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Abstract: 
In this paper, we study the growth of solutions of the second order linear complex differential 

equations 𝑓′′ + 𝐴(𝑧)𝑓′ + 𝐵(𝑧)𝑓 = 0 insuring that any nontrivial solutions are of infinite order. It is assumed 

that the coefficients satisfy the extremal condition for Yang’s inequality and the extremal condition for 

Denjoy’s conjecture. The other condition is that one of the coefficients itself is a solution of the differential 

equation 𝑓′′ + 𝑃(𝑧)𝑓 = 0. 
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Introduction: 
     Since Wittich’s work in (1), the solution’s 

growth of linear complex differential equations 

became one of the interesting topics in complex 

analysis. The Nevanlinna theory of meromorphic 

functions is used to study this topic. The reader 

must have a background on the basic results and 

standard notations in Nevanlinna theory, for more 

details we refer the reader to see, for example, (2). 

The order of growth is used to measure the growth 

of entire functions. 

In this paper, we consider the second order 

linear complex differential equation (2ndLCDE) 

𝑓 ′′ + 𝐴(𝑧)𝑓 ′ + 𝐵(𝑧)𝑓 = 0                     (1) 

where 𝐴(𝑧)and 𝐵(𝑧) ≠ 0 are entire functions. It is 

well known that all solutions of Eq. (1) are entire 

functions provided that𝐴(𝑧) and𝐵(𝑧) are entire 

functions, and if at least one of the coefficients is 

transcendental and 𝑓1, 𝑓2 are two linearly 

independent solutions of  Eq. (1), then at least one 

of 𝑓1, 𝑓2 is of infinite order. Hence, most solutions 

of Eq. (1) have infinite order. Besides, there are 

equations of the form Eq. (1) that has a nontrivial 

solution of finite order; for example, 𝑓(𝑧) = 𝑒𝑧 is a 

solution of 𝑓 ′′ + 𝑒 −𝑧𝑓 ′ − (𝑒 −𝑧 + 1)𝑓 = 0. 

We shall study the growth of solutions of 

Eq. (1) when its coefficients satisfy extremal and 

conjecture  conditions and the coefficient 𝐴(𝑧) itself 

is a solution of the following differential equation 

𝑓′′ + 𝑃(𝑧)𝑓 = 0                                   (2) 
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where 𝑃(𝑧) = 𝑎𝑛𝑧𝑛 + ⋯ + 𝑎0, 𝑎𝑛 ≠ 0 is a 

polynomial. 

 

Materials: 
     In what follows, we introduce some basic 

concepts in Nevanlinna theory of meromorphic 

functions. For an entire function 𝑓, the order of 

growth and lower order of growth are defined by (3) 

𝜌(𝑓) = lim
𝑟→∞

sup
𝑙𝑜𝑔+𝑙𝑜𝑔+𝑀(𝑟, 𝑓)

𝑙𝑜𝑔𝑟
 

 

and 

𝜇(𝑓) = lim
𝑟→∞

inf
𝑙𝑜𝑔+𝑙𝑜𝑔+𝑀(𝑟, 𝑓)

𝑙𝑜𝑔𝑟
 

respectively, where 𝑀(𝑟, 𝑓) = max|𝑧|=𝑟 |𝑓(𝑧)|  and 

𝑙𝑜𝑔+𝛼 ∶= max {0, 𝑙𝑜𝑔𝛼} for 𝛼 ≥ 0. 

The next concept due to Yang depends on the 

following result: 

 

Theorem 1 (4) Assume that 𝑓 is entire function of 

lower finite order. Let 𝑞 be the number of Borel 

directions with order ≥ 𝜇 and 𝑝 be the number of 

finite deficient values of 𝑓, then  𝑝 ≤ 𝑞/2.  

 

Definition 2 (4) The entire function 𝑓 is extremal 

for Yang’s inequality if the assumptions of 

Theorem 1 is satisfied with 𝑝 = 𝑞 2⁄ .  

 

Definition 3 (5, 6) Let 𝐸 ⊆ [0, ∞). We define the 

Lebesgue linear measure of 𝐸 by 

𝑚(𝐸)  = ∫ 𝑑𝑡

𝐸
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Definition 4 (7) Let 𝐸 ⊆ [1, ∞). We define The 

logarithmic measure of 𝐸 by  

𝑚𝑙  (𝐸) = ∫
𝑑𝑡

𝑡
𝐸

 

We define the upper and lower logarithmic densities 

of 𝐸 by 

 

𝑙𝑜𝑔𝑑𝑒𝑛𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝐸 = lim
𝑟→∞

sup
𝑚𝑙  (𝐸⋂[1, 𝑟])

𝑙𝑜𝑔𝑟
 

and  

𝑙𝑜𝑔𝑑𝑒𝑛𝑠𝐸 = lim
𝑟→∞

inf
𝑚𝑙  (𝐸⋂[1, 𝑟])

𝑙𝑜𝑔𝑟
 

respectively. 𝐸 has logarithmic density if 

𝑙𝑜𝑔𝑑𝑒𝑛𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝐸 = 𝑙𝑜𝑔𝑑𝑒𝑛𝑠𝐸. 

 

Now we recall a conjecture due to Denjoy. 

 

Definition 5 (8) (Denjoy’s Conjecture) Let 𝑓 be an 

entire function of finite order 𝜌. If 𝑓 has𝑘 distinct 

finite asymptotic values, then 𝑘 ≤ 2𝜌. 

We say that an entire function 𝑓 is an extremal 

function for Denjoy’s conjecture if it has a finite 

order 𝜌 and has 𝑘 = 2𝜌 distinct finite asymptotic 

values.  

 

Definition 6 (9) Let 𝑓(𝑧) = ∑ 𝑎𝑛𝑧𝜆𝑛∞
𝑛=1  be an 

entire function. 𝑓 is said to has Fejer gaps if 

∑
1

𝜆𝑛

∞

𝑛=1

< ∞                         (3) 

and 𝑓 has Fabry gaps if the gap condition (3) is 

replaced with 
𝜆𝑛

𝑛
→ ∞, 𝑎𝑠 𝑛 → ∞                           (4) 

 

Remark: The Fabry condition (4) is a weaker than 

Fejer condition (3), and the entire function which 

has Fabry gaps has positive order, see (9 p. 651). 

 

Definition 7 (5) Let 0 < 𝛼 < 𝛽 < 2𝜋, we put 

𝑆(𝛼, 𝛽) = {𝑧|𝛼 < 𝑎𝑟𝑔 (𝑧) < 𝛽}, 
𝑆(𝛼, 𝛽, 𝑟) = {𝑧|𝛼 < 𝑎𝑟𝑔 (𝑧) < 𝛽, |𝑧| < 𝑟} 

and let 𝑆̅(𝛼, 𝛽) be the closure of 𝑆(𝛼, 𝛽). Let 𝐴 be 

an entire function with (0 < 𝜌(𝐴) < ∞). Set 𝜌 =
𝜌(𝐴)and𝑆 = 𝑆(𝛼, 𝛽). 𝐴 is said to be blows up 

exponentially in 𝑆 if for any 𝜃 ∈ (𝛼, 𝛽) the equation 

lim
𝑟→∞

𝑙𝑜𝑔𝑙𝑜𝑔 |𝐴(𝑟𝑒𝑖𝜃)|

𝑙𝑜𝑔𝑟
= 𝜌 

holds. Also 𝐴 is said to be decays to zero 

exponentially in 𝑆 if for any 𝜃 ∈ (𝛼, 𝛽) the equation 

lim
𝑟→∞

𝑙𝑜𝑔𝑙𝑜𝑔 |𝐴(𝑟𝑒𝑖𝜃)|
−1

𝑙𝑜𝑔𝑟
= 𝜌 

holds. 

Before we give the next definition, we 

introduce the following result: 

 

Lemma 8 (10) Let 𝑓 be an entire function with 

(0 < 𝜌(𝑓) < ∞). Then an angular domain 𝑆(𝛼, 𝛽) 

exists with 𝛽 − 𝛼 ≥ 𝜋/𝜌(𝑓), where 𝛼 and 𝛽 are 

constants, such that 

lim
𝑟→∞

𝑙𝑜𝑔𝑙𝑜𝑔|𝑓(𝑟𝑒𝑖𝜃)|

𝑙𝑜𝑔𝑟
= 𝜌(𝑓)                   (5) 

for all 𝜃 ∈ (𝛼, 𝛽). 

 

Definition 9 (11) A half straight line 𝐿𝜃 ∶ 𝑎𝑟𝑔𝑧 =
𝜃 from the origin is called a radial line of order 

𝜌(𝑓) of  𝑓 if 𝑓 satisfies (5), and an angular domain 

𝑆(𝛼, 𝛽) is called the radial angular domain of order 

𝜌(𝑓) of 𝑓 if for every 𝜃 ∈ (𝛼, 𝛽), 𝐿𝜃 is a radial line 

of order 𝜌(𝑓) of 𝑓 . 

 

The following result is obtained by Gundersen: 

 

Theorem 10(12) Assume that𝐴(𝑧) and 𝐵(𝑧) are 

entire functions satisfying one of the following 

conditions: 

i) 𝐴(𝑧) < 𝜌(𝐵); 

ii) 𝐴(𝑧) is a polynomial and 𝐵(𝑧) is a 

transcendental entire function; 

Then every nontrivial solution of Eq. (1) has infinite 

order. 

 

The authors in (13) proved the following results: 

 

Theorem 11 (13) Assume that𝐴(𝑧)is an entire 

function with finite order and with finite deficient 

value, 𝐵(𝑧) is a transcendental entire function with 

𝜇(𝐵) < 1/2 .Then any solution 𝑓 ≠ 0 of Eq.1 has 

infinite order. 

 

Long, J. R. and  Qiu, K.E. (14) proved the following 

result concerning both Eq. 1 and Eq. 2: 

  

Theorem 12 (14) Suppose that 𝐴(𝑧) is a nontrivial 

solution of Eq. (2), and 𝐵(𝑧) is a transcendental 

entire function with 𝜇(𝐵) < 1/2 and 𝜌(𝐴) ≠ 𝜌(𝐵). 

Then any solution 𝑓 ≠ 0 of Eq. (1) has 𝜌(𝑓) = ∞. 

 

J. Long in (15) proved the following result under 

the assumption that one of the coefficients of Eq.1 

satisfy the extremal condition: 

 

Theorem 13 (15) Suppose that𝐴(𝑧)is an entire 

function extremal for Yang’s inequality, and 𝐵(𝑧) 

is an entire function with Fabry gaps. Then every 

nontrivial solution of Eq. (1) has infinite order. 
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Methods of Work: 

     In this section, we shall survey some results that 

we will be used to prove our results. 

 

Lemma 14 (16, 17) Let (𝑓, 𝛤) be a pair contains a 

finite order transcendental meromorphic function 𝑓 

and 

𝛤 = {(𝑘1, 𝑗1), (𝑘2, 𝑗2), … , (𝑘𝑞 , 𝑗𝑞)} 

denote a set of distinct integers order pairs 

satisfying 𝑘𝑖 > 𝑗𝑖 ≥ 0,𝑖 =  1,2, . . . , 𝑞. Let 휀 > 0 be 

a constant. Then the following hold: 

i) There is 𝐸1 ⊂ [0, 2𝜋) with zero linear measure, 

such that, when 𝜓0 ∈  [0, 2𝜋)\E1, then a real  

constant 𝑅0 = 𝑅0(𝜓0) > 1 exists such that, for 𝑧 

with 𝑎𝑟𝑔 𝑧 = 𝜓0  |𝑧| ≥ 𝑅0 , and for each (𝑘, 𝑗) ∈
𝛤, we have 

|
𝑓(𝑘)(𝑧)

𝑓(𝑗)(𝑧)
| ≤ |𝑧|(𝑘−𝑗)(𝜌−1+𝜀)               (6) 

ii) There is 𝐸2 ⊆ (1, ∞) with  𝑚𝑙(𝐸2) < ∞, such 

that, for each 𝑧 with|𝑧| ∉ 𝐸2 ∪ [0, 1] and, for each 

(𝑘, 𝑗) ∈ 𝛤, we have (6). 

 iii) There is 𝐸3 ⊂ [0, ∞) with linear measure is 

finite, such that  

|
𝑓(𝑘)(𝑧)

𝑓(𝑗)(𝑧)
| ≤ |𝑧|(𝑘−𝑗)(𝜌+𝜖)                      (7) 

for each 𝑧 with |𝑧| ∉ 𝐸3 and (𝑘, 𝑗) ∈ 𝛤. 

 

Lemma 15 (15) Suppose that 𝑓(𝑧) = ∑ 𝑎𝑛𝑧𝜆𝑛∞
𝑛=0  

is a finite order entire function with Fabry gaps, and 

𝑔 is an entire function with (0 < 𝜌(𝑔) < ∞). Then, 

for any given 휀 ∈ (0, 𝜍), where 𝜍 = 𝑚𝑖𝑛 {1, 𝜌(𝑔)}, 

there is a set 𝐹 ⊆ (1, ∞) with 𝑙𝑜𝑔𝑑𝑒𝑛𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝐹) ≥ 𝜂, 

where 𝜂 ∈ (0,1) is a constant, such that for any 𝑧 

with |𝑧| = 𝑟 ∈ 𝐹, 

𝑙𝑜𝑔𝐿(𝑟, 𝑓 )  >  (1 − 휀)𝑙𝑜𝑔𝑀(𝑟; 𝑓);     𝑙𝑜𝑔𝑀(𝑟, 𝑔)

> 𝑟𝜌(𝑔)−𝜀 

where𝑙𝑜𝑔𝐿(𝑟, 𝑓 ) = min|𝑧|=𝑟|𝑓(𝑧)|, 𝑙𝑜𝑔𝑀(𝑟, 𝑓 ) =

max|𝑧|=𝑟|𝑓(𝑧)|. 
 

Lemma 16 (18) Suppose that 𝐴 is an entire function 

extremal for Yang’s inequality. Assume that there is  

𝑎𝑟𝑔𝑧 = 𝜃 with 𝜃𝑗 < 𝜃 < 𝜃𝑗+1, 1 ≤ 𝑗 ≤ 𝑞, such 

that 

lim
𝑟→∞

𝑠𝑢𝑝
𝑙𝑜𝑔𝑙𝑜𝑔|𝐴(𝑟𝑒𝑖𝜃)|

𝑙𝑜𝑔𝑟
= 𝜌(𝐴) 

where argz = 𝜃𝑗 (𝑗 = 1, 2, . . . , 𝑞) are Borel 

directions of 𝐴. Then 𝜃𝑗+1 − 𝜃𝑗 =
𝜋

𝜌(𝐴)
 . 

 

Lemma 17 (8) Suppose that 𝑓 be an extremal 

function for Denjoy’s conjecture. Then, for any 

𝜃 ∈ [0,2𝜋), either ∆(𝜃) is a Borel direction of 𝑓, or 

there is a constant 𝜎 ∈ (0, 𝜋/4  ), satisfying 

lim
|𝑧|→∞

𝑧∈(𝑆(𝜃−𝜎,𝜃+𝜎)−𝐸)

𝑠𝑢𝑝
𝑙𝑜𝑔𝑙𝑜𝑔|𝑓(𝑧)|

𝑙𝑜𝑔|𝑧|
= 𝜌(𝑓), 

where 𝐸 ⊆ 𝑆(𝜃 − 𝜎, 𝜃 + 𝜎), and satisfies 

lim
𝑟→∞

𝑚( 𝑆(𝜃 − 𝜎, 𝜃 + 𝜎; 𝑟, ∞) ∩ 𝐸) = 0 

 

Lemma 18 (10) Suppose that 𝑓 is an entire function 

with (0 < 𝜌(𝑓) < ∞). Then an angular 

domain𝑆(𝛼, 𝛽) exists with 𝛽 − 𝛼 ≥ 𝜋 𝜌(𝑓)⁄ , where 

𝛼 and 𝛽 are constants, such that 

lim
𝑟→∞

𝑙𝑜𝑔𝑙𝑜𝑔|𝑓(𝑟𝑒𝑖𝜃)|

𝑙𝑜𝑔𝑟
= 𝜌(𝑓)                 (8) 

for all 𝜃 ∈ (𝛼, 𝛽). 

 

Lemma 19 (3) Let 𝑓 ≠ 0 be a solution of Eq. 2. 

Put𝜃𝑗 =
2𝑗𝜋−arg (𝑎𝑛)

𝑛+2
and𝑆𝑗 =  𝑆(𝜃𝑗, 𝜃𝑗+1),𝑗 =

 0, 1, 2, … , 𝑛 +  1 and 𝜃𝑛+1 = 𝜃0 + 2𝜋. Then 𝑓 

satisfies the following properties: 

1) In each sector 𝑆𝑗 , 𝑓 either blows up or decays to 

zero exponentially. 

2) If 𝑓 decays to zero in 𝑆𝑗 for some 𝑗, then it should 

blow up in 𝑆𝑗−1 and 𝑆𝑗+1. However, it is probable 

for 𝑓 to blow up in many adjacent sectors. 

3) If 𝑓 decays to zero in 𝑆𝑗 , then 𝑓 has at most 

finitely many zeros in any closed sub-sector within  

𝑆𝑗−1⋃𝑆�̅�⋃𝑆𝑗+1. 

4) If 𝑓 blows up in 𝑆𝑗−1 and 𝑆𝑗 , then for each 휀 >

0, in each sector 𝑆̅(𝜃𝑗 − 휀, 𝜃𝑗 + 휀), 𝑓 has infinitely 

many zeros, furthermore, as 𝑟 ⟶ ∞, 

𝑛(𝑆̅(𝜃𝑗 − 휀, 𝜃𝑗 + 휀, 𝑟), 0, 𝑓)

= (1 + 𝑜(1))
2√|𝑎𝑛|

𝜋(𝑛 + 1)
𝑟

𝑛+2
2  

where 𝑛(𝑆̅(𝜃𝑗 − 휀, 𝜃𝑗 + 휀, 𝑟), 0, 𝑓) is the number of 

zeros of 𝑓 in 𝑆̅(𝜃𝑗 − 휀, 𝜃𝑗 + 휀, 𝑟). 

 

Lemma 20 (5) Suppose that 𝑓 is an entire function 

with (1/2 ≤ 𝜇(𝐵) < ∞). Then a sector 𝑆(𝛼, 𝛽) =
{𝑧: 𝛼 < 𝑎𝑟𝑔𝑧 < 𝛽} exists with 𝛽 − 𝛼 ≥ 𝜋/𝜇(𝐵), 

such that 

lim
𝑟→∞

𝑠𝑢𝑝
𝑙𝑜𝑔𝑙𝑜𝑔|𝑓(𝑟𝑒𝑖𝜃)|

𝑙𝑜𝑔𝑟
≥ 𝜇(𝑓) 

holds for each rays 𝑎𝑟𝑔 𝑧 = 𝜃 ∈ (𝛼, 𝛽), where 

0 ≤ 𝛼 < 𝛽 ≤ 2𝜋. 

 

Lemma 21(18) Suppose that 𝑓 is analytic function 

in 𝐷 = 𝑆(𝛼, 𝛽)⋂{𝑧: |𝑧| > 𝑟0} and continuous in  

�̅� and 𝛼, 𝛽, 𝑟0 are constants with0 < 𝛽 − 𝛼 ≤
2𝜋and 𝑟0 > 0. Assume that there is a constant 

𝑀 > 0 such that  |𝑓(𝑧)| ≤ 𝑀 for 𝑧 ∈ 𝜕𝐷. If 

lim
𝑟→∞

𝑖𝑛𝑓
𝑙𝑜𝑔𝑙𝑜𝑔𝑀(𝑟, 𝐷, 𝑓)

𝑙𝑜𝑔𝑟
<

𝜋

𝛽 − 𝛼
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where𝑀(𝑟, 𝐷, 𝑓) = max|𝑧|=𝑟
𝑧∈𝐷

|𝑓(𝑧)|, then|𝑓(𝑧)| ≤

𝑀 for all 𝑧 ∈ 𝐷. 

 

Lemma 22 (12) Suppose that 𝐴(𝑧) and 𝐵(𝑧) are 

two entire functions such that for real constants 

𝛼, 𝛽, 𝜃1, 𝜃2, where 𝛼 > 0, 𝛽 > 0 and  𝜃1 < 𝜃2, we 

have 

|𝐴(𝑧)| ≥ exp {(1 + 𝑜(1))𝛼 |𝑧|𝛽} 

and  

|𝐵(𝑧)| ≤ exp{𝑜(1)|𝑧|𝛽} 

as 𝑧 ⟶ ∞ in 𝑆̅(𝜃1, 𝜃2) = {𝑧: 𝜃1 ≤ 𝑎𝑟𝑔𝑧 ≤ 𝜃2}. Let 

휀 > 0 be a given small constant and let 𝑆̅(𝜃1 +
휀, 𝜃2 − 휀) = {𝑧: 𝜃1 + 휀 ≤ 𝑎𝑟𝑔𝑧 ≤ 𝜃2 − 휀}. If 𝑓 ≠ 0 

is finite order solution of Eq. (1), then the following 

conclusions  hold:  

1) There is a constant 𝑏(≠ 0) such that 𝑓(𝑧) → 𝑏 as 

𝑧 → ∞  in 𝑆̅(𝜃1 + 휀, 𝜃2 − 휀). Furthermore, 

|𝑓(𝑧) − 𝑏| ≤ exp {−(1 + 𝑜(1))𝛼 |𝑧|𝛽} 

as 𝑧 ⟶ ∞ in 𝑆̅(𝜃1 + 휀, 𝜃2 − 휀). 

2) For each integer 𝑘 > 1, 

|𝑓(𝑘)(𝑧)| ≤ exp {−(1 + 𝑜(1))𝛼 |𝑧|𝛽} 

as 𝑧 ⟶ ∞ in 𝑆̅(𝜃1 + 휀, 𝜃2 − 휀). 

 

Lemma 23 (19) Let (𝑓 , 𝛤) denote a pair that 

consists of a transcendental meromorphic function 

𝑓(𝑧) and a set 

Γ = {(𝑘1, 𝑗1), (𝑘2, 𝑗2), … , (𝑘𝑞 , 𝑗𝑞)} 

of distinct pairs of integers satisfying 𝑘𝑖 > 𝑗𝑖 ≥ 0 

for 𝑖 =  1,2, . . . , 𝑞. Let 𝛼 > 0 and 휀 > 0 be given 

real constants. Then the following hold. 

i) There is a set 𝐸1 ⊂ [0, 2𝜋) that has linear 

measure zero, and there is a constant 𝑐 > 0 that 

depends only on 𝛼 and 𝛤 such that if 𝜑0 ∈
 [0, 2𝜋)\E1, then a constant 𝑅0 = 𝑅0(𝜑0) > 1 

exists such that for all 𝑧 with 𝑎𝑟𝑔 𝑧 = 𝜑0 and 

|𝑧| = 𝑟 ≥ 𝑅0, and for all (𝑘, 𝑗) ∈ 𝛤, we have 

|
𝑓(𝑘)(𝑧)

𝑓(𝑗)(𝑧)
|

≤ 𝑐 (
𝑇(𝛼𝑟, 𝑓)

𝑟
 𝑙𝑜𝑔𝛼𝑟 log 𝑇(𝛼𝑟, 𝑓))

𝑘−𝑗

   (9) 

In particular, if 𝑓 has a finite order 𝜌(𝑓 ) < ∞, then 

(9) is replaced with: 

|
𝑓(𝑘)(𝑧)

𝑓(𝑗)(𝑧)
| ≤ 𝑐|𝑧|(𝑘−𝑗)(𝜌(𝑓)−1+𝜖)                 (10) 

ii) There is a set 𝐸2 ⊂ [1, ∞) that has finite 

logarithmic measure, and there is a constant 𝑐 > 0 

that depends only on 𝛼 and 𝛤 such that for all 𝑧 

with |𝑧| = 𝑟 ∉ 𝐸2 ∪ [0, 1]and for all (𝑘, 𝑗) ∈ 𝛤, the 

inequality (9) holds. In particular, if 𝜌(𝑓 ) < ∞, 

then the inequality (10) holds. 

iii) There is a set 𝐸3 ⊂ [0, ∞) that has finite linear 

measure, and there exists a constant 𝑐 > 0 that 

depends only on 𝛼 and 𝛤 such that for all 𝑧 with 

|𝑧| = 𝑟 ∉ 𝐸3 and for all (𝑘, 𝑗) ∈ 𝛤, we have 

|
𝑓(𝑘)(𝑧)

𝑓(𝑗)(𝑧)
| ≤ 𝑐(𝑇(𝛼𝑟, 𝑓)𝑟𝜀  𝑙𝑜𝑔 𝑇(𝛼𝑟, 𝑓))𝑘−𝑗     (11) 

In particular, if  𝜌(𝑓 ) < ∞, then (11) is replaced 

with  

|
𝑓(𝑘)(𝑧)

𝑓(𝑗)(𝑧)
| ≤ 𝑐|𝑧|(𝑘−𝑗)(𝜌(𝑓)+𝜖)                 (12) 

 

Results and Discussion: 
In what follows, we generalize Theorem 13 

in which the condition on 𝐵(𝑧)is replaced with the 

condition that𝐵(𝑧)is an extremal function for 

Denjoy’s conjecture: 

 

Theorem 24 Let 𝐴(𝑧) be an entire function 

extremal for Yang’s inequality, and let 𝐵(𝑧) be an 

extremal function for Denjoy’s conjecture. Then 

every nontrivial solution of Eq. (1) is of infinite 

order. 

 

Proof: Suppose that there exists a nontrivial 

solution 𝑓 of Eq. (1) with𝜌(𝑓) < ∞, we hope 

getting a contradiction. Because 𝐵(𝑧) is entire 

function, then by Lemma 15, for any given 휀 ∈
(0, 𝜌(𝐵)/4), there is a set 𝐸1 ⊆ (1, ∞) with 

𝑙𝑜𝑔𝑑𝑒𝑛𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝐸1) > 0, such that for all 𝑧 with 𝑧 = 𝑟 ∈
𝐸1, the following 

|𝐵(𝑧)| > exp (𝑟𝜌(𝐵)−𝜀)                       (13) 

hold. By Lemma 14 (ii), there is a set 𝐸2 ⊆ (1, ∞) 

with 𝑚𝑙(𝐸2) < ∞, such that for all 𝑧 satisfying 

|𝑧| ∉ 𝐸2 ∪ [0, 1], the following  

|
𝑓(𝑘)(𝑧)

𝑓(𝑧)
| ≤ |𝑧|2𝜌(𝑓), 𝑘 = 1,2          (14) 

hold. 

Let 𝑎𝑖 < ∞, 1 ≤ 𝑖 ≤ 𝑝 be all the deficient 

values of 𝐴(𝑧). Thus we have 2𝑝 sectors 𝑆𝑗 =

{𝑧 ∶  𝜃𝑗 < 𝑎𝑟𝑔𝑧 < 𝜃𝑗+1},   𝑗 = 1,2, … ,2𝑝 such that 

𝐴(𝑧) has the following property: in each sector 𝑆𝑗, 

either there is some 𝑎𝑖 such that  

𝑙𝑜𝑔
1

|𝐴(𝑧) − 𝑎𝑖|

> 𝐶 (𝜃𝑗, 𝜃𝑗+1, 휀, 𝛿(𝑎𝑖, 𝐴)) 𝑇(|𝑧|, 𝐴)         (15) 

holds for 𝑧 ∈ 𝑆(𝜃𝑗 + 𝜖, 𝜃𝑗+1 − 휀; 𝑟, ∞), 

where𝐶 (𝜃𝑗, 𝜃𝑗+1, 휀, 𝛿(𝑎𝑖, 𝐴)) = 𝐶is a positive 

constant, or there  is 𝜃𝑗 < 𝑎𝑟𝑔𝑧 < 𝜃𝑗+1 such that  

lim
𝑟→∞

𝑠𝑢𝑝
𝑙𝑜𝑔𝑙𝑜𝑔|𝐴(𝑟𝑒𝑖𝜃)|

𝑙𝑜𝑔𝑟
= 𝜌(𝐴)          (16) 

hold. 

Observe that if there exists some 𝑎𝑖 such 

that (15) holds in 𝑆𝑗, then there exists 𝑎𝑟𝑔𝑧 = 𝜃 

such that (16) holds in 𝑆𝑗−1 and 𝑆𝑗+1. If there exists 
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𝜃 ∈ (𝜃𝑗, 𝜃𝑗+1) such that (16) holds, then there are 

𝑎𝑖  (𝑎𝑖′) such that (15) holds in 𝑆𝑗−1 and 𝑆𝑗+1, 

respectively. 

We do not loss the generality if we assume 

that there is a ray 𝑎𝑟𝑔𝑧 = 𝜃 in 𝑆1 such that (16) 

holds. Therefore, there exists a ray in each sector 

𝑆3, 𝑆5, … , 𝑆2𝑝−1, such that (16) holds. By using 

Lemma 16, all the sectors have the same magnitude 

𝜋/𝜌(𝐴) . Thus there exists a sequence 𝑧𝑛 =
𝑟𝑛𝑒𝑖𝜃with 𝑟𝑛 → ∞ as 𝑛 → ∞, and finite deficient 

value 𝑎𝑗0
, where 𝑟𝑛 ∈ 𝐸1 − (𝐸2 ∪ [0, 1])and 

𝜃 ∈ (𝜃𝑗, 𝜃𝑗+1 ), 𝑗 = 2,4, … ,2𝑝 such that 

|𝐴(𝑟𝑛𝑒𝑖𝜃) − 𝑎𝑗0
| < exp(−𝐶𝑇(𝑟𝑛, 𝐴))        (17) 

|𝐵(𝑟𝑛𝑒𝑖𝜃)| > exp(𝑟𝑛
𝜌(𝐵)−𝜀)                      (18) 

and  

|
𝑓(𝑘)(𝑟𝑛𝑒𝑖𝜃)

𝑓(𝑟𝑛𝑒𝑖𝜃)
| ≤ 𝑟𝑛

2𝜌(𝑓), 𝑘 = 1,2            (19) 

hold. 

Next, according to Lemma 17, we consider two 

cases. We consider one of the sectors 𝑆𝑗, 1 ≤ 𝑗 ≤

2𝑝, say  𝑆1 = 𝑆(𝜃1, 𝜃2). This implies  

𝑙𝑜𝑔
1

|𝐴(𝑟𝑛𝑒𝑖𝜃) − 𝑎𝑗0
|

> 𝐶𝑇(𝑟𝑛, 𝐴)             (20) 

holds for all 𝑧 = 𝑟𝑛𝑒𝑖𝜃 ∈ 𝑆1and sufficiently large 𝑛: 

 

Case 1 Suppose that the ray 𝑎𝑟𝑔 𝑧 = 𝜃 is not Borel 

direction of 𝐵(𝑧), where 𝜃1 < 𝜃 < 𝜃2. By Lemma 

17, there exist a constant 𝜎 ∈ (0, 𝜋/8  ) such that 

lim
|𝑧|→∞

𝑧∈(𝑆(𝜃−𝜎,𝜃+𝜎)−𝐸3)

𝑠𝑢𝑝
𝑙𝑜𝑔𝑙𝑜𝑔|𝐵(𝑧)|

𝑙𝑜𝑔|𝑧|
= 𝜌(𝐵), 

where 𝐸3 ⊆ 𝑆(𝜃 − 𝜎, 𝜃 + 𝜎) satisfying 

lim
𝑟→∞

𝑚( 𝑆(𝜃 − 𝜎, 𝜃 + 𝜎; 𝑟, ∞) ∩ 𝐸3) = 0 

Let𝐴 = {𝑧: 𝑎𝑟𝑔𝑧 = 𝜓 ∈ 𝐸2}. Then there exists a 

sequence 𝑧𝑛 → ∞ as 𝑛 → ∞,{𝑧𝑛} ⊆ (𝑆(𝜃 − 𝜎, 𝜃 +
𝜎) − 𝐸3) ∩ (𝑆1 − ∆) such that  

lim
𝑛→∞

𝑙𝑜𝑔𝑙𝑜𝑔|𝐵(𝑧𝑛)|

𝑙𝑜𝑔|𝑧𝑛|
= 𝜌(𝐵),                     (21) 

Combining (18), (19), (20), (21) and Eq. (1) we get  

exp(𝑟𝑛
𝜌(𝐵)−𝜀) < |𝐵(𝑟𝑛𝑒𝑖𝜃)|

≤ |
𝑓′′(𝑟𝑛𝑒𝑖𝜃)

𝑓(𝑟𝑛𝑒𝑖𝜃)
|

+ |𝐴(𝑟𝑛𝑒𝑖𝜃)| |
𝑓′(𝑟𝑛𝑒𝑖𝜃)

𝑓(𝑟𝑛𝑒𝑖𝜃)
|

≤ 𝑟𝑛
2𝜌(𝑓)(1 + |𝐴(𝑟𝑛𝑒𝑖𝜃)|)

≤ 𝑟𝑛
2𝜌(𝑓)(1 + |𝑎𝑗0

|

+ exp (−𝐶𝑇(𝑟𝑛, 𝐴))) 

holds for all sufficiently large 𝑛. This is a 

contradiction. 

 

Case 2 Suppose that the ray𝑎𝑟𝑔𝑧 = 𝜃is Borel 

direction of 𝐵(𝑧), where 𝜃1 < 𝜃 < 𝜃2. By using 

Lemma 18, there exists an angular domain 𝑆(𝜃1, 𝜃2) 

with 𝛽 − 𝛼 ≥ 𝜋/𝜌(𝐵), such that 

lim
𝑟→∞

𝑠𝑢𝑝
𝑙𝑜𝑔𝑙𝑜𝑔|𝐵(𝑟𝑒𝑖𝜑)|

𝑙𝑜𝑔𝑟
= 𝜌(𝐵)         (22) 

for any 𝜃1 < 𝜑 < 𝜃2 where 0 ≤ 𝜃1 < 𝜃2 ≤ 2𝜋. 

Let 𝑆 be the radial angular domain of 

order𝜌(𝐵)of𝐵(𝑧). Then, it follows that Borel 

direction of 𝐵(𝑧) either lie inside of 𝑆 or lie on the 

boundary of 𝑆. Obviously, 𝑆(𝜃1, 𝜃2) is a radial 

angular domain of order 𝜌(𝐵) of 𝐵(𝑧). Hence, if 

𝑎𝑟𝑔𝑧 = 𝜃is on the boundary of 𝑆(𝜃1, 𝜃2), without 

loss of generality, say 𝜃 = 𝜃2, then there exists a 

constant𝛿 >  0such that𝑆(𝜃 − 𝛿, 𝜃) ⊆  𝑆(𝜃1, 𝜃) ∩
𝑆(𝜃1, 𝜃2), and (22) holds for any 𝜃 − 𝛿 < 𝜑 < 𝜃. 

By Lemma 14(i), there is 𝜑0 ∈ 𝑆(𝜃 − 𝛿, 𝜃) and 

𝑅 = 𝑅(𝜑0) > 1, such that (14) holds for all 𝑟 > 𝑅. 

Note that (17) holds for 𝑎𝑟𝑔𝑧 = 𝜑0, and  

lim
𝑟→∞

𝑠𝑢𝑝
𝑙𝑜𝑔𝑙𝑜𝑔|𝐵(𝑟𝑒𝑖𝜑0)|

𝑙𝑜𝑔𝑟
= 𝜌(𝐵), 

Thus there is a sequence 𝑟𝑛 with 𝑟𝑛 → ∞ as 

𝑛 → ∞, such that (14) and (15) hold for |𝑧| = 𝑟 =
𝑟𝑛. 

From (14), (18), (19), (20) and Eq. (1) we get a 

contradiction as above. Therefore the result hold in 

the case 𝑎𝑟𝑔𝑧 = 𝜃 is on the boundary of 𝑆(𝛼, 𝛽). 

If 𝑎𝑟𝑔𝑧 = 𝜃 lie inside of 𝑆(𝛼, 𝛽), then there exists a 

constant 𝛿 > 0 such that𝑆(𝜃 − 𝛿, 𝜃 + 𝛿) ⊆
 𝑆(𝛼, 𝛽) ∩ 𝑆(𝛼1, 𝛽1). Using similar procedure used 

in the case 𝑎𝑟𝑔𝑧 = 𝜃 is on the boundary of 𝑆(𝛼, 𝛽), 

we also get a contradiction. This completes the 

proof. 

 

In the following, we modified Theorem 12 

to obtain the following result in which the condition 

𝜌(𝐴) ≠ 𝜌(𝐵)is replaced with𝜇(𝐵) ≠ 𝜌(𝐴)and the 

condition 𝜇(𝐵) < 1/2 is deleted: 

 

Theorem 25 Let 𝐴(𝑧) be a nontrivial solution of 

Eq. (2), and let 𝐵(𝑧) be a transcendental entire 

function with 𝜇(𝐵) ≠ 𝜌(𝐴). Then every nontrivial 

solution of Eq. (1) has infinite order. 

 

Proof: By Theorema10 and Theorem 11 it is 

enough to prove the Theorem in case 1

2
≤  𝜇(𝐵) <

𝜌(𝐴). Suppose that there exists a nontrivial solution 

𝑓 of Eq. (1) with 𝜌(𝑓) < ∞. We must get a 

contradiction. Put 𝜃𝑗 =
2𝑗𝜋−arg (𝑎𝑛)

𝑛+2
 and 𝑆𝑗 =

{𝑧: 𝜃𝑗 < 𝑎𝑟𝑔𝑧 < 𝜃𝑗+1}, where 0 ≤ 𝑗 ≤ 𝑛 + 1 and 

𝜃𝑛+2 = 𝜃0 +  2𝜋. We consider two cases according 

to Lemma 19. 

 

Case1: Suppose that 𝐴(𝑧) blows up exponentially 

in each sector 𝑆𝑗, where 0 ≤ 𝑗 ≤ 𝑛 + 1; that is, for 

any 𝜃 ∈ (𝜃𝑗, 𝜃𝑗+1), we have 
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lim
𝑟→∞

𝑙𝑜𝑔𝑙𝑜𝑔|𝐴(𝑟𝑒𝑖𝜃)|

𝑙𝑜𝑔𝑟
= 𝜌(𝐴) =

𝑛 + 2

2
         (23) 

Then for any given constant 휀 ∈  (0,
𝜋

4𝜌(𝐴)
) and 

𝜂 ∈  (0,
𝜌(𝐴)−𝜇(𝐵)

4
), we have 

|𝐴(𝑧)|

≥ exp {(1 + 𝑜(1))𝛼|𝑧|
𝑛+2

2
−𝜂

}                     (24) 

|𝐵(𝑧)| ≤ exp(|𝑧|𝜇(𝐵)+𝜂) ≤ exp(|𝑧|𝜌(𝐴)−2𝜂)

≤ exp {𝑜(1)|𝑧|
𝑛+2

2
−𝜂}                   (25) 

as 𝑧 → ∞ in 𝑆𝑗(휀) = {𝑧: 𝜃𝑗 + 휀 < 𝑎𝑟𝑔𝑧 < 𝜃𝑗+1 −

휀}, 0 ≤ 𝑗 ≤ 𝑛 + 1, where 𝛼 is a positive constant 

depending  on 휀. Combining (24), (25), and Lemma 

22, there exist corresponding constants 𝑏 ≠ 0 such 

that 

|𝑓(𝑧) − 𝑏| ≤ exp{ −(1

+ 𝑜(1))𝛼|𝑧|
𝑛+2

2
−𝜂}          (26) 

as 𝑧 → ∞ in 𝑆𝑗(2휀), 0 ≤ 𝑗 ≤ 𝑛 + 1. Therefore, 𝑓 is 

bounded in the whole complex plane by Lemma 21. 

So, by Liouville's Theorem, 𝑓 is a nonzero constant 

in the whole complex plane. This contradicts the 

fact that Eq. (1) doesn't have nonzero constant 

solutions. 

 

Case 2: There is at least one sector of the 𝑛 + 2 

sectors, such that 𝐴(𝑧) decays to zero exponentially, 

say 𝑆𝑗0
(휀) = {𝑧: 𝜃𝑗0

+ 휀 < 𝑎𝑟𝑔𝑧 < 𝜃𝑗0+1 − 휀}, 

𝑗0 ∈ {0, 1, … , 𝑛 +  1}. That is, for any 𝜃 ∈
(𝜃𝑗0

, 𝜃𝑗0+1),we have 

lim
𝑟→∞

𝑙𝑜𝑔𝑙𝑜𝑔 |
1

𝐴(𝑟𝑒𝑖𝜃)
|

𝑙𝑜𝑔𝑟
=

𝑛 + 2

2
          (27) 

Since 1

2
≤  𝜇(𝐵) < 𝜌(𝐴), by Lemma 20 we see that 

there exists a sector 𝑆(𝛼, 𝛽) with 𝛽 − 𝛼 ≥
𝜋/(𝜌(𝐵)), 0 ≤ 𝛼 < 𝛽 ≤ 2𝜋 such that for all the 

rays 𝑎𝑟𝑔 𝑧 = 𝜃 ∈ (𝛼, 𝛽) we have 

lim
𝑟→∞

𝑠𝑢𝑝
𝑙𝑜𝑔𝑙𝑜𝑔|𝐵(𝑟𝑒𝑖𝜃)|

𝑙𝑜𝑔𝑟
≥ 𝜇(𝐵)           (28) 

Observe that 𝜇(𝐵) < 𝜌(𝐴). Thus there exists a 

sector 𝑆(𝛼′, 𝛽′), where 𝛼 < 𝛼′ < 𝛽′ < 𝛽, such that 

(27) and (28) hold for all 𝜃 ∈ (𝛼′, 𝛽′). By using 

Lemma 23 (i), there exists 𝜃 ∈ (𝛼′, 𝛽′) and 𝑅 > 1 

such that 

|
𝑓𝑘(𝑟𝑒𝑖𝜃0)

𝑓(𝑟𝑒𝑖𝜃0)
| ≤ 𝑟2𝜌(𝑓),        𝑘 = 1,2              (29) 

holds for all 𝑟 > 𝑅. Note that (28) holds for 𝜃 = 𝜃0. 

Thus there is a sequence (𝑟𝑛) with 𝑟𝑛 → ∞ as 

𝑛 → ∞, such that 

|𝐵(𝑟𝑛𝑒𝑖𝜃0)| ≥ exp(𝑟𝑛
𝜇(𝐵)−𝜀)                 (30) 

holds for every 0 < 𝜖 < 𝜇(𝐵). Therefore, we 

conclude from (27), (28), (29), (30) and Eq.1 that 

exp(𝑟𝑛
𝜇(𝐵)−𝜀) ≤ |𝐵(𝑟𝑛𝑒𝑖𝜃0)|

≤ |
𝑓′′(𝑟𝑛𝑒𝑖𝜃0)

𝑓(𝑟𝑛𝑒𝑖𝜃0)
|

+ |𝐴(𝑟𝑛𝑒𝑖𝜃0)| |
𝑓′(𝑟𝑛𝑒𝑖𝜃0)

𝑓(𝑟𝑛𝑒𝑖𝜃0)
|

≤ 𝑟𝑛
2𝜌(𝑓)(1

+ 𝑜(1))                      (31) 

holds. Obviously, for all sufficiently large 𝑛 this is a 

contradiction. This completes the proof. 
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 والتي معاملاتها تحقق شروط معينةحول نمو الحلول للمعادلات التفاضلية الخطية العقدية 
 

ايمان علي حسين
  

اياد ولي علي               
 

 

 
 .كلية العلوم، الجامعة المستنصرية، بغداد، العراق، قسم الرياضيات

 

 :الخلاصة
′′𝑓الثانية الرتبة من الخطية العقدية التفاضلية للمعادلات الحلول نمو ندرس البحث هذا في            + 𝐴(𝑧)𝑓′ + 𝐵(𝑧)𝑓 =  ان نبرهنو 0

دينجوي. الشرط  لتخمين الشرط الرأسي لمتراجحة يانك والشرط الرأسي تحقق المعاملات ان بفرض  منتهية. غير رتبة لها تافهة غير حلول اي

′′𝑓التفاضلية للمعادلة حل نفسه هو المعاملات هو ان احد الاخر + 𝑃(𝑧)𝑓 = 0 . 
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