(D)\o p(T)] we

ker(I™ - 1) # 10}
ker(I” — u) H_ (D). It follows

since

have and

that H_.(D) is infinite
dimensional, a  contradiction.
m]

Theorem 4.2, [If T is a pure

& —operator on a separable Hilbert
space H, then T' is cowntably
hvpercvelic if and only if for every
hyperinvariant subspace M of T,
O'(T|_U)ﬂ((_'\ﬁ)¢qﬁ and
a(MND =g

Proof. Suppose the spectral conditions
are satisfied. We want to apply
Theorem (2.5). So, suppose that
HT.([)) =1{0}. Since 7' is @—operator,
then by part (a) of Lemma (4.1),
H (D) =H (C\D), it follows that
H (C\D)=H . Thus by Proposition
2.1, o) =0T |y,cp)=(C\D) a
contradiction. So, H .(D)={0}, now
by part (b) of Lemma (4.1) H_.(D) is
infinite  dimensional. Now, suppose
that HT.(('\ﬁ) isnot densein H ,ie.,

H.(C\D)#H, then n_\D)=H.
Thus HT(T)) is a nonzero [ If
HT(E):O, then by part (a) of
(4.1),
HT.(("\ﬁ)' :HT(T)):O, and hence

H.(C\D)" =H.

Lemma

So

H_,_.(("\T)):H_ contradicting  our

197

assumption]. Therefore H, (D) is a
nonzero hyperinvariant subspace for

7. Furthermore o(T| 5 gﬁ

)
contradicting our assumption. Thus it
follows that H_.(C'\D) is dense. So,

by Theorem (2.5), 7" is countably
hypercyclic.

suppose I is
countably hypercyclic. Let £ be a
bounded set, that is bounded away
from zero, with dense orbit by part (a)
of Remark (2.7). Let A be an
invariant subspace for 7" and let P, be

Conversely,

the projection onto A . It is easy to
prove (7|,,)' P, =P, T and P,(E) is
bounded set.

Now

Orb((T |,,) By (E)

= P 0T 1) By NI 1) ) (B .

Py (=P (E)
xeB

= P 0.T ) P [y (T 1) Py ).

Be(VER,(E)
ref

= | JB @B THENT 1) (BT

Py (x)ePy (E)

= U‘:Pu

Py (¥ (E)
xeE

ELB AT DRI T W)}

= P, B T %), (B, T Y Yx), ..

Py (x P (E)
veE

=B, (T Vx,.. D =P,H) =M

xel

Therefore P, (F£) whose orbit
under (7'],,)" is dense in M . Thus, we
must have ||7'|,|=l],) =1 [ If
1T L, then [[((7])) <1,
n=0,12,... and hence
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sup | (T ],,))" |l< . This is

impossible by part (a) of Proposition
(2.6)].

Since T'is @ -operator, then
I'|,, is @—operator and hence 7’|, is
normoliad. Thus r(7'|,) =7 ]|,II>1.
Since
r(T,)=supf|Al:Aec(l|,)}>1,
then there is Aea(7|,) such that
|A|>1, also since C\D={A]A|>1}.

So (T, )N(C\D)=¢.

Now, if o(S$)ND=¢, ie,
o(S)c(C\D), then for all A4 in
o(T) is nonzero and hence 0€ p(7),
thus 7" is an invertiable and therefore
7" s 8 —operator. Since o(7)
contains a complex number A such
that | A |> 1, then by [3, P.171], o(T")
contains a complex number A" such
that [A=1. Thus

I Yy=inf{| A A ec(I} <1

Consequently @Y =T =1,
hence || 7'x |z x| for all xeH,
contradicting part (b) of Proposition
(2.6) i

Proposition 43. [f T is «a
@ —operator,then T has a bounded
set with dense orbit if and only if for

every hyperinvariant subspace M of

T, o(T,)NC\D )= p.

Proof. Suppose that every
hyperinvariant subspace A of T,

0(T|“)m((‘\ﬁ)i¢, we want to
show HT.(('\ﬁ) is dense in H. So,
suppose that HI.(("\B) is not dense
in H, ie, H{,.((‘\l_));tH, then
HT.((’\E):tH and hence Hr(ﬁ) is
a nonzero hyperinvariant subspace for

198

7. Furthermore =D

contradicting our assumption. Thus
H_(C\D) is dense in H . It follows
that if Z=H_.(C\D),
condition(2) of the  Countably
Hypercyclic Criterion is satisfied , see
|7, Theorem 3.2]. However, condition
(2) of the Countably Hypercyclic
Criterion easily implies that the unit
ball has dense orbit, then by part (b)
of Remark (2.7) has a bounded set
with dense orbit. The converse is
similar to the proof of Theorem (4.2)
o

o(T

H,l[)\)

then
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(T, )N(C\D) = ¢
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